
First-Generation Managed
Packaging Developer Guide

Version 60.0, Spring ’24

 @salesforcedocs
Last updated: January 12, 2024

https://twitter.com/salesforcedocs

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: First-Generation Managed Packages . 1

Why Switch to Second-Generation Managed Packaging? . 3
Set Up Your Environments for First-Generation Managed Packages . 4

Developer Hub . 5
Environment Hub . 10

Register a Namespace for a First-Generation Managed Package . 19
Create a First-Generation Managed Package Using a UI . 20

What Are Beta Versions of Managed Packages? . 21
Create a Beta Package for First-Generation Managed Packages 22
Create and Upload a First-Generation Managed Package . 23
Publish Extensions to Managed Packages . 27
View Package Details in First-Generation Managed Packages 28
Notifications for Package Errors . 31

Create a First-Generation Managed Package using Salesforce DX . 32
Build and Release Your App with Managed Packages . 33
View Information About a Package . 37

Components Available in First-Generation Managed Packages . 38
Components Automatically Added to First-Generation Managed Packages 40
Protected Components in Managed Packages . 43
Set Up a Platform Cache Partition with Provider Free Capacity 43
Package Dependencies in First-Generation Managed Packages 44
Metadata Access in Apex Code . 45
Permission Sets and Profile Settings in Packages . 46
Permission Set Groups . 48
Custom Profile Settings . 49
Protecting Your Intellectual Property . 49
Call Salesforce URLs Within a Package . 50
Develop App Documentation . 51
API and Dynamic Apex Access in Packages . 52
Connected Apps . 58

Package and Test Your First-Generation Managed Package . 59
Install a Managed Package . 60
Install First-Generation Managed Packages Using Metadata API 62
Component Availability After Deployment . 63
Install Notifications for Unauthorized Managed Packages . 63
Resolve Apex Test Failures . 64
Run Apex on Package Install/Upgrade . 64
Run Apex on Package Uninstall . 68
Uninstall a Managed Package . 70

Update Your First-Generation Managed Package . 71
Package Versions in First-Generation Managed Packages . 71
Create and Upload Patches in First-Generation Managed Packages 72
Work with Patch Versions . 74
Versioning Apex Code . 75
Apex Deprecation Effects for Subscribers . 76

Publish Upgrades to First-Generation Managed Packages . 77
Plan the Release of First-Generation Managed Packages . 78
Remove Components from First-Generation Managed Packages 79
Delete Components from First-Generation Managed Packages 81
Modifying Custom Fields after a Package Is Released . 82
Manage Versions of First-Generation Managed Packages . 82
View Unused Components in a Managed Package . 83
Push Package Upgrades to Subscribers . 83

Manage Licenses for Managed Packages . 89
Get Started with the License Management App . 91
Lead and License Records in the License Management App . 94
Modify a License Record . 94
Refresh Licenses for a Managed Package . 95
Extending the License Management App . 95
Move the License Management App to Another Salesforce Org 98
Troubleshoot the License Management App . 99
Best Practices for the License Management App . 100
Troubleshoot Subscriber Issues . 100

Manage Features in First-Generation Managed Packages . 103
Feature Parameter Metadata Types and Custom Objects . 103
Set Up Feature Parameters . 104
Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features 106
Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters . . 107
Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs 107
Best Practices for Feature Management . 108
Considerations for Feature Management . 108

AppExchange App Analytics for First-Generation Managed Packages 108
Enable App Analytics on Your First-Generation Managed Package 109

Developing and Distributing Unmanaged Packages . 109
Create and Upload an Unmanaged Package . 110
Components Available in Unmanaged Packages . 110
Convert Unmanaged Packages to Managed . 113

Contents

CHAPTER 1 First-Generation Managed Packages

Managed packages are used by Salesforce partners to distribute and sell applications to customers. Using
AppExchange and the License Management Application (LMA), developers can sell and manage
user-based licenses to their app. Managed packages are upgradeable.

In this chapter ...

• Why Switch to
Second-Generation

Note: Building a new app? Have you considered using second-generation managed packages?
Flexible versioning and the ability to share a namespace across packages are just two reasons why

Managed
Packaging?

developers love creating second-generation managed packages. We think you’d love it, too. To• Set Up Your
Environments for learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-

and Second-Generation Managed Packages.First-Generation
Managed Packages

• Register a
Namespace for a
First-Generation
Managed Package

• Create a
First-Generation
Managed Package
Using a UI

• Create a
First-Generation
Managed Package
using Salesforce DX

• Components
Available in
First-Generation
Managed Packages

• Package and Test
Your First-Generation
Managed Package

• Update Your
First-Generation
Managed Package

• Publish Upgrades to
First-Generation
Managed Packages

• Manage Licenses for
Managed Packages

• Manage Features in
First-Generation
Managed Packages

• AppExchange App
Analytics for
First-Generation
Managed Packages

1

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

• Developing and
Distributing
Unmanaged
Packages

2

First-Generation Managed Packages

Why Switch to Second-Generation Managed Packaging?

You’ve been using first-generation managed packages to develop your apps, so you’re probably pretty familiar with what works well,
and what’s a bit more painful than you’d like. And no doubt, you’re aware that second-generation managed packages is our newer
technology, but maybe you aren’t so sure why switching to second-generation managed packaging (managed 2GP) will improve your
package development experience. So let’s talk about that.

Source-Driven Development
The source-driven development model used in managed 2GP is a big shift from the org-based development used in managed 1GP. Say
goodbye to packaging orgs as your source of truth. Instead, your source of truth with managed 2GP is the package metadata in your
version control system. And as you develop your managed 2GP package, you create and update your package metadata in a version
control system, not in an org.

Minimal Interaction with Salesforce Orgs
As you probably know well, with managed 1GP development, every package and patch version requires a unique Salesforce org, so it’s
not uncommon for you to own 100s of Salesforce orgs in which your package metadata is deployed. Managing these orgs and their
credentials can become a nightmare.

Managed 2GP takes away the hassle of managing orgs, and instead you use a single org, the Dev Hub org, to manage all your packages.
And even when you do need to connect to your Dev Hub org you’ll use Salesforce CLI (Command Line Interface) or a script to log in.

By eliminating the need to manually log in and keep track of hundreds of packaging and patch orgs (and their login credentials), managed
2GP simplifies package development and promotes modern, programmatic Application Lifecycle Management (ALM).

API- and CLI-first Model
Unlike managed 1GP, which has only partial API coverage, you can perform every managed 2GP packaging operation using an API or
CLI command. You can completely automate packaging operations and be more productive. Repeatable, scriptable, and track-able ALM
is truly possible with managed 2GP.

Flexible Versioning
Managed 1GP packaging follows a linear versioning model that requires you to build upon the previous package version. This approach
is very restrictive, and for metadata that can’t be removed from a package, you’re stuck with that metadata in your managed 1GP.

Enter managed 2GP and flexible versioning. If you create a managed-released package version that you haven’t yet distributed to a
customer, you can abandon that package version and select a previous package version as the ancestor you want to build upon. Flexible
versioning also allows you to use branches and do parallel package development. You can iterate fast, learn from, and move on from
any mistakes.

One Namespace Shared Across Multiple Packages
Managed 1GP packages require each package to have a unique namespace. This restriction can lead to a proliferation of global Apex
because sharing code among packages is only possible by declaring Apex classes and methods as global.

Managed 2GP changes the game by allowing multiple packages to share the same namespace. The @namespaceAccessible
annotation then lets you share public Apex classes and methods across all packages in the same namespace. By using public Apex, you
don’t increase your global Apex footprint by exposing a global API.

3

Why Switch to Second-Generation Managed Packaging?First-Generation Managed Packages

Declarative Dependencies
In managed 2GP packaging, you specify dependencies among packages declaratively in a .json file. Which as you know, is a more
developer-friendly approach than how managed 1GP dependencies are declared.

Simplified Patch Versioning
Creating a patch version of a managed 2GP is as easy as creating a new major or minor package version. You use a Salesforce CLI command
and specify a non-zero number for the patch version number. And that’s it!

Because your version control system is the source of truth for managed 2GP, creating patch versions is straightforward. We promise you
won’t miss the laborious and error-prone patch org process of managed 1GP.

Avoid Having to Migrate Customers in the Future
As you may be aware, we’re developing capabilities to migrate your managed 1GP packages to managed 2GP. However, when we
launch that capability, there’s work that you have to do to migrate your managed 1GP packages and customers from 1GP to 2GP. By
adopting managed 2GP today for your new packages, you avoid the hassle of migration in the future.

Set Up Your Environments for First-Generation Managed Packages

The Environment Hub and Dev Hub are essential to your package development workflow.

Environment Hub
Use the Environment Hub to connect, create, view, and log in to Salesforce orgs from one location. If your company has multiple
environments for development, testing, and trials, the Environment Hub lets you streamline your approach to org management.

Dev Hub
If you plan to use scratch orgs for your package development, you must first set up a Dev Hub. A scratch org is fully configurable, allowing
developers to emulate different Salesforce editions with different features and preferences.

Developer Hub

The Developer Hub (Dev Hub) lets you create and manage scratch orgs. The scratch org is a source-driven and disposable deployment
of Salesforce code and metadata, made for developers and automation. A scratch org is fully configurable, allowing developers to
emulate different Salesforce editions with different features and preferences. Scratch orgs are a central feature of Salesforce DX, an
open developer experience for developing and managing Salesforce apps across their entire lifecycle.

Environment Hub

The Environment Hub lets you connect, create, view, and log in to Salesforce orgs from one location. If your company has multiple
environments for development, testing, and trials, the Environment Hub lets you streamline your approach to org management.

4

Set Up Your Environments for First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm

Developer Hub

EDITIONS

Available in: Lightning
Experience

Available in:
Developer,Enterprise,
Performance, and
Unlimited Editions

The Developer Hub (Dev Hub) lets you create and manage scratch orgs. The scratch org is a
source-driven and disposable deployment of Salesforce code and metadata, made for developers
and automation. A scratch org is fully configurable, allowing developers to emulate different
Salesforce editions with different features and preferences. Scratch orgs are a central feature of
Salesforce DX, an open developer experience for developing and managing Salesforce apps across
their entire lifecycle.

To work with scratch orgs, you must first enable the Dev Hub in your Partner Business Org (PBO).
You then use the Salesforce command-line interface (CLI) to create scratch orgs.

Note: Use the Dev Hub to manage scratch orgs. Continue using the Environment Hub to
manage other types of orgs, including production and trial orgs.

Scratch Org Allocations for Partners

To ensure optimal performance, partners are allocated a set number of scratch orgs in your business org. These allocations determine
how many scratch orgs you can create daily, and how many can be active at a given point.

