
Designing Record Access for
Enterprise Scale

Salesforce, Spring ’24

 @salesforcedocs
Last updated: December 15, 2023

https://twitter.com/salesforcedocs

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

DESIGNING RECORD ACCESS FOR ENTERPRISE SCALE 1
Preface . 1
Introduction . 1
Group Membership Operations and Sharing Recalculation . 1

Common Group and Data Updates . 2
Ownership Data Skew . 2
Group Membership Locking . 3
Takeaway: Tuning Group Membership for Performance . 6

Object Relationships, Bulk Loading, and Sharing Recalculation . 6
Implicit Sharing . 6
Parent-Child Data Skew . 8
Record-Level Locking . 8
Takeaway: Tuning Data Relationships and Updates for Performance 9

Tools for Large-Scale Realignments . 9
Faster Account Sharing Recalculation . 10
Deferred Sharing Maintenance . 10
Takeaway: Making Realignment Smoother . 11

Conclusion . 12

DESIGNING RECORD ACCESS FOR ENTERPRISE SCALE

Preface

This document introduces advanced topics in user record access for the Salesforce Sales, Customer Service, and Portal applications, and
provides guidance on how to configure your organization to optimize access control performance.

Audience
This document is for expert architects working on Salesforce implementations with complex record access requirements or large-scale
sales organization realignments.

Assumptions
This document assumes expertise in Salesforce administration and security, and knowledge of SQL and relational database concepts. It
also assumes a familiarity with the content in Record-Level Access: Under the Hood, which explains the inner workings of the flexible and
powerful Salesforce record access infrastructure.

Introduction

This paper focuses primarily on the effects of group maintenance on Sharing performance and the built-in sharing behaviors that support
Salesforce applications.

It also:

• Addresses how to avoid common configuration traps that can drag down the performance of your record-level access system

• Introduces some key platform features that can help you speed up large-scale sharing realignments

Group Membership Operations and Sharing Recalculation

The Salesforce Role Hierarchy, Public Groups, and Territories are closely connected to sharing rules and the special security features of
Salesforce applications. Because of these relationships, seemingly simple changes to groups and group membership can sometimes
involve substantial recalculations of users’ access rights.

For example, when an administrator moves a user from one branch of the hierarchy to another, Salesforce performs all of the following
actions to ensure that other users have correct access to data owned by that relocated user.

• If the user:

– Is the first member in his or her new role to own any data, Salesforce adds or removes access to the user’s data for people who
are above the user’s new or old role in the hierarchy.

– Has a new role with different settings for accessing contacts, cases, and opportunities, Salesforce does the following to reflect
the change in settings.

• Adds shares to those child objects where the new settings are more permissive

• Removes existing shares where the new settings are more restrictive

1

https://developer.salesforce.com/docs/atlas.en-us.248.0.salesforce_record_access_under_the_hood.meta/salesforce_record_access_under_the_hood/uth_intro.htm

– Owns any accounts that have been enabled for either the Customer or Partner portals, Salesforce removes any child portal roles
from the user’s original role and adds them as children to the user’s new role.

Note:

• Salesforce also adjusts boss-implicit shares, which provide access in the hierarchy to records owned by or shared to
portal users. See Implicit Sharing on page 6.

• Salesforce must perform these tasks for every portal-enabled account the user owns.

• Salesforce also recalculates all sharing rules that include the user’s old or new role in the source group. It removes all of the user’s
records from the scope of sharing rules where the old role is the source group and adds those records to the scope of rules where
the new role is the source. Depending on the sharing rule settings for accounts, Salesforce might also add or remove shares to
account child records.

Note: If the user owns portal accounts, and there are sharing rules that use portal roles as the source group, Salesforce might
need to recalculate those rules. Some sharing rules might no longer be valid given the user’s new location in the hierarchy, in
which case an administrator might need to modify or delete them.

During the user’s move, the managers in the branch above the user’s old role lose access to all the data that the user owns, as well as
to child records shared through the managers’ role settings. Managers in the branch above the user’s new role will gain access to the
user’s accounts and to child records according to their own role settings.

Common Group and Data Updates
So a lot can happen under the hood when an administrator takes what looks like a simple action, such as changing the role of a user.
We chose this operation to illustrate all the possible types of sharing maintenance, but other common group and data updates can have
a similar impact.