Enable Dev Hub Features in Your Org

Enable Dev Hub features in your PBO so you can create and manage scratch orgs, create and manage second-generation packages,
and use Einstein features. Scratch orgs are disposable Salesforce orgs to support development and testing.

Add Salesforce DX Users

System administrators can access the Dev Hub org by default. You can enable more users to access the Dev Hub org so that they
can create scratch orgs and use other developer-specific features.

Free Limited Access License

Request a Salesforce Limited Access - Free license to provide accounts to non-admin users in your production org, when these users
require access to only a specific app, feature, or setting. Standard Salesforce objects such as Accounts, Contacts, and Opportunities
aren’t accessible with this license.

Manage Scratch Orgs from the Dev Hub Org

You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

Link a Namespace to a Dev Hub Org

To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub
org.

Supported Scratch Org Editions for Partners

Create partner edition scratch orgs from a Dev Hub partner business org.

SEE ALSO:

Salesforce CLI Setup Guide

Salesforce DX Developer Guide

Scratch Org Allocations for Partners
To ensure optimal performance, partners are allocated a set number of scratch orgs in your business org. These allocations determine
how many scratch orgs you can create daily, and how many can be active at a given point.

By default, Salesforce deletes scratch orgs and their associated ActiveScratchOrg records from your Dev Hub when a scratch org expires.
All partners get 100 Salesforce Limited Access - Free user licenses.

5

Developer HubFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev

Summit Tier

• 300 active

• 600 daily

Crest Tier

• 150 active

• 300 daily

Ridge Tier

• 80 active

• 160 daily

Base Tier

• 40 active

• 80 daily

Partner Trials

• 20 active

• 40 daily

Enable Dev Hub Features in Your Org

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer, Enterprise,
Performance, and
Unlimited Editions

Scratch orgs available in:
Developer, Enterprise,
Group, and Professional
Editions

Enable Dev Hub features in your PBO so you can create and manage scratch orgs, create and manage
second-generation packages, and use Einstein features. Scratch orgs are disposable Salesforce orgs
to support development and testing.

Enabling Dev Hub in your PBO is safe and doesn’t cause any performance or customer issues. Dev
Hub comprises objects with permissions that allow admins to control the level of access available
to a user and an org.

Note: You can’t enable Dev Hub in a sandbox.

Consider these factors if you select a trial or Developer Edition org as your Dev Hub.

• You can create up to six scratch orgs and package versions per day, with a maximum of three
active scratch orgs.

• Trial orgs expire on their expiration date.

• Developer Edition orgs can expire due to inactivity.

• You can define a namespace in a Developer Edition org that isn’t your Dev Hub, and you can
enable Dev Hub in a Developer Edition org that doesn’t contain a namespace.

• If you plan to create package versions or run continuous integration jobs, it’s better to use your PBO as your Dev Hub because of
higher scratch org and package version limits. Package versions are associated with your Dev Hub org. When a trial or Developer
Edition org expires, you lose access to the package versions.

6

Developer HubFirst-Generation Managed Packages

Note: Partner trial orgs signed up from the partner community have different scratch org limits. See Scratch Org Allocations for
Partners. Partners can create partner edition scratch orgs: Partner Developer, Partner Enterprise, Partner Group, and Partner
Professional. This feature is available only if creating scratch orgs from a Dev Hub in a partner business org. See Supported Scratch
Org Editions for Partners in the First-Generation Managed Packaging Developer Guide for details.

The Dev Hub org instance determines where scratch orgs are created.

• Scratch orgs created from a Dev Hub org in Government Cloud are created on a Government Cloud instance.

• Scratch orgs created from a Dev Hub org in Public Cloud are created on a Public Cloud instance.

To enable Dev Hub in an org:

1. Log in as System Administrator to your Developer Edition, trial, or production org (for customers), or your business org (for ISVs).

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub.

If you don't see Dev Hub in the Setup menu, make sure that your org is one of the supported editions.

3. To enable Dev Hub, click Enable.

After you enable Dev Hub, you can’t disable it.

Add Salesforce DX Users
System administrators can access the Dev Hub org by default. You can enable more users to access the Dev Hub org so that they can
create scratch orgs and use other developer-specific features.

You can use Salesforce DX with these standard user licenses: Salesforce, Salesforce Platform, and Developer.

If your org has Developer licenses, you can add users with the Developer profile and assign them the provided Developer permission
set. Alternatively, you can add users with the Standard User or System Administrator profiles. For a standard user, you must create a
permission set with the required Salesforce DX permissions. We recommend that you avoid adding users as system administrators unless
their work requires that level of authority and not just Dev Hub org access.

Free Limited Access License
Request a Salesforce Limited Access - Free license to provide accounts to non-admin users in your production org, when these users
require access to only a specific app, feature, or setting. Standard Salesforce objects such as Accounts, Contacts, and Opportunities aren’t
accessible with this license.

Contact your Salesforce account executive to request this license. A Salesforce admin can upgrade a Salesforce Limited Access - Free
license to a standard Salesforce license at any time.

Second-Generation Managed Packages and Unlocked Packages
To create scratch orgs and unlocked or second-generation managed packages, developers require access to the Dev Hub org, which is
often your production org. A Salesforce admin can then grant appropriate permissions to the Dev Hub objects (ScratchOrgInfo,
ActiveScratchOrg, and NamespaceRegistry).

To give developers appropriate access to the Dev Hub org, create a permission set that contains these permissions:

• Object Settings > Scratch Org Info > Read, Create, and Delete

• Object Settings > Active Scratch Org > Read and Delete

• Object Settings > Namespace Registry > Read (to use a linked namespace in a scratch org)

To provide users with the ability to create unlocked or second-generation managed packages and package versions, the permission set
must also contain:

7

Developer HubFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_allocations.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_allocations.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_editions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_editions.htm

• System Permissions > Create and Update Second-Generation Packages

If you choose to test your package in a scratch org, the Create and Update Second-Generation Packages permission is also required
when creating the scratch org if you specified an ancestor version in the sfdx-project.json file. Alternatively, use the
--noancestors flag with the sf org create command when you create the scratch org.

For more information, see Salesforce DX Developer Guide: Add Salesforce DX Users.

DevOps Center
DevOps Center is installed as a managed package. Most team members, such as builders and developers, don’t need to install and
configure DevOps Center. You can provide these team members minimum access to the org where DevOps Center is installed by
assigning them this license and the Limited Access User profile.

See Salesforce Help: Assign the DevOps Center Permission Sets

Features Not Currently Supported

• To use Org Shape for Scratch Orgs or Scratch Org Snapshots (pilot), be sure to assign the Salesforce user license. The Salesforce
Limited Access - Free license isn’t supported at this time.

• The Salesforce Limited Access - Free license doesn’t provide access to some Salesforce CLI commands, such as sf limits api
display. Contact your Salesforce admin for API limits information.

Manage Scratch Orgs from the Dev Hub Org
You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

In the Dev Hub org, the ActiveScratchOrg standard object represents the scratch orgs that are currently in use. The ScratchOrgInfo
standard object represents the requests that were used to create scratch orgs and provides historical context.

1. Log in to the Dev Hub org as the System Administrator or as a user with the Salesforce DX permissions.

2. From the App Launcher, select Active Scratch Orgs to see a list of all active scratch orgs.

To view more details about a scratch org, click the link in the Number column.

3. To delete an active scratch org from the Active Scratch Orgs list view, choose Delete from the dropdown.

Deleting an active scratch org doesn’t delete the request (ScratchOrgInfo) that created it, but it does free up a scratch org so that it
doesn’t count against your allocations.

4. To view the requests that created the scratch orgs, select Scratch Org Infos from the App Launcher.

To view more details about a request, click the link in the Number column. The details of a scratch org request include whether it's
active, expired, or deleted.

5. To delete the request that was used to create a scratch org, choose Delete from the dropdown.

Deleting the request (ScratchOrgInfo) also deletes the active scratch org.

Link a Namespace to a Dev Hub Org
To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub org.

Complete these tasks before you link a namespace.

8

Developer HubFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_add_users.htm
https://help.salesforce.com/s/articleView?id=sf.devops_center_assign_permsets.htm&language=en_US

• If you don’t have an org with a registered namespace, create a Developer Edition org that is separate from the Dev Hub or scratch
orgs. If you already have an org with a registered namespace, you’re good to go.

• In the Developer Edition org, create and register the namespace.

Important: Choose namespaces carefully. If you’re trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don’t choose a namespace that you want to use in the future for a production org or some other
real use case. After you associate a namespace with an org, you can't change it or reuse it.

1. Log in to your Dev Hub org as the System Administrator or as a user with the Salesforce DX Namespace Registry permissions.

Tip: Make sure your browser allows pop-ups from your Dev Hub org.

a. From the App Launcher menu, select Namespace Registries.

b. Click Link Namespace.

2. In the window that pops up, log in to the Developer Edition org in which your namespace is registered using the org's System
Administrator's credentials.

You can’t link orgs without a namespace: sandboxes, scratch orgs, patch orgs, and branch orgs require a namespace to be linked to
the Namespace Registry.

To view all the namespaces linked to the Namespace Registry, select the All Namespace Registries list view.

Supported Scratch Org Editions for Partners
Create partner edition scratch orgs from a Dev Hub partner business org.

Supported partner scratch org editions include:

• Partner Developer

• Partner Enterprise

• Partner Group

• Partner Professional

Indicate the partner edition in the scratch org definition file.

"edition": "Partner Enterprise",

If you attempt to create a partner scratch org and see this error, confirm that you’re using an active partner business org. Contact the
Partner Community for further assistance.

ERROR: You don't have permission to create Partner Edition organizations.
To enable this functionality, please log a case in the Partner Community.

License limits for partner scratch orgs are similar to partner edition orgs created in Environment Hub. Get the details on the Partner
Community.

9

Developer HubFirst-Generation Managed Packages

https://partners.salesforce.com/
https://partners.salesforce.com/s/education/general/Partner_Orgs
https://partners.salesforce.com/s/education/general/Partner_Orgs

Environment Hub

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

The Environment Hub lets you connect, create, view, and log in to Salesforce orgs from one location.
If your company has multiple environments for development, testing, and trials, the Environment
Hub lets you streamline your approach to org management.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

From the Environment Hub, you can:

• Connect existing orgs to the hub with automatic discovery of related orgs.

• Create standard and partner edition orgs for development, testing, and trials.

• View and filter hub members according to criteria that you choose, like edition, creation date, instance, origin, and SSO status.

• Create single sign-on (SSO) user mappings for easy login access to hub members.

Each hub member org corresponds to an EnvironmentHubMember object. EnvironmentHubMember is a standard object, similar to
Accounts or Contacts, so you can use the platform to extend or modify the Environment Hub programmatically. For example, you can
create custom fields, set up workflow rules, or define user mappings and enable SSO using the API for any hub member org.

Get Started with the Environment Hub

Configure the Environment Hub so that users at your company can access the app to create and manage member orgs. Then connect
existing orgs to the hub and create SSO user mappings.

Manage Orgs in the Environment Hub

You can manage all your existing Salesforce orgs from one location by connecting them to the Environment Hub. You can also
create orgs using Salesforce templates for development, testing, and trial purposes.

Single Sign-on in the Environment Hub

Developing, testing, and deploying apps means switching between multiple Salesforce environments and providing login credentials
each time. Single sign-on (SSO) simplifies this process by letting an Environment Hub user log in to member orgs without
reauthenticating. You can set up SSO by defining user mappings manually, using Federation IDs, or creating a formula.

Environment Hub Best Practices

Follow these guidelines and best practices when you use the Environment Hub.

Environment Hub FAQ

Answers to common questions about the Environment Hub.

Considerations for the Environment Hub in Lightning Experience

Be aware of these considerations when creating and managing orgs in the Environment Hub.

10

Environment HubFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

Get Started with the Environment Hub

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Configure the Environment Hub so that users at your company can access the app to create and
manage member orgs. Then connect existing orgs to the hub and create SSO user mappings.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

Configure the Environment Hub

Enable the Environment Hub in your org, and then configure it to give other users access. If
you’re an ISV partner, the Environment Hub is already installed in your Partner Business Org.

Configure the Environment Hub

USER PERMISSIONS

To set up and configure the
Environment Hub:
• Manage Environment

Hub

Enable the Environment Hub in your org, and then configure it to give other users access. If you’re
an ISV partner, the Environment Hub is already installed in your Partner Business Org.

1. Contact Salesforce Customer Support to open a case to enable the Environment Hub in your
org.

If you’re an ISV partner, you can skip this step.

2. Log in to the org where the Environment Hub is enabled.

3. Assign users access to features in the Environment Hub by creating or updating a permission set or profile.

Be sure to assign users the Salesforce or Salesforce Platform license.

Environment Hub SettingsProfilePermission Set

Enabled for Lightning Experience by default. Enable
the Environment Hub custom app setting to make
it available in the App Menu in Salesforce Classic.

Custom App SettingsN/A

Enable “Manage Environment Hub” to allow users
to:

Administrative PermissionsSystem Permissions

• Create orgs for development, testing, and trials.

• Configure SSO for member orgs.

Enable “Connect Organization to Environment Hub”
to allow users to connect existing orgs to the
Environment Hub.

General User PermissionsSystem Permissions

Grant object permissions based on the required
level of access for the Environment Hub user.

Standard Object PermissionsObject Settings

Hub Members object:

• “Tab Settings”—Visible

• “Read”—View existing Hub Member records.

11

Environment HubFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

Environment Hub SettingsProfilePermission Set

• “Create”—This permission has no impact on
the ability to create Hub Member records
because record creation is handled either by
connecting an existing org or creating an org
from the Environment Hub.

• “Edit”—Edit fields on existing Hub Member
records.

• “Delete”—Disconnect an org from the
Environment Hub and delete its corresponding
Hub Member record and Service Provider
record (if SSO was enabled for the member).

• “View All”—Read all Hub Member records,
regardless of who created them.

• “Modify All”—Read, edit, and delete all Hub
Member records, regardless of who created
them.

Hub Invitations object:

• If you enable the “Connect Organization to
Environment Hub” permission, enable “Create”,
“Read”, “Edit”, and “Delete” for Hub Invitations.

Signup Requests object:

• If you enable the “Manage Environment Hub”
permission, enable “Create” and “Read” for
Signup Requests to allow users to create orgs.
Optionally, enable “Delete” to allow users to
remove orgs from the hub.

When configuring the Environment Hub in a new
org, this section is empty.

Service Provider AccessService Providers

If you enable single sign-on (SSO) in a member org,
new entries appear in this section. Entries appear
in the format Service Provider
[Organization ID], where Organization ID
is the ID of the member org. Users who don’t have
access to the service provider sometimes see this
message when attempting to log in via SSO: User
‘[UserID]’ does not have access
to sp ‘[Service Provider ID]’.

12

Environment HubFirst-Generation Managed Packages

Manage Orgs in the Environment Hub

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

You can manage all your existing Salesforce orgs from one location by connecting them to the
Environment Hub. You can also create orgs using Salesforce templates for development, testing,
and trial purposes.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

Connect an Org to the Environment Hub

You can connect existing Salesforce orgs to the Environment Hub, allowing you to manage all
your development, test, and trial environments (except scratch orgs) from one location. When you connect an org to the hub, related
orgs are automatically discovered so you don’t have to manually connect them.

Create an Org from the Environment Hub

You can create orgs from the Environment Hub for development, testing, and trial purposes. If you’re an ISV partner, you can also
create partner edition orgs with increased limits, more storage, and other customizations to support app development. When you
create an org from the Environment Hub, it becomes a hub member and its default language is set by the user’s locale.

Connect an Org to the Environment Hub

USER PERMISSIONS

To connect or disconnect an
org to or from the
Environment Hub:
• Connect Organization to

Environment Hub

You can connect existing Salesforce orgs to the Environment Hub, allowing you to manage all your
development, test, and trial environments (except scratch orgs) from one location. When you
connect an org to the hub, related orgs are automatically discovered so you don’t have to manually
connect them.

The following types of related orgs are automatically discovered.

• For any organization, all sandbox orgs created from it

• For a managed 1GP packaging org, all its related patch orgs

• For a Trialforce Management Org, all Trialforce Source Orgs created from it

• For an org with the License Management App (LMA) installed, any release org with a managed package registered in the LMA

Note: You can't connect a sandbox org to the Environment Hub directly. If you want to connect a sandbox, first connect the org
used to create the sandbox to the Environment Hub. Then, refresh the sandbox org. The refresh automatically adds it as a hub
member.

1. Log in to the Environment Hub, and then select Connect Org.

2. Enter the admin username for the org that you want to connect and, optionally, a short description. If your hub has many members,
a description makes it easier to find the org later.

3. By default, single sign-on (SSO) is enabled for the org you connected. To disable SSO, deselect Auto-enable SSO for this org.

4. Select Connect Org again.

5. In the pop-up window, enter the org’s admin username and password. If you don’t see the pop-up, temporarily disable your browser’s
ad blocking software and try again.

6. Select Log In, and then select Allow.

This process creates a connected app to allow connections to the org. If you can't log in and select Allow, check if the Environment
Hub org has a connected app called "Environment org". If you don't see this connected app, contact Salesforce Support.

13

Environment HubFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

To disconnect an org, locate the listing for the org in the Environments Hub tab, and select Remove from the dropdown menu on the
far right.

Orgs removed from the Environment Hub aren’t deleted, so you can still access the org after you remove it.

Create an Org from the Environment Hub

USER PERMISSIONS

To set up and configure the
Environment Hub:
• Manage Environment

Hub

You can create orgs from the Environment Hub for development, testing, and trial purposes. If
you’re an ISV partner, you can also create partner edition orgs with increased limits, more storage,
and other customizations to support app development. When you create an org from the
Environment Hub, it becomes a hub member and its default language is set by the user’s locale.

Note: You can create up to 20 member orgs per day. To create more orgs, log a support
case in the Salesforce Partner Community

1. Log in to the Environment Hub, and then select Create Org.

2. Choose an org purpose.

Lets You Create:Purpose

Developer Edition orgs for building and packaging apps.Development

Trial versions of standard Salesforce orgs for testing and demos. These orgs are similar to the ones
customers create at www.salesforce.com/trial. When you create a Test/Demo org, you can specify a
Trialforce template if you want the org to include your customizations.

Test/Demo

Trialforce Source Organizations (TSOs) as an alternative to using a Trialforce Management Organization
(TMO). Unless you need custom branding on your login page or emails, use the Environment Hub to
create TSOs.

Trialforce Source
Organization

3. Enter the required information for the org type you selected.

4. Read the Main Services Agreement, and then select the checkbox.

5. Select Create.

When your org is ready, you receive an email confirmation, and the org appears in your list of hub members.

Single Sign-on in the Environment Hub

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Developing, testing, and deploying apps means switching between multiple Salesforce environments
and providing login credentials each time. Single sign-on (SSO) simplifies this process by letting an
Environment Hub user log in to member orgs without reauthenticating. You can set up SSO by
defining user mappings manually, using Federation IDs, or creating a formula.

The Environment Hub supports these SSO methods for matching users.

DescriptionSSO Method

Match users in the Environment Hub to users in a member org
manually. Mapped Users is the default method for SSO user
mappings defined from the member detail page.

Mapped Users

14

Environment HubFirst-Generation Managed Packages

https://partners.salesforce.com
https://salesforce.com/trial
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

DescriptionSSO Method

Match users who have the same Federation ID in both the Environment Hub and a member
org.

Federation ID

Match users in the Environment Hub and a member org according to a formula that you
define.

User Name Formula

If you specify multiple SSO methods, they’re evaluated in this order: (1) Mapped Users, (2) Federation ID, and (3) User Name Formula.
The first method that results in a match is used to log in the user, and the other methods are ignored. If a matching user can’t be identified,
the Environment Hub directs the user to the standard Salesforce login page.

Note: SSO doesn’t work for newly added users or for user mappings defined in a sandbox org. Only add users, edit user information,
or define SSO user mappings in the parent org for the sandbox.

Enable SSO for a Member Org

You can enable single sign-on (SSO) to let an Environment Hub user log in to a member org without reauthenticating.

Define an SSO User Mapping

You can manually define a single-sign on (SSO) user mapping between a user in the Environment Hub and a user in a member org.
Before you define a user mapping, enable SSO in the hub member org.

Use a Federation ID or Formula for SSO

You can match an Environment Hub user with a user in a member org using a Federation ID or a user name formula. For either
method, enable SSO in the hub member org first.

Disable SSO for a Member Org

If you want Environment Hub users to reauthenticate when they log in to a member org, you can disable SSO. Disabling SSO doesn’t
remove the user mappings that you’ve defined, so you can always re-enable SSO later.

Enable SSO for a Member Org

USER PERMISSIONS

To set up and configure the
Environment Hub:
• Manage Environment

Hub

You can enable single sign-on (SSO) to let an Environment Hub user log in to a member org without
reauthenticating.

1. Log in to the Environment Hub, and then select a member org. If you don’t see any member
orgs, check your list view.

2. Select Enable SSO.

3. Confirm that you want to enable SSO for this org, and then select Enable SSO again.

Define an SSO User Mapping

USER PERMISSIONS

To set up and configure the
Environment Hub:
• Manage Environment

Hub

You can manually define a single-sign on (SSO) user mapping between a user in the Environment
Hub and a user in a member org. Before you define a user mapping, enable SSO in the hub member
org.