Moving a role to another branch in the hierarchy
One benefit to moving a whole role is that any portal accounts simply move along with their parent role, and Salesforce doesn’t
have to change the related sharing. On the other hand, Salesforce must do all of the work involved in moving a single user for all
users in the role being moved and for all of those users’ data.

Changing the owner of a portal account
The effort required for what looks like a simple data update—changing the name of the user in the Account Owner field—can be
surprising. When the old and new owners are in different roles, Salesforce is not only moving the portal roles to a new parent role
but also adjusting the sharing for all the data associated with the portal account.

Ownership Data Skew
Even with all of the work that Salesforce does to maintain correct access for security groups, most customers will never encounter
performance issues unless they are performing updates that affect many users or large amounts of data. However, there are certain
common configurations that greatly increase the probability of performance problems. When a single user owns more than 10,000
records of an object, we call that condition ownership data skew. One of the common patterns involves customers concentrating ownership
of data so that a single user or queue, or all the members of a single role or public group, owns most or all of the records for a particular
object.

For example, a customer can assign all of his or her unassigned leads to a dummy user. This practice might seem like a convenient way
to park unused data, but it can cause performance issues if those users are moved around the hierarchy, or if they are moved into or out
of a role or group that is the source group for a sharing rule. In both cases, Salesforce must adjust a very large number of entries in the
sharing tables, which can lead to a long-running recalculation of access rights.

Distributing ownership of records across a greater number of users will decrease the chance of long-running updates occurring..

2

Common Group and Data UpdatesDesigning Record Access for Enterprise Scale

Tip: You can take the same approach when dealing with a large amount of data that is owned by or visible to the users under a
single portal account—changing the owner of that account or moving those users in the hierarchy requires the system to recalculate
all the sharing and inheritance for all the data under the account.

If you do have a compelling reason for assigning ownership to a small number of users, you can minimize possible performance impacts
by not assigning the user(s) to a role.

If the user(s) must have a role to share data, we recommend that you:

• Place them in a separate role at the top of the hierarchy

• Not move them out of that top-level role

• Keep them out of public groups that could be used as the source for sharing rules

Group Membership Locking
When updating the role hierarchy or group membership through integration or the administration console, customers might occasionally
receive a “could not acquire lock” error and have to repeat the operation. This error occurs because the sharing system locks the tables
holding group membership information during updates to prevent incompatible simultaneous updates or timing issues, both of which
could lead to inaccurate data about users’ access rights. Typically, these locks are held only very briefly, so most customers will never
see a lock conflict error. In some scenarios—such as a change in role triggering a sharing rule recalculation—locks might be held for a
longer time, and conflicts might occur.

Customers who experience these locking errors are typically executing large-scale data loads or integrations with other internal systems
that are making changes to role and group structure, user assignments to roles and groups, or both. When these processes are
running—and an administrator tries to change a user’s role, or the customer tries to provision a new external user—one of these
simultaneous operations might be unable to secure the lock it requires. The most likely time for this failure to occur is during periodic
organizational realignment events, such as end-of-year or end-of-quarter processing, where many account assignments and user roles
are changing.

Customers can lessen the chance of locking errors by:

• Scheduling separate group maintenance processes carefully so they don’t overlap

• Implementing retry logic in integrations and other automated group maintenance processes to recover from a failure to acquire a
lock

Note: You can also receive locking errors if you're updating the role hierarchy or group membership while running other
deployments that also update group membership information or have Apex tests that do so. If you receive locking errors, wait for
the deployment operation or Apex tests to finish.

By default, granular locking is enabled, which allows some group maintenance operations to proceed simultaneously if there is no
hierarchical or other relationship between the roles or groups involved in the updates. Administrators can adjust their maintenance
processes and integration code to take advantage of this limited concurrency to process large-scale updates faster, all while still avoiding
locking errors.

The key advantages of granular locking are that:

• Groups that are in separate hierarchies are now able to be manipulated concurrently.

• Public groups and roles that do not include territories are no longer blocked by territory operations.

• Users can be added concurrently to territories and public groups.

• User provisioning can now occur in parallel.

– External user creation requires locks only if new external roles are being created.

– Provisioning new external users in existing accounts occurs concurrently.

3

Group Membership LockingDesigning Record Access for Enterprise Scale

• A single-long running process, such as a role delete, blocks only a small subset of operations.

This table lists all the operations that can occur in parallel. Note that certain operations, such as reparenting (moving roles within the role
hierarchy), still block almost all other group updates.