User mappings can be many-to-one but not one-to-many. In other words, you can associate multiple
users in the Environment Hub to one user in a member org. For example, if you wanted members
of your QA team to log in to a test org as the same user, you could define user mappings.

1. Log in to the Environment Hub, and then select a member org. If you don’t see any member
orgs, check your list view.

15

Environment HubFirst-Generation Managed Packages

2. Go to the Single Sign-On User Mappings related list, and then select New SSO User Mapping.

3. Enter the username of the user that you want to map in the member org, and then look up a user in the Environment Hub.

4. Select Save.

Use a Federation ID or Formula for SSO

USER PERMISSIONS

To set up and configure the
Environment Hub:
• Manage Environment

Hub

You can match an Environment Hub user with a user in a member org using a Federation ID or a
user name formula. For either method, enable SSO in the hub member org first.

1. Log in to the Environment Hub, and then select a member org. If you don’t see any member
orgs, check your list view.

2. Go to SSO Settings, and then choose a method.

StepsMethod

Select the checkbox.SSO Method 2 - Federation
ID

Match users who have the same
Federation ID in both the Environment
Hub and a member org.

Select the checkbox, and then define a formula. For
example, to match the first part of the username (the

SSO Method 3 - User Name
Formula

Match users in the Environment Hub
and a member org according to a
formula that you define.

part before the “@” sign) with an explicit domain
name, enter:

LEFT($User.Username, FIND("@",
$User.Username)) & ("mydev.org")

3. Select Save.

Disable SSO for a Member Org

USER PERMISSIONS

To set up and configure the
Environment Hub:
• Manage Environment

Hub

If you want Environment Hub users to reauthenticate when they log in to a member org, you can
disable SSO. Disabling SSO doesn’t remove the user mappings that you’ve defined, so you can
always re-enable SSO later.

1. Log in to the Environment Hub, and then select a member org. If you don’t see any member
orgs, check your list view.

2. Select Disable SSO.

3. Confirm that you want to disable SSO for this org, and then select Disable SSO again.

16

Environment HubFirst-Generation Managed Packages

Environment Hub Best Practices

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Follow these guidelines and best practices when you use the Environment Hub.

• If you’re an admin or developer, choose the org that your team uses most frequently as your
hub org. If you’re an ISV partner, the Environment Hub is already installed in your Partner Business
Org.

• Because each member org is a standard object (of type EnvironmentHubMember), you can
modify its behavior or access it programmatically. For example, you can create custom fields,
set up workflow rules, or define user mappings and enable single sign-on using the API for any
member org.

• Decide on a strategy for enabling SSO access based on your company’s security requirements.
Then choose the SSO method (explicit mapping, Federation ID, or custom formula) that meets
your needs.

• SSO doesn’t work for newly added users or for user mappings defined in a sandbox org. Only add users, edit user information, or
define SSO user mappings in the parent org for the sandbox.

• The Environment Hub connected app is for internal use only. Don’t enable it for any profiles. Unless advised by Salesforce, don’t
delete the connected app or adjust its settings.

Environment Hub FAQ

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Answers to common questions about the Environment Hub.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

Can I use the Environment Hub in Lightning Experience?

Where do I install the Environment Hub?

Can I install the Environment Hub in more than one org?

Can I enable the Environment Hub in a sandbox org?

What kinds of orgs can I create in the Environment Hub?

You can create orgs for development, testing, and trials. ISV partners can also create partner edition orgs with increased limits, more
storage, and other customizations to support app development. If you’re a partner but don’t see partner edition orgs in the Environment
Hub, log a support case in the Salesforce Partner Community.

How is locale determined for the orgs I create in the Environment Hub?

Your Salesforce user locale determines the default locale of orgs that you create.

Are the orgs that I create in the Environment Hub the same as the ones I created in the Partner Portal?

Yes, the orgs are identical to the ones that you created in the Partner Portal.

Can an org be a member of multiple Environment Hubs?

Can I disable the Environment Hub?

17

Environment HubFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

Can I use the Environment Hub in Lightning Experience?
Yes, both Salesforce Classic and Lightning Experience support the Environment Hub.

Where do I install the Environment Hub?
If you’re an ISV partner, the Environment Hub is already installed in your Partner Business Org.

Otherwise, install the Environment Hub in an org that all your users can access, such as your CRM org. Do not install the Environment
Hub in a Developer Edition org that contains your managed package. Doing so can cause problems when you upload a new package
version or push an upgrade to customers.

Can I install the Environment Hub in more than one org?
Yes, but you must manage each Environment Hub independently. Although Salesforce recommends one Environment Hub per company,
several hubs could make sense for your company. For example, if you want to keep orgs that are associated with product lines separate.

Can I enable the Environment Hub in a sandbox org?
No, you can’t enable the Environment Hub in a sandbox org. Enable the Environment Hub in a production org that all your users can
access.

What kinds of orgs can I create in the Environment Hub?
You can create orgs for development, testing, and trials. ISV partners can also create partner edition orgs with increased limits, more
storage, and other customizations to support app development. If you’re a partner but don’t see partner edition orgs in the Environment
Hub, log a support case in the Salesforce Partner Community.

Expires AfterBest Used ForOrg Type

30 daysTestingGroup Edition

30 daysTestingEnterprise Edition

30 daysTestingProfessional Edition

NeverDeveloping apps and Lightning componentsPartner Developer Edition

1 year, unless you request an extensionRobust testing and customer demosPartner Group Edition

1 year, unless you request an extensionRobust testing and customer demosPartner Enterprise Edition

1 year, unless you request an extensionRobust testing and customer demosPartner Professional Edition

1 year, unless you request an extensionCreating Trialforce templatesTrialforce Source Org

1 year, unless you request an extensionCustomer demosConsulting Partner Edition

How is locale determined for the orgs I create in the Environment Hub?
Your Salesforce user locale determines the default locale of orgs that you create.

For example, if your user locale is set to English (United Kingdom), that is the default locale for the orgs you create. In this
way, the orgs you create are already customized for the regions where they reside.

18

Environment HubFirst-Generation Managed Packages

Are the orgs that I create in the Environment Hub the same as the ones I created in the Partner
Portal?
Yes, the orgs are identical to the ones that you created in the Partner Portal.

The Environment Hub uses the same templates, so the orgs come with the same customizations, such as higher limits and more licenses.
You can also use the Environment Hub to create the same Group, Professional, and Enterprise Edition orgs that customers use. That way,
you can test your app against realistic customer implementations.

Can an org be a member of multiple Environment Hubs?
No, an org can be a member of only one Environment Hub at a time. To remove an org from an Environment Hub so you can associate
it with a different one:

1. Go to the Environment Hub tab.

2. Find the org, from the drop-down select Remove.

3. Once removed, connect the org to the desired Environment Hub:

a. In the Environment Hub tab, click Connect Org.

b. Enter the admin username for the org.

c. Click Connect Org.

d. Enter the org’s password, then click Allow to allow the Environment Hub to access org information.

Can I disable the Environment Hub?
After you install the Environment Hub in an org, you can’t disable it. However, you can hide the Environment Hub from users. Go to
Setup and enter App Menu in to the Quick Find box, and then select App Menu. From the App Menu, you can choose whether to
hide an app or make it visible.

Considerations for the Environment Hub in Lightning Experience

EDITIONS

Available in: both Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Be aware of these considerations when creating and managing orgs in the Environment Hub.

List View Limitations
You can’t filter hub members by org expiration date when creating or updating list views in
Lightning Experience. If you have an existing list view that includes org expiration date in its
filter criteria, that list view won’t work in Lightning Experience. To filter hub members by org
expiration date, switch to Salesforce Classic and then use the list view.

Register a Namespace for a First-Generation
Managed Package

A namespace is a one to 15-character alphanumeric identifier that distinguishes your package and its contents from packages of other
developers on AppExchange. Namespace prefixes are case-insensitive. For example, ABC and abc aren’t recognized as unique. Your
namespace must be globally unique across all Salesforce orgs.

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.

19

Register a Namespace for a First-Generation Managed
Package

First-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US

We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

Warning: When creating a namespace, use something that’s useful and informative to users. However, don’t name a namespace
after a person (for example, by using a person's name, nickname, or private information.)

Salesforce automatically prepends your namespace, followed by two underscores (”__”), to all unique component names in your
Salesforce org. A unique package component is one that requires a name that no other component has within Salesforce, such as custom
objects, custom fields, custom links, and validation rules. For example, if your namespace is abc and your managed package contains a
custom object with the API name, Expense__c, use the API name abc__Expense__c to access this object using the API. The namespace
is displayed on all component detail pages.

Your namespace must:

• Begin with a letter

• Contain one to 15 alphanumeric characters

• Not contain two consecutive underscores

For example, myNp123 and my_np are valid namespaces, but 123Company and my__np aren’t.

To register a namespace:

1. From Setup, enter Package Manager in the Quick Find box and select Package Manager.

2. In the Namespace Settings panel, click Edit.

Note: After you’ve configured your namespace settings, this button is hidden.

3. Enter the namespace you want to register.

4. To determine if the namespace is already in use, click Check Availability.

5. If the namespace prefix that you entered isn’t available, repeat the previous two steps.

6. Click Review.

7. Click Save.

Create a First-Generation Managed Package Using a UI

USER PERMISSIONS

To create packages:
• Create AppExchange

Packages

If your goal is to build an app and distribute it on AppExchange, you use managed packages to do
both. Packaging is the container that you fill with metadata, and it holds the set of related features,
customizations, and schema that make up your app. A package can include many different metadata
components, and you can package a single component, an app, or library.

1. From Setup, in the Quick Find box, enter Package Manager, and then select Package
Manager.

2. Click New.

3. Enter a name for your package. You can use a different name than what appears on AppExchange.

4. From the dropdown menu, select the default language of all component labels in the package.

5. (Optional) Choose a custom link from the Configure Custom Link field to display configuration information to installers
of your app. You can select a predefined custom link to a URL that you’ve created for your home page layouts; see the Configure
Option on page 51. The custom link appears as a Configure link within Salesforce on AppExchange Downloads page and app detail
page of the installer's organization.

20

Create a First-Generation Managed Package Using a UIFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

6. (Optional) In the Notify on Apex Error field, enter the username of the person to notify if an uncaught exception occurs
in the Apex code. If you don’t specify a username, all uncaught exceptions generate an email notification that is sent to Salesforce.
This option is only available for managed packages. For more information, see Handle Apex Exceptions in Managed Packages.

7. (Optional) In the Notify on Packaging Error field, enter the email address of the person who receives an email notification
if an error occurs when a subscriber’s attempt to install, upgrade, or uninstall a packaged app fails. This field appears only if packaging
error notifications are enabled. To enable notifications, contact your Salesforce representative.

8. (Optional) Enable language extension packages. (Beta)

a. Under Language Settings, click Edit.

b. Select Enable Language Extension Package and save your changes.

9. (Optional) Enter a description that describes the package. You can change this description before you upload it to AppExchange.

10. (Optional) Specify a post install script. You can run an Apex script in the subscriber organization after the package is installed or
upgraded. For more information, see Running Apex on Package Install/Upgrade.

11. (Optional) Specify an uninstall script. You can run an Apex script in the subscriber organization after the package is uninstalled. For
more information, see Running Apex on Package Uninstall.

12. Save your work.

What Are Beta Versions of Managed Packages?

A beta package is an early version of a managed package. The purpose of a beta package is to allow the developer to test their
application in different Salesforce orgs and to share the app with a pilot set of users for evaluation and feedback.

Create a Beta Package for First-Generation Managed Packages

Follow this procedure to create and upload a beta package through the UI. (You can also upload a package using the Tooling API.
For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.)

Create and Upload a First-Generation Managed Package

Use the following procedure to create and upload a managed package through the UI. You can also upload a package using the
Tooling API. For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.

Publish Extensions to Managed Packages

An extension is any package, component, or set of components that adds to the functionality of a managed package. An extension
requires that the base managed package is installed in the org. For example, if you have built a recruiting app, an extension to this
app can include a component for performing background checks on candidates.

View Package Details in First-Generation Managed Packages

From Setup, enter Packages in the Quick Find box, then select Packages. Click the name of a package to view its details,
including added components, whether it’s a managed package, whether the package has been uploaded, and so on.

Notifications for Package Errors

Accurately track failed package installations, upgrades, and uninstallations in subscriber orgs with the Notifications for Package Errors
feature. Proactively address issues with managed and unmanaged packages and provide support to subscribers so that they can
successfully install and upgrade your apps.

What Are Beta Versions of Managed Packages?
A beta package is an early version of a managed package. The purpose of a beta package is to allow the developer to test their application
in different Salesforce orgs and to share the app with a pilot set of users for evaluation and feedback.

Before installing a beta version of a managed package, review the following notes:

21

What Are Beta Versions of Managed Packages?First-Generation Managed Packages

https://help.salesforce.com/apex/HTViewHelpDoc?id=code_handling_managed_errors.htm&language=en_US#code_handling_managed_errors

• Beta packages can be installed in scratch, sandbox, or Developer Edition orgs, or test orgs furnished through the Environment Hub
only.

• The components of a beta package are editable in the packaging org until a Managed - Released package is uploaded.

• Beta versions aren't considered major releases, so the package version number doesn't change.

• Beta packages aren’t upgradeable. Because developers can still edit the components of a beta package, the Managed - Released
version might not be compatible with the beta package installed. To install a new beta package or released version, first, uninstall
the beta package. For more information, see Uninstall a Managed Package on page 70 and Install a Managed Package on page 60.

Create a Beta Package for First-Generation Managed Packages

USER PERMISSIONS

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

Follow this procedure to create and upload a beta package through the UI. (You can also upload
a package using the Tooling API. For sample code and more details, see the PackageUploadRequest
object in the Tooling API Developer Guide.)

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

1. Create a package:

a. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

b. Click New.

c. Enter a name for your package. You can use a different name than what appears on AppExchange.

d. From the dropdown menu, select the default language of all component labels in the package.

e. Optionally, choose a custom link from the Configure Custom Link field to display configuration information to installers
of your app. You can select a predefined custom link to a URL or s-control that you’ve created for your home page layouts; see
the Configure Option. The custom link displays as a Configure link within Salesforce on AppExchange Downloads page and
app detail page of the installer's organization.

f. Optionally, in the Notify on Apex Error field, enter the username of the person to notify if an uncaught exception
occurs in the Apex code. If you don’t specify a username, all uncaught exceptions generate an email notification that is sent to
Salesforce. This option is only available for managed packages. Handling Apex Exceptions in Managed Packages.

Note: Apex can only be packaged from Developer, Enterprise, Unlimited, and Performance Edition organizations.

g. Optionally, in the Notify on Packaging Error field, enter the email address of the person who receives an email
notification if an error occurs when a subscriber’s attempt to install, upgrade, or uninstall a packaged app fails. This field appears
only if packaging error notifications are enabled. To enable notifications, contact your Salesforce representative.

h. Optionally, enter a description that describes the package. You can change this description before you upload it to AppExchange.

i. Optionally, specify a post install script. You can run an Apex script in the subscriber organization after the package is installed or
upgraded. For more information, see Running Apex on Package Install or Upgrade.

j. Optionally, specify an uninstall script. You can run an Apex script in the subscriber organization after the package is uninstalled.
For more information, see Running Apex on Package Uninstall.

k. Click Save.

2. Optionally, change the API access privileges. By default, API access is set to Unrestricted, but you can change this setting to
further restrict API access of the components in the package.

22

Create a Beta Package for First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm
https://help.salesforce.com/apex/HTViewHelpDoc?id=code_handling_managed_errors.htm&language=en_US#code_handling_managed_errors

3. Add the necessary components for your app.

a. Click Add Components.

b. From the dropdown list, choose the type of component.

c. Select the components you want to add.

d. Click Add To Package.

e. Repeat these steps until you added all the components you want in your package.

Note: Some related components are automatically included in the package even though they don’t display in the Package
Components list. For example, when you add a custom object to a package, its custom fields, page layouts, and relationships
with standard objects are automatically included. For a complete list of components, see Components Automatically Added
to First-Generation Managed Packages on page 40.

4. Optionally, click View Dependencies and review a list of components that rely on other components, permissions, or preferences
within the package. To return to the Package detail page, click Done.

5. Click Upload.

6. On the Upload Package page, do the following:

a. Enter a Version Name, such as Spring ’22. The version name is the marketing name for a specific release of a package
and allows you to create a more descriptive title for the version than just a number.

b. Enter a Version Number, such as 1.0. For more information on versions, see Update Your First-Generation Managed
Package on page 71.

c. Select a Release Type of Managed - Beta.

d. (Optional) Enter and confirm a password to share the package privately with anyone who has the password. Don't enter a
password if you want to make the package available to anyone on AppExchange and share your package publicly.

e. Salesforce automatically selects the requirements it finds. In addition, select any other required components from the Package
Requirements and Object Requirements sections to notify installers of any requirements for this package.

f. Click Upload.

After your package has uploaded successfully, you receive an email with an installation link.

Create and Upload a First-Generation Managed Package

USER PERMISSIONS

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

Use the following procedure to create and upload a managed package through the UI. You can
also upload a package using the Tooling API. For sample code and more details, see the
PackageUploadRequest object in the Tooling API Developer Guide.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

These steps assume you’ve already created a namespace and beta package. If you’re uploading a
beta package for testing, see Create and Upload a Beta Package.

1. Create a package:

a. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

23

Create and Upload a First-Generation Managed PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

b. Click New.

c. Enter a name for your package. You can use a different name than what appears on AppExchange.

d. From the dropdown menu, select the default language of all component labels in the package.

e. Optionally, choose a custom link from the Configure Custom Link field to display configuration information to installers
of your app. You can select a predefined custom link to a URL or s-control that you’ve created for your home page layouts; see
the Configure Option on page 51. The custom link displays as a Configure link within Salesforce on AppExchange Downloads
page and app detail page of the installer's organization.

f. Optionally, in the Notify on Apex Error field, enter the username of the person to notify if an uncaught exception
occurs in the Apex code. If you don’t specify a username, all uncaught exceptions generate an email notification that is sent to
Salesforce. This option is only available for managed packages.For more information, see Handle Apex Exceptions in Managed
Packages.

Note: Apex can only be packaged from Developer, Enterprise, Unlimited, and Performance Edition organizations.

g. Optionally, in the Notify on Packaging Error field, enter the email address of the person who receives an email
notification if an error occurs when a subscriber’s attempt to install, upgrade, or uninstall a packaged app fails. This field appears
only if packaging error notifications are enabled. To enable notifications, contact your Salesforce representative.

h. Optionally, enter a description that describes the package. You can change this description before you upload it to AppExchange.

i. Optionally, specify a post install script. You can run an Apex script in the subscriber organization after the package is installed or
upgraded. For more information, see Running Apex on Package Install/Upgrade.

j. Optionally, specify an uninstall script. You can run an Apex script in the subscriber organization after the package is uninstalled.
For more information, see Running Apex on Package Uninstall.

k. Click Save.

2. Salesforce sets your package API access privileges to Unrestricted. You can change this setting to further restrict API access
of Salesforce components in the package. For more information, see Manage API and Dynamic Apex Access in Packages.

3. Add the necessary components for your app.

a. Click Add Components.

b. From the dropdown list, choose the type of component you want to add to your package.

• At the top of the list, click a letter to display the contents of the sorted column that begin with that character.

• If available, click the Next Page (or Previous Page) link to go to the next or previous set of components.

• If available, click fewer or more at the bottom of the list to view a shorter or longer display list.

c. Select the components you want to add.

d. Click Add To Package.

e. Repeat these steps until you added all the components you want in your package.

Note:

• Some related components are automatically included in the package even if they don’t display in the Package Components
list. For example, when you add a custom object to a package, its custom fields, page layouts, and relationships with
standard objects are automatically included.

• When you package a joined report, each block is included in the package. Although the blocks appear in the package as
reports, when you click a block, an error message indicates that you have “insufficient privileges” to view the report. This
error message is expected behavior. Instead, click the name of the joined report to run it.

24

Create and Upload a First-Generation Managed PackageFirst-Generation Managed Packages

https://help.salesforce.com/apex/HTViewHelpDoc?id=code_handling_managed_errors.htm&language=en_US#code_handling_managed_errors
https://help.salesforce.com/apex/HTViewHelpDoc?id=code_handling_managed_errors.htm&language=en_US#code_handling_managed_errors

4. Optionally, click View Dependencies and review a list of components that rely on other components, permissions, or preferences
within the package. An entity can include such things as an s-control, a standard or custom field, or an organization-wide setting
like multicurrency. Your package can’t be installed unless the installer has the listed components enabled or installed. For more
information on dependencies, see Understanding Dependencies on page 44. To return to the Package detail page, click Done.

Note: You can’t upload packages that contain any of the following:

• Workflow rules or workflow actions (such as field updates or outbound messages) that reference record types.

• Reports that reference record types on standard objects.

5. Click Upload.

Note: If you create a managed package to publish on AppExchange, you must certify your application before you package
it. For more information, see Security Review on AppExchange.

6. On the Upload Package page, do the following:

a. Enter a Version Name. As a best practice, it's useful to have a short description and the date.

b. Enter a Version Number for the upload, such as 1.0. The format is majorNumber.minorNumber.