Can be Performed Concurrently with...Group Operation

Role creation • User role change1

• Territory reparenting

• Territory deletion

• Territory creation

• Removal of user from territory

• Addition of user to territory

• User provisioning2

Role deletion • Territory reparenting

• Territory deletion

• Territory insertion

• Removal of user from territory

• Addition of user to territory

Territory creationRole reparenting (includes change of site or portal account owner)

Adding user to territory • Role deletion

• Role insertion

• Territory creation

• Addition of user to territory

• User provisioning3

Removing user from territory • Role deletion

• Role insertion

• Territory creation

• User provisioning3

Territory reparenting • Role deletion

• Role insertion

• User provisioning3

Territory deletion • Role deletion

• Role insertion

• User provisioning3

Territory creation • Role reparenting

• Role deletion

4

Group Membership LockingDesigning Record Access for Enterprise Scale

Can be Performed Concurrently with...Group Operation

• Role insertion

• User role change1

• Addition of user to territory

• Removal of user from territory

• User provisioning3

Provisioning internal user with an existing role • Role insertion

• User role change1

• Territory reparenting

• Territory deletion

• Territory creation

• Removal of user from territory

• Addition of user to territory

• User provisioning3

Changing user role (User must not own any site or portal accounts.) • Role insertion

• Territory insertion

• User provisioning3

Provisioning first site or portal user under an account • User role change1

• Territory reparenting

• Territory deletion

• Territory creation

• Removal of user from territory

• Addition of user to territory

• User provisioning2

Creating second site or portal user under an account • Role insertion

• User role change1

• Territory reparenting

• Territory deletion

• Territory creation

• Removal of user from territory

• Addition of user to territory

• User provisioning3

Any group membership operationProvisioning high-volume Experience Cloud site user

Territory creationChanging site or portal account owner

Territory creationChanging role of a user who owns a site or portal account

5

Group Membership LockingDesigning Record Access for Enterprise Scale

1 The user must not own any site or portal accounts.
2 Provisioning standard user or external user in an existing portal role
3 Provisioning any standard or external user, including the first site or portal user under an account

Takeaway: Tuning Group Membership for Performance
Understand the performance characteristics of the various group maintenance operations that you are performing and always test
substantial configuration changes in a sandbox environment so you know what to expect in production.

Here are some specific suggestions.

• Identify user and group updates that are complex, such as user role and portal account ownership changes, or updates that involve
a large amount of associated data. Allow for additional time to process these changes.

• When making changes to the hierarchy, process changes to the bottom (leaf) nodes first, then move upward to avoid duplicate
processing.

• Limit the number of records of an object owned by a single user to 10,000.

• Tune your updates for maximum throughput by experimenting with batch sizes and using the bulk API, where possible.

• Remove redundant paths of access, such as sharing rules that provide access to people who already have it through the hierarchy.

• Schedule large group membership operations during off-peak hours.

Object Relationships, Bulk Loading, and Sharing Recalculation

Choices that Salesforce administrators make when designing their data models can have a major impact on sharing performance when
data is loaded, updated, or transferred between users. Understanding how Salesforce handles the relationships between objects and
protects data integrity during updates can help administrators optimize the performance of their data operations.

Implicit Sharing

Parent-Child Data Skew

Record-Level Locking

Takeaway: Tuning Data Relationships and Updates for Performance

Implicit Sharing
The sharing capabilities of the Lightning Platform include a wide variety of features that administrators can use to explicitly grant access
to data for individuals and groups. In addition to these more familiar functions, there are a number of sharing behaviors that are built
into Salesforce applications. This kind of sharing is called implicit because it’s not configured by administrators; it’s defined and maintained
by the system to support collaboration among members of sales teams, customer service representatives, and clients or customers.

This table describes the different kinds of implicit sharing built into Salesforce applications and the record access that each kind provides.

DetailsProvidesType of Sharing

Read-only access to the parent account for
a user with access to a child record

Parent • Not used when sharing on the child is
controlled by its parent

• Expensive to maintain with many
account children

6

Takeaway: Tuning Group Membership for PerformanceDesigning Record Access for Enterprise Scale

DetailsProvidesType of Sharing

• When a user loses access to a child,
Salesforce must check all other children
to see if it can delete the implicit parent.

Access to child records for the owner of the
parent account

Child • Not used when sharing on the child is
controlled by its parent

• Controlled by child access settings for
the account owner’s role

• Supports account sharing rules that
grant child record access

• Supports account team access based
on team settings

• When a user loses access to the parent,
Salesforce removes the user’s access to
all children records too.