Note: If you’re uploading a new patch version, you can't change the patch number.

The version number represents a release of a package. This field is required for managed and unmanaged packages. For a
managed package, the version number corresponds to a Managed - Released upload. All beta uploads use the same version
number until you upload a Managed - Released package version with a new version number.

For example, the following is a sequence of version numbers for a series of uploads.

NotesVersion
Number

TypeUpload
Sequence

The first Managed - Beta upload.1.0Managed - BetaFirst upload

A Managed - Released upload. The version number doesn’t change.1.0Managed - ReleasedSecond upload

Note the change of minor release number for the Managed -
Released upload.

1.1Managed - ReleasedThird upload

The first Managed - Beta upload for version number 2.0. Note the
major version number update.

2.0Managed - BetaFourth upload

A Managed - Released upload. The version number doesn’t change.2.0Managed - ReleasedFifth upload

c. For managed packages, select a Release Type:

• Choose Managed - Released to upload an upgradeable version. After upload, some attributes of the metadata components
are locked.

• Choose Managed - Beta if you want to upload a version of your package to a small sampling of your audience for testing
purposes. You can still change the components and upload other beta versions.

Note: Beta packages can only be installed in Developer Edition,scratch, or sandbox orgs, and thus can't be pushed
to customer orgs.

d. Change the Description, if necessary.

25

Create and Upload a First-Generation Managed PackageFirst-Generation Managed Packages

https://partners.salesforce.com/s/education/appvendors/Security_Review

e. (Optional) Specify a link to release notes for the package. Click URL and enter the details in the text field that appears. This link
will be displayed during the installation process, and on the Package Details page after installation.

Note: As a best practice, point to an external URL, so you can make the information available to customers before the
release, and update it independently of the package.

f. (Optional) Specify a link to post install instructions for the package. Click URL or Visualforce page and enter the details in the
text field that appears. This link will be displayed on the Package Details page after installation.

Note: As a best practice, point to an external URL, so you can update the information independently of the package.

g. (Optional) Enter and confirm a password to share the package privately with anyone who has the password. Don't enter a
password if you want to make the package available to anyone on AppExchange and share your package publicly.

h. Salesforce automatically selects the requirements it finds. In addition, select any other required components from the Package
Requirements and Object Requirements sections to notify installers of any requirements for this package.

i. Click Upload.

7. After your upload is complete you can do any of the following.

• To change the password option, click Change Password link.

• To prevent new installations of this package while allowing existing installations to continue operating, click Deprecate.

Note: You can’t deprecate the most recent version of a managed package.

When you deprecate a package, remember to remove it from AppExchange as well.

• To make a deprecated version available for installation again, click Undeprecate.

You receive an email that includes an installation link when your package has been uploaded successfully.

Note:

• When using the install URL, the old installer is displayed by default. You can customize the installation behavior by modifying
the installation URL you provide your customers.

– To access the new installer, append the text &newui=1 to the installation URL.

– To access the new installer with the "All Users" option selected by default, append the additional text &p1=full to the
installation URL.

• If you uploaded from your Salesforce production org, notify installers who want to install it in a sandbox org to replace the
login.salesforce.com portion of the installation URL with test.salesforce.com.t”

26

Create and Upload a First-Generation Managed PackageFirst-Generation Managed Packages

Publish Extensions to Managed Packages

EDITIONS

Available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

USER PERMISSIONS

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

An extension is any package, component, or set of components that adds to the functionality of a
managed package. An extension requires that the base managed package is installed in the org.
For example, if you have built a recruiting app, an extension to this app can include a component
for performing background checks on candidates.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

The community of developers, users, and visionaries building and publishing apps on AppExchange
is part of what makes Salesforce Platform such a rich development platform. Use this community
to build extensions to other apps and encourage them to build extensions to your apps.

When working with both first-generation (1GP) and second-generation (2GP) managed packages,
only certain combinations of packages are supported.

Yes

A second-generation managed package can
depend on a first-generation managed package.

Can I extend a first-generation managed
package with a second-generation managed
package?

YesCan I extend a second-generation managed
package with another second-generation
managed package?

No

A first-generation managed package can’t
depend on a second-generation managed

Can I extend a second-generation managed
package with a first-generation managed
package?

package, and we block the installation of
managed 2GP packages in managed 1GP
packaging orgs.

We can override this behavior on an individual
basis. To share your scenario and request an
override, log a case with Salesforce Partner
Support.

We’re investigating how to support this
dependency scenario more broadly.

YesCan I extend a first-generation managed
package with another first-generation managed
package?

To publish extensions to a managed package:

1. Install the base package in the Salesforce org that you plan to use to upload the extension.

2. Build your extension components.

27

Publish Extensions to Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm
https://partners.salesforce.com
https://partners.salesforce.com

Note: To build an extension, install the base package and include a dependency to that base package in your package. The
extension attribute automatically becomes active.

3. Create a package and add your extension components. Salesforce automatically includes some related components.

4. Upload the new package that contains the extension components.

5. Proceed with the publishing process as usual. For information on creating a test drive or registering and publishing your app, go to
Salesforce Partner Community.

Note: Packages can’t be upgraded to Managed - Beta if they’re used within the same org as an extension.

View Package Details in First-Generation Managed Packages
From Setup, enter Packages in the Quick Find box, then select Packages. Click the name of a package to view its details,
including added components, whether it’s a managed package, whether the package has been uploaded, and so on.

From the package detail page:

• To change the package name, the custom link that displays when users click Configure, or the description, click Edit.

• To delete the package, click Delete. This action doesn’t delete the components contained in the package, but the components are
no longer bundled together within this package.

• To upload the package, click Upload. You’re notified by email when the upload is complete.

• You can enable, disable, or change the dynamic Apex and API access that components in the package have to standard objects in
the installing org by using the links next to API Access.

View Package Details
For package developers, the package detail section displays these attributes (in alphabetical order).

DescriptionAttribute

The type of access that the API and dynamic Apex that package
components have. The default is Unrestricted, which means that

API Access

all package components that access the API have the same access
as the user who is logged in. Click Enable Restrictions or Disable
Restrictions to change the API and dynamic Apex access
permissions for a package.

The name of the developer that created this package, including
the date and time.

Created By

A description of the package.Description

The language used for the labels on components. The default value
is your user language.

Language

The name of the last user to modify this package, including the
date and time.

Last Modified By

The username of the person who receives email notifications when
an exception occurs in Apex that isn’t caught by the code. If you

Notify on Apex Error

28

View Package Details in First-Generation Managed PackagesFirst-Generation Managed Packages

https://partners.salesforce.com

DescriptionAttribute

don’t specify a username, all uncaught exceptions send an email
notification to Salesforce. Available only for managed packages.

Apex can be packaged only from Developer, Enterprise, Unlimited,
and Performance Edition orgs.

The email address of the person who receives email notifications
if an error occurs when a subscriber’s attempt to install, upgrade,

Notify on Packaging Error

or uninstall a packaged app fails. This field appears only if packaging
error notifications are enabled. To enable notifications, contact
your Salesforce representative.

The name of the package, provided by the publisher.Package Name

A comma-separated list of org IDs to exclude when you push a
package upgrade to subscribers.

Push Upgrade Exclusion List

The Apex code that runs after this package is installed or upgraded.
For more information, see Run Apex on Package Install/Upgrade
on page 64.

Post Install Script

Indicates whether it’s a managed or unmanaged package.Type

The Apex code that runs after this package is uninstalled. For more
information, see Run Apex on Package Uninstall on page 68.

Uninstall Script

View Package Components
The Components tab lists each package component contained in the package, including the name and type of each component.

Note: Some related components are automatically included in the package even though they aren’t displayed in the Package
Components list. For example, when you add a custom object to a package, its custom fields, page layouts, and relationships with
standard objects are included. For a list of components that Salesforce automatically includes, see Components Automatically
Added on page 40.

Package components frequently depend on other components that aren’t always added to the package explicitly. Each time you change
a package, Salesforce checks for dependencies and displays the components as package members. Package Manager checks for
dependencies and shows the component relationship to the package in the Include By column of the Package Details.

When your package contains 1,000 or more components, you can decide when to refresh the components list in the Package Details
and avoid a long wait while this page loads. The components list refreshes automatically for packages with less than 1,000 components.
Click Refresh Components if the package has new or changed components, and wait for the list to refresh.

Click View Dependencies to review a list of components that rely on other components, permissions, or preferences within the package.
An entity can include such things as a standard or custom field, or an organization-wide setting like multicurrency. Your package can’t
be installed unless the installer has the listed components enabled or installed. Click Back to Package to return to the Package detail
page.

Click View Deleted Components to see which components were deleted from the package across all its versions.

29

View Package Details in First-Generation Managed PackagesFirst-Generation Managed Packages

View Version History
For package developers, the Versions tab lists all the previous uploads of a package.

Click Push Upgrades to automatically upgrade subscribers to a specific version. Orgs entered in the Push Upgrade Exclusion List are
omitted from the upgrade. The orgs can still install the upgrade when you publish the new version.

Click the version number of a listed upload to manage that upload. For more information, see Manage Versions of First-Generation
Managed Packages on page 82.

Note: Push Upgrades is available for patches and major upgrades. Registered ISV partners can request Push Major Upgrade
functionality. Log a support case in the Salesforce Partner Community.

The versions table displays the package attributes (in alphabetical order).

DescriptionAttribute

Lists the actions you can perform on the package. The possible
actions are:

Action

• Deprecate—Deprecates a package version.

Users can no longer download or install this package. However,
existing installations continue to work.

• Undeprecate—Enables a previously deprecated package
version to be installed again.

The status of the package. The possible statuses are:Status

• Released: The package is Managed - Released.

• Beta: The package is Managed - Beta.

• Deprecated: The package version is deprecated.

The version name for this package. The version name is the
marketing name for a specific release of a package. It’s more
descriptive than Version Number.

Version Name

The version number for the latest installed package version. The
format is majorNumber.minorNumber.patchNumber,

Version Number

such as 2.1.3. The version number represents a release of a package.
Version Name is a more descriptive name for the release. The
patchNumber is generated only when you create a patch. If
there’s no patchNumber, it’s assumed to be zero (0).

View Patch Development Orgs
Each patch is developed in a patch development org, which is the org where patch versions are developed, maintained, and uploaded.
To start developing a patch, create a patch development org. Create and Upload Patches Patch development orgs permit developers
to change existing components without causing incompatibilities between existing subscriber installations. Click New to create a patch
for this package.

The Patch Organizations table lists all the patch development orgs created. It lists these attributes (in alphabetical order).

30

View Package Details in First-Generation Managed PackagesFirst-Generation Managed Packages

https://partners.salesforce.com

DescriptionAttribute

Lists the actions that you can perform on a patch development
org. The possible actions are:

Action

• Login—Log in to your package version.