After faster account sharing recalculation is
enabled, we no longer store implicit share
records between accounts and their child
case, contact, and opportunity records.
Instead, the system dynamically determines
whether users can access these records
when they try to access them. For more
information, see the Faster Account Sharing
Recalculation knowledge article.

Shared the lowest role under the site or
portal account

Access to a site or portal account and all
associated contacts for all site or portal users
under that account

Site or Portal

All members of the sharing set access group
gain access to every record owned by every

Access to data owned by high-volume users
associated with a sharing set for users
member of the sharing set's access group

High Volume1

high-volume user associated with that
sharing set

Maintains the ability to see the parent
account when users are given access to

Read only access to the parent account of
records shared through a sharing set's
access group for users member of the group

High Volume Parent

account children owned by high-volume
users

1To allow external users to scale into the millions, high-volume users have a streamlined sharing model that doesn’t rely on roles or
groups, and functions similarly to calendar events and activities. High-volume users include the Customer Community, High Volume
Customer Portal, and Authenticated Website license types.

7

Implicit SharingDesigning Record Access for Enterprise Scale

https://help.salesforce.com/s/articleView?id=000394638&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000394638&type=1&language=en_US

Parent-Child Data Skew
These implicit sharing behaviors simplify the task of managing security for users in Salesforce applications. They handle the most common
data access use cases without requiring administrators to configure additional roles, groups, and sharing rules. Like data ownership skew,
some parent-child configurations can slow the performance of large data loads and updates, and sometimes even of single-record
operations.

A common configuration that can lead to poor performance is the association of a large number of child records (10,000 or more) with
a single parent account. For example, a customer can have tens or hundreds of thousands of contacts generated by marketing campaigns
or purchased from mailing lists—without any association to formal business accounts. If a contact is required to have an associated
account, what should an administrator do? It might be convenient to park all those unallocated contacts under a single dummy account
until their real business value and relationship can be determined.

While this option seems reasonable, this kind of parent-child data skew can cause serious performance problems in the maintenance of
implicit sharing.

Problem #1: Losing Access to a Child Record Under a Skewed Account
Assume that you have 300,000 unallocated contacts all under the same account. A user with access to one of these contacts will also
have a parent implicit share in the account sharing table that gives him or her access to that account. Now what happens if that user
loses access to the contact?

In order to determine whether to remove his or her sharing to the account, Salesforce needs to scan all of the other 299,999 contacts
to ensure that the user doesn’t have access to them either. This practice can become expensive if Salesforce is processing a lot of visibility
changes on these highly skewed accounts.

Problem #2: Losing Access to the Skewed Parent Account
Consider the opposite scenario: The user has access to all 300,000 contacts because of his or her access to their parent account. What
happens when the user loses access to the account?

This situation is not as problematic because the user must lose access to all the child records. Salesforce can query that list very quickly,
but if there are very many child records, it might still take substantial time to delete all the relevant rows from the sharing tables for all
the child objects.

Configuring a severe data skew on an account can also cause issues when customers make large-scale changes in sharing or realign
sales assignments in Territory Management. For example, if the account is part of the source group for a sharing rule, and the administrator
recalculates sharing on accounts, the work required to adjust the child entity access for that one account can cause the recalculation to
become a long-running transaction or, in extreme cases, to fail altogether. Similar problems can occur when a territory realignment
process attempts to evaluate assignment rules for a skewed account.

Note: To improve performance, we recommend that you enable faster account sharing recalculation. Instead of storing implicit
share records between accounts and their child case, contact, and opportunity records, the system dynamically determines whether
users can access these records when they try to access them. For more information, see the Faster Account Sharing Recalculation
knowledge article.

Record-Level Locking
Many customers regularly upload large amounts of data to the service, and maintain integrations with other systems that update their
data in scheduled batches or continuously in real time. Like other transactional systems, the Lightning Platform employs record-level
database locking to preserve the integrity of data during these updates. The locks are held very briefly and don’t present the same

8

Parent-Child Data SkewDesigning Record Access for Enterprise Scale

https://help.salesforce.com/s/articleView?id=000394638&type=1&language=en_US

performance risks as some of the other organization locks. However, they can still cause updates to fail, so customers must still be careful
not to run updates to the same collections of records in multiple threads.