• Reset—Emails a temporary password for your patch
development org.

The login associated with the patch org.Administrator Username

The package version number that you’re patching.Patching Major Release

Notifications for Package Errors
Accurately track failed package installations, upgrades, and uninstallations in subscriber orgs with the Notifications for Package Errors
feature. Proactively address issues with managed and unmanaged packages and provide support to subscribers so that they can
successfully install and upgrade your apps.

You can choose to send a notification to an email address in your org when a subscriber’s attempt to install, upgrade, or uninstall a
packaged app fails. To enable this feature, contact your Salesforce representative.

Errors can happen with these package operations:

• Installation

• Upgrade

• Push upgrade

• Uninstallation

When an installation fails, an email is sent to the specified address with the following details:

• Reason for the failure

• Subscriber org information

• Metadata of the package that wasn’t installed properly

• Who attempted to install the package

This example email is for a package installation that failed because the base package wasn’t installed before the subscriber tried to install
an extension.

On Mon, Jul 13, 2022 at 11:51 AM, NO REPLY <no-reply@salesforce.com> wrote:
The install of your package failed. Here are the details:

Error Message: 00DD00000007uJp: VALIDATION_FAILED [DB 0710 DE1 Pkg1 1.2: A required package
is missing: Package "DB 0710 DE1 Pkg1", Version 1.2 or later must be installed first.]
Date/Time of Occurrence = Mon Jul 13 18:51:20 GMT 2015

Subscriber Org Name = DB 071015 EE 1
Subscriber Org ID = 00DD00000007uJp
Subscriber Org Status = TRIAL
Subscriber Org Edition = Enterprise Edition

Package Name = DB 0710 DE2 Pkg1
Package ID = 033D000000060EE
Package Namespace = DB_0710_DE2

31

Notifications for Package ErrorsFirst-Generation Managed Packages

Package Type = MANAGED
Package Version Name = 1.2
Package Version Number = 1.2
Package Version Id = 04tD00000006QoF

Installer Name = Admin User
Installer Email Address = db@salesforce.com

Set the Notification Email Address

Specify which address to email when a package installation, upgrade, or uninstallation fails.

Set the Notification Email Address
Specify which address to email when a package installation, upgrade, or uninstallation fails.

Notifications are sent only for package versions that are uploaded after the address is added. For example, if you upload package version
1.0 and then set the notification address, notifications aren’t sent for failures related to version 1.0. Notifications start when version 2.0
is uploaded.

Also, you can’t change or remove the notification email address for the package after it’s been uploaded.

1. To enable this feature, contact your Salesforce representative.

2. From Setup, enter Packages in the Quick Find box, then select Packages.

3. Click the package name, and then click Edit on the package detail page.

4. Enter the email address to send notifications to, and click Save.

Notifications for Package Errors Configured in a Partner Org

Create a First-Generation Managed Package using Salesforce DX

If you’re an ISV, you want to build a managed package. A managed package is a bundle of components that make up an application or
piece of functionality. A managed package is a great way to release an app for sale and to support licensing your features. You can
protect intellectual property because the source code of many components isn’t available through the package. You can also roll out
upgrades to the package.

When you’re working with your production org, you create a .zip file of metadata components and deploy them through Metadata API.
The .zip file contains:

32

Create a First-Generation Managed Package using Salesforce
DX

First-Generation Managed Packages

• A package manifest (package.xml) that lists what to retrieve or deploy

• One or more XML components organized into folders

If you don’t have the packaged source already in the source format, you can retrieve it from the org and convert it using the CLI.

Build and Release Your App with Managed Packages

If you developed and tested your app, you’re well on your way to releasing it. Luckily, when it’s time to build and release an app as
a managed package, you’ve got options. You can package an app you developed from scratch. If you’re experimenting, you can also
build the sample app from Salesforce and emulate the release process.

View Information About a Package

View the details about a specific package version, including its metadata package ID, package name, release state, and build number.

Build and Release Your App with Managed Packages
If you developed and tested your app, you’re well on your way to releasing it. Luckily, when it’s time to build and release an app as a
managed package, you’ve got options. You can package an app you developed from scratch. If you’re experimenting, you can also build
the sample app from Salesforce and emulate the release process.

Working with a package is an iterative process. You typically retrieve, convert, and deploy source multiple times as you create scratch
orgs, test, and update the package components.

Chances are, you already have a namespace and package defined in your packaging org. If not, run this command to open the packaging
org in your browser.

sf org open --target-org me@my.org --path lightning/setup/Package/home

In the Salesforce UI, you can define a namespace and a package. Each packaging org can have a single managed package and one
namespace.

Be sure to link the namespace to your Dev Hub org.

Packaging Checklist

Ready to deploy your packaging metadata and start creating a package? Take a few minutes to verify that you covered the items in
this checklist, and you’re good to go.

Deploy the Package Metadata to the Packaging Org

Before you deploy the package metadata into your packaging org, you convert from source format to metadata format.

Create a Beta Version of Your App

Test your app in a scratch org, or share the app for evaluation by creating a beta version.

Install the Package in a Target Org

After you create a package with the CLI, install the package in a target org. You can install the package in any org you can authenticate,
including a scratch org.

Create a Managed Package Version of Your App

After your testing is done, your app is almost ready to be published in your enterprise or on AppExchange. Generate a new managed
package version in your Dev Hub org.

SEE ALSO:

Link a Namespace to a Dev Hub Org

Retrieve Source from an Existing Managed Package

33

Build and Release Your App with Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_retrieve_man_pack.htm

Packaging Checklist
Ready to deploy your packaging metadata and start creating a package? Take a few minutes to verify that you covered the items in this
checklist, and you’re good to go.

1. Link the namespace of each package you want to work with to the Dev Hub org.

2. Copy the metadata of the package from your version control system to a local project.

3. Update the config files, if needed.

For example, to work with managed packages, sfdx-project.json must include the namespace.

"namespace": "acme_example",

4. (Optional) Create an alias for each org you want to work with.

If you haven’t yet created an alias for each org, consider doing that now. Using aliases is an easy way to switch between orgs when
you’re working in the CLI.

5. Authenticate the Dev Hub org.

6. Create a scratch org.

A scratch org is different than a sandbox org. You specify the org shape using project-scratch.json. To create a scratch org and set
it as the defaultusername org, run this command from the project directory.

sf org create scratch --definition-file config/project-scratch-def.json

7. Push source to the scratch org.

8. Update source in the scratch org as needed.

9. Pull the source from the scratch org if you used declarative tools to make changes there.

With these steps complete, you’re ready to deploy your package metadata to the packaging org.

Deploy the Package Metadata to the Packaging Org
Before you deploy the package metadata into your packaging org, you convert from source format to metadata format.

It’s likely that you have some files that you don’t want to convert to metadata format. Create a .forceignore file to indicate which
files to ignore.

1. Convert from source format to the metadata format.
sf project convert source --output-dir mdapi_output_dir --package-name
managed_pkg_name

Create the output directory in the root of your project, not in the package directory. If the output directory doesn’t exist, it’s created.
Be sure to include the --package-name so that the converted metadata is added to the managed package in your packaging
org.

2. Review the contents of the output directory.
ls -lR mdapi_output_dir

3. Authenticate the packaging org, if needed. This example specifies the org with an alias called MyPackagingOrgAlias, which helps
you refer to the org more easily in subsequent commands.
sf org login web --alias MyPackagingOrgAlias

You can also authenticate with an OAuth client ID: sf org login web --client-id oauth_client_id

4. Deploy the package metadata back to the packaging org.

34

Build and Release Your App with Managed PackagesFirst-Generation Managed Packages

sf project deploy start --metadata-dir mdapi_output_dir --target-org me@example.com

The --target-org is the username. Instead of the username, you can use -u MyPackagingOrgAlias to refer to your
previously defined org alias. You can use other options, like --wait to specify the number of minutes to wait. Use the
--metadata-dir parameter to provide the path to a zip file that contains your metadata. Don’t run tests at the same time as
you deploy the metadata. You can run tests during the package upload process.

A message displays the job ID for the deployment.

5. Check the status of the deployment.

When you run sf project deploy report, the job ID and target username are stored, so you don’t have to specify these
required parameters to check the status. These stored values are overwritten when you run sf project deploy start
again.

If you want to check the status of a different deploy operation, specify the job ID on the command line, which overrides the stored
job ID.

SEE ALSO:

Salesforce CLI Command Reference

How to Exclude Source When Syncing or Converting

Create a Beta Version of Your App
Test your app in a scratch org, or share the app for evaluation by creating a beta version.

If you specified the package name when you converted source to metadata format, both the changed and new components are
automatically added to the package. Including the package name in that stage of the process lets you take full advantage of end-to-end
automation.

If, for some reason, you don’t want to include new components, you have two choices. You can omit the package name when you
convert source or remove components from the package in the Salesforce UI before you create the package version.

Create the beta version of a managed package by running the commands against your packaging org, not the Dev Hub org.

1. Ensure that you’ve authorized the packaging org.

sf org login web --set-default me@example.com

2. Create the beta version of the package.

sf package1 version create --package-id package_id --name package_version_name

You can get the package ID on the package detail page in the packaging org. If you want to protect the package with an installation
key, add it now or when you create the released version of your package. The --installation-key supplied from the CLI is
equivalent to the Password field that you see when working with packages through the Salesforce user interface. When you include
a value for --installation-key, you or a subscriber must supply the key before you can install the package in a target org.

You’re now ready to create a scratch org and install the package there for testing. By default, the create command generates a beta
version of your managed package.

Later, when you’re ready to create the Managed - Released version of your package, include the -m (--managed-released
true) parameter.

35

Build and Release Your App with Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_exclude_source.htm

Note: After you create a managed-released version of your package, many properties of the components added to the package
are no longer editable. Refer to the First-Generation Managed Packaging Developer Guide to understand the differences between
beta and managed-released versions of your package.

SEE ALSO:

Salesforce CLI Command Reference

Link a Namespace to a Dev Hub Org

Install the Package in a Target Org
After you create a package with the CLI, install the package in a target org. You can install the package in any org you can authenticate,
including a scratch org.

If you want to create a scratch org and set it as the defaultusername org, run this command from the project directory.

sf org create scratch -definition-file config/project-scratch-def.json

To locate the ID of the package version to install, run sf package1 version list.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069oAAA 033xx00000007coAAA r00 1.0.0 Released 1
04txx000000069tAAA 033xx00000007coAAA r01 1.1.0 Released 1
04txx000000069uAAA 033xx00000007coAAA r02 1.2.0 Released 1
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069zAAA 033xx00000007coAAA r04 1.4.0 Released 1

You can then copy the package version ID you want to install. For example, the ID 04txx000000069zAAA is for version 1.4.0.