In addition to taking this standard precaution, developers and administrators should know that when they are updating child records
in Salesforce, the system locks the parent and the child records to prevent inconsistencies, such as updating a child record whose parent
has just been deleted in another thread. When objects being processed have a parent-child relationship, two situations in particular
pose a risk of producing locking errors.

• Updates to parent records and their children are being processed simultaneously in separate threads.

• Updates to child records that have the same parent records are being processed simultaneously in separate threads.

Because Salesforce holds these locks very briefly, customers who are experiencing a small number of locking errors might be able to
handle the problem by adding retry logic to their integration code. Customers who experience frequent locking from integrations and
mass updates should sequence batches so that the same records are not updated in multiple threads simultaneously.

Takeaway: Tuning Data Relationships and Updates for Performance
Understand the performance characteristics of the various maintenance operations that you are performing and always test substantial
data uploads and changes to object relationships in a sandbox environment so you know what to expect.

Here are some specific suggestions.

• Use a Public Read Only or Read/Write organization-wide default sharing model for all non-confidential data.

• To avoid creating implicit shares, configure child objects to be Controlled by Parent wherever this configuration meets
security requirements.

• Configure parent-child relationships with no more than 10,000 children to one parent record.

• If you are encountering only occasional locking errors, see if the addition of retry logic is sufficient to solve the problem.

• Sequence operations on parent and child objects by ParentID and ensure that different threads are operating on unique sets
of records.

• Tune your updates for maximum throughput by working with batch sizes, timeout values, Bulk API 2.0, and other
performance-optimizing techniques.

• Enable faster account sharing recalculation. Instead of storing implicit share records between accounts and their child case, contact,
and opportunity records, the system dynamically determines whether users can access these records when they try to access them.
For more information, see the Faster Account Sharing Recalculation knowledge article.

Tools for Large-Scale Realignments

The most demanding maintenance activity that customers perform is a large-scale realignment of sales teams, territories, and account
assignments. Whether customers do realignments annually, quarterly, or more frequently, the realignments typically involve extensive
changes to an organization’s structure and updates to large amounts of data, both of which result in many changes to record access.

At the same time, sales realignments are very time sensitive—failing to complete them quickly can adversely affect revenue. Optimizing
the performance of sales realignments is naturally a key concern of many enterprise administrators, and the Lightning Platform includes
several features to help with the planning and execution of realignments.

Note: To enable any of the following features in your organization, contact Salesforce customer support.

9

Takeaway: Tuning Data Relationships and Updates for
Performance

Designing Record Access for Enterprise Scale

https://help.salesforce.com/s/articleView?id=000394638&type=1&language=en_US

Faster Account Sharing Recalculation

To improve performance, enable faster account sharing recalculation. Instead of storing implicit share records between accounts
and their child case, contact, and opportunity records, the system dynamically determines whether users can access these records
when they try to access them.

Deferred Sharing Maintenance

Takeaway: Making Realignment Smoother

Faster Account Sharing Recalculation
To improve performance, enable faster account sharing recalculation. Instead of storing implicit share records between accounts and
their child case, contact, and opportunity records, the system dynamically determines whether users can access these records when
they try to access them.

By no longer creating implicit child share records for cases, contacts, and opportunities, performance is improved when updating the
following:

• Organization-Wide Defaults

• Sharing Rules

• Group Membership

• Manual Sharing

• Account Ownership

• Role Hierarchy

• Role Assignments

Depending on your org's access setup, this change can cause account owners and users that the account is shared with to gain view
and edit privileges to case or contact records owned by high-volume Experience Cloud site users. SOQL queries or Apex tests that query
implicit case, contact, or opportunity share records don’t return any results, because Salesforce no longer stores these records.

This feature is enabled for cases and contacts on a rolling basis beginning in Winter ’24. To enable this feature for opportunities, apply
the Enable Faster Account Sharing Recalculation by Not Storing Opportunity Implicit Child Shares release update. For more information,
see the Faster Account Sharing Recalculation knowledge article.

Deferred Sharing Maintenance
In addition to all the technical concerns administrators must manage to perform a major realignment, they must also coordinate closely
with the business to ensure that end users are not adversely affected when access rights are being adjusted. In an enterprise environment
in which multiple systems are continually processing updates, it can be difficult to schedule an organization or sharing rule change that
might take substantial time to complete. In order to increase the predictability of these kinds of updates, the Lightning Platform has
recently introduced the concept of deferred sharing maintenance.

Here’s how deferred sharing maintenance works in practice.

1. Based on requests from the business, an administrator identifies a number of changes to the role hierarchy and group membership,
or updates to sharing rules.

2. Given best estimates of the remaining overall work, the administrator negotiates a maintenance window for completing the
processing.

Tip: This window should be modeled in a sandbox environment to get the best estimate possible.

10

Faster Account Sharing RecalculationDesigning Record Access for Enterprise Scale

https://help.salesforce.com/s/articleView?id=000394638&type=1&language=en_US

3. Instead of processing each separate update and waiting for it to complete, the administrator prepares all the information required
to perform all updates ahead of the planned maintenance window.

4. At the start of the maintenance window, the administrator uses the deferral feature to essentially “turn off” processing of group
maintenance operations, and then makes all the desired changes to role and group membership at the same time.

Note: Sharing rule processing is also deferred at this time so the administrator can perform all sharing rule updates.

5. Once the changes have completed, the administrator resumes processing group maintenance, and the system performs a recalculation
to make all the role and group changes take effect.

6. At this point, the system is in a state that requires a full recalculation of all sharing rules for user access rights to be complete and
accurate. The administrator can resume sharing rule processing immediately or wait to start the process at a later time. After the
sharing rule recalculation has completed, all the access changes take effect.

When using the deferred sharing features, it is especially important to test the whole process in a sandbox environment.

This practice helps:

• Benchmark how long the overall recalculation is likely to take in production

• Smooth out any kinks in orchestrating deferred sharing maintenance

Note: Deferred sharing maintenance does not defer the recalculation of implicit sharing as described in the implicit sharing
table on page 6. The cascading effects to implicit shares continue to be processed immediately when sharing rules are
changed by administrators or through the code.

Who’s a Good Candidate for Deferred Sharing?
There are two main criteria for determining whether deferred sharing maintenance is the right tool for your organization: the size and
complexity of your realignment activities, and the flexibility you have to arrange a maintenance window with your customers. If you find
that organizational changes and sharing rule updates typically complete quickly enough to be scheduled into the workday and weekend
slack times in your use of the service, you are unlikely to benefit substantially from this feature. On the other hand, if you are able to
negotiate downtime with your business customers and have been struggling to complete updates in a timely fashion, deferred sharing
might be a great solution to your problem.

Note: To improve performance, we recommend that you enable faster account sharing recalculation. Instead of storing implicit
share records between accounts and their child case, contact, and opportunity records, the system dynamically determines whether
users can access these records when they try to access them. For more information, see the Faster Account Sharing Recalculation
knowledge article.

Takeaway: Making Realignment Smoother
Understand the pros and cons of the performance tools, and make sure they fit well with the process and timing of your realignment.
Always test these tools and new realignment processes in a sandbox environment so you know what to expect.

Here are some specific suggestions.

• To improve performance, enable faster account sharing recalculation. For more information, see the Faster Account Sharing
Recalculation knowledge article.

• Consider whether it’s more efficient to:

– Set aside specific maintenance windows

– Defer organizational or sharing rule maintenance while processing your updates

11

Takeaway: Making Realignment SmootherDesigning Record Access for Enterprise Scale

https://help.salesforce.com/s/articleView?id=000394638&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000394638&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000394638&type=1&language=en_US

Note: While making your decision, remember that deferring organizational maintenance will require recalculating sharing
rules for all objects.

Conclusion

The record-level access controls at the heart of the Lightning Platform are extremely flexible and powerful, and serve the collaboration
and security needs of all customers—from those working in small sales teams to those working in very large enterprises. With the
knowledge and features described in this paper, Salesforce developers and administrators can optimize system performance while
continuing to deliver the flexibility their companies require in access control.

12

ConclusionDesigning Record Access for Enterprise Scale

	Designing Record Access for Enterprise Scale
	Preface
	Introduction
	Group Membership Operations and Sharing Recalculation
	Common Group and Data Updates
	Ownership Data Skew
	Group Membership Locking
	Takeaway: Tuning Group Membership for Performance

	Object Relationships, Bulk Loading, and Sharing Recalculation
	Implicit Sharing
	Parent-Child Data Skew
	Record-Level Locking
	Takeaway: Tuning Data Relationships and Updates for Performance

	Tools for Large-Scale Realignments
	Faster Account Sharing Recalculation
	Deferred Sharing Maintenance
	Takeaway: Making Realignment Smoother

	Conclusion