1. Install the package. You supply the package alias or version ID, which starts with 04t, in the required --package parameter.

sf package install --package 04txx000000069zAAA

If you’ve set a default target org, the package is installed there. You can specify a different target org with the --target-org
parameter. If the package is protected by an installation key, supply the key with the --installation-key parameter.

To uninstall a package, open the target org and choose Setup. On the Installed Packages page, locate the package and choose Uninstall.

Create a Managed Package Version of Your App
After your testing is done, your app is almost ready to be published in your enterprise or on AppExchange. Generate a new managed
package version in your Dev Hub org.

Ensure that you’ve authorized the packaging org and can view the existing package versions.

sf org login web --instance-url https://test.salesforce.com --set-default org_alias

View the existing package versions for a specific package to get the ID for the version you want to install.

sf package1 version list --package-id 033...

To view details for all packages in the packaging org, run the command with no parameters.

More than one beta package can use the same version number. However, you can use each version number for only one managed
package version. You can specify major or minor version numbers.

36

Build and Release Your App with Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference

You can also include URLs for a post-installation script and release notes. Before you create a managed package, make sure that you’ve
configured your developer settings, including the namespace prefix.

Note: After you create a managed package version, you can’t change some attributes of Salesforce components used in the
package. See: Components Available in Managed Packages for information on editable components.

1. Create the managed package. Include the --managed-released parameter.

sf package1 version create --package-id 033xx00000007oi --name ”Spring 22” --description
”Spring 22 Release” --version 3.2 --managed-released

You can use other options, like --wait to specify the number of minutes to wait.

To protect the package with an installation key, include a value for --installation-key. Then, you or a subscriber must
supply the key before you can install the package in a target org.

After the managed package version is created, you can retrieve the new package version ID using sf package1 version
list.

View Information About a Package
View the details about a specific package version, including its metadata package ID, package name, release state, and build number.

1. From the project directory, run this command, supplying a package version ID.
sf package1 version display -i 04txx000000069yAAA
The output is similar to this example.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069yAAA 033xx00000011coAAA r03 1.4.0 Released 1

View All Package Versions in the Org

View the details about all package versions in the org.

Package IDs

When you work with packages using the CLI, the package IDs refer either to a unique package or a unique package version.

SEE ALSO:

Salesforce CLI Command Reference

View All Package Versions in the Org
View the details about all package versions in the org.

1. From the project directory, run the list command.
sf package1 version list
The output is similar to this example. When you view the package versions, the list shows a single package for multiple package
versions.

METADATAPACKAGEVERSIONID METADATAPACKAGEID NAME VERSION RELEASESTATE BUILDNUMBER
──────────────────────── ────────────────── ──── ─────── ──────────── ───────────

37

View Information About a PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference

04txx000000069oAAA 033xx00000007coAAA r00 1.0.0 Released 1
04txx000000069tAAA 033xx00000007coAAA r01 1.1.0 Released 1
04txx000000069uAAA 033xx00000007coAAA r02 1.2.0 Released 1
04txx000000069yAAA 033xx00000007coAAA r03 1.3.0 Released 1
04txx000000069zAAA 033xx00000007coAAA r04 1.4.0 Released 1

SEE ALSO:

Salesforce CLI Command Reference

Package IDs
When you work with packages using the CLI, the package IDs refer either to a unique package or a unique package version.

The relationship of package version to package is one-to-many.

Used WhereDescriptionID Example

Generated when you create a package. A
single package can have one or more

Metadata Package ID033xx00000007oi

associated package version IDs. The package
ID remains the same, whether it has a
corresponding beta or released package
version.

Generated when you create a package
version.

Metadata Package Version ID04tA000000081MX

Components Available in First-Generation Managed Packages

Each metadata component that you include in a managed 1GP or 2GP package has certain rules that determine its behavior in a subscriber
org. Manageability rules determine whether you, or the subscriber, can edit or remove components after the package version is created
and installed.

Components
A component is one constituent part of a package. It defines an item, such as a custom object or a custom field. You can combine
components in a package to produce powerful features or applications. In a managed package, some components can be upgraded
while others can’t.

For details about components supported in first-generation and second-generation managed packages, see Components Available in
Managed Packages in the Second-Generation Managed Packaging Developer Guide.

Attributes
An attribute is a field on a component, such as the name of an email template or the Allow Reports checkbox on a custom object.
The attributes associated with a non-upgradeable component are editable by both the package developer and the subscriber. On an
upgradeable component in a managed package, some attributes can be edited by the developer, some can be edited by the subscriber,
and some can’t be edited by anyone.

38

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm

Components Automatically Added to First-Generation Managed Packages

When adding components to your first-generation managed package, related components are automatically added. For example,
if you add a Visualforce page to a package that references a custom controller, that Apex class is also added.

Protected Components in Managed Packages

Developers can mark certain components as protected. Protected components can’t be linked to or referenced by components
created in a subscriber org. A developer can delete a protected component in a future release without worrying about failing
installations. However, after a component is marked as unprotected and is released globally, the developer can’t delete it.

Set Up a Platform Cache Partition with Provider Free Capacity

Salesforce provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This is made available through
a capacity type called Provider Free capacity and is automatically enabled in all Developer edition orgs.

Package Dependencies in First-Generation Managed Packages

Package dependencies are created when a component references another component, permission, or preference that is required
for the component to be valid.

Metadata Access in Apex Code

Use the Metadata namespace in Apex to access metadata in your package.

Permission Sets and Profile Settings in Packages

Permission sets, permission set groups, and profile settings are all ways to grant permissions and other access settings to a package.
Only use a profile setting if permission sets don’t support the specific access you need to grant. In all other instances, use permission
sets or permission set groups.

Permission Set Groups

You can organize permission sets into groups and include them in first and second-generation managed packages. Permission set
groups can be updated when you upgrade the package.

Custom Profile Settings

Create profiles to define how users access objects and data, and what they can do within your app. For example, profiles specify
custom object permissions and the tab visibility for your app. When installing or upgrading your app, admins can associate your
custom profiles with existing non-standard profiles. Permissions in your custom profile that are related to new components created
as part of the install or upgrade are added to the existing profile. The security settings associated with standard objects and existing
custom objects in an installer’s organization are unaffected.

Protecting Your Intellectual Property

The details of your custom objects, custom links, reports, and other installed items are revealed to installers so that they can check
for malicious content. However, revealing an app’s components prevents developers from protecting some intellectual property.

Call Salesforce URLs Within a Package

The URLs that Salesforce serves for a target org vary based on the org type and configuration. To build packages that support all
possible URL formats, use relative URLs whenever possible. If your package functionality requires a full URL, use the Apex
DomainCreator class to get the corresponding hostname. This method allows your package to work in all orgs, regardless of
the org type and My Domain settings.

Develop App Documentation

To help your subscribers make the most of your app, provide documentation about how to configure and customize your app.

API and Dynamic Apex Access in Packages

Apex Package components have access via dynamic Apex and the API to standard and custom objects in the organization where
they’re installed.

39

Components Available in First-Generation Managed
Packages

First-Generation Managed Packages

Connected Apps

A connected app is a framework that enables an external application to integrate with Salesforce using APIs and standard protocols,
such as SAML, OAuth, and OpenID Connect. Connected apps use these protocols to authenticate, authorize, and provide single
sign-on (SSO) for external apps. The external apps that are integrated with Salesforce can run on the customer success platform,
other platforms, devices, or SaaS subscriptions. For example, when you log in to your Salesforce mobile app and see your data from
your Salesforce org, you’re using a connected app.

Components Automatically Added to First-Generation Managed Packages
When adding components to your first-generation managed package, related components are automatically added. For example, if you
add a Visualforce page to a package that references a custom controller, that Apex class is also added.

To understand what components are automatically included in first-generation managed packages, review the following list:

These components are automatically addedWhen you add this component

Action target object (if it’s a custom object), action target field, action record type, predefined
field values, action layout; and any custom fields that the action layout or predefined values
refer to on the target object

Action

Custom fields, custom objects, and other explicitly referenced Apex classes, and anything
else that the Apex class references directly

Apex class

Note: If an Apex class references a custom label, and that label has translations, you
must explicitly package the individual languages desired for those translations to be
included.

Custom fields, custom objects, and any explicitly referenced Apex classes, and anything else
that the Apex trigger references directly

Apex trigger

Custom fields, the default page layoutArticle type

Custom fieldsCompact layout

Custom tabs (including web tabs), documents (stored as images on the tab), documents
folder, asset files

Custom app

Custom fields and custom objectsCustom button or link

Custom objectsCustom field

Custom home page components on the layoutCustom home page layouts

Apex sharing reasons, Apex sharing recalculations, Apex triggers, custom fields, list views,
page layouts, record types, validation rules, or custom buttons or links.

Custom settings

Custom fields, validation rules, page layouts, list views, custom buttons, custom links, record
types, Apex sharing reasons, Apex sharing recalculations, and Apex triggers

Custom object

Note:

• Apex sharing reasons are unavailable in extensions.

• When packaged and installed, only public list views from an app are installed. If a
custom object has any custom list views that you want to include in your package,
ensure that the list view is accessible by all users.

40

Components Automatically Added to First-Generation
Managed Packages

First-Generation Managed Packages

These components are automatically addedWhen you add this component

External data source, custom fields, page layouts, list views, custom buttons, and custom linksCustom object (as an external object)

Note:

• When packaged and installed, only public list views from an app are installed. If
an external object has any custom list views that you want to include in your
package, ensure that the list view is accessible by all users.

• In managed and unmanaged packages, external objects are included in the custom
object component.

Custom objects (including all of its components), s-controls, and Visualforce pagesCustom tab

Folders, reports (including all of its components), s-controls, and Visualforce pagesDashboard

FolderDocument

Email template (Classic) • Folder

• Letterhead

• Custom fields

• Documents (stored as images on the letterhead or template)

Email template (Lightning) • Custom object

• Custom field references (in Handlebars Merge Language syntax)

• Enhanced folder (except the default public and private folders)

• Inline images referencing Salesforce Files

• Attachments referencing Salesforce Files

For Lightning email templates created before Spring ’21, attachments aren’t automatically
added to the package. Open and resave these templates to turn the attachments into content
assets, which are then automatically added to the package

These items aren’t included and can’t be added to a package:

• Enhanced letterhead

• The associated FlexiPage

• CMS files (Account Engagement only)

Email template (Lightning) created in
Email Template Builder

• Custom object

• Custom field references (in Handlebars Merge Language syntax)

• Enhanced folder (except the default public and private folders)

• Inline images referencing Salesforce Files

• Attachments referencing Salesforce Files

• The associated FlexiPage

These items aren’t included and can’t be added to a package:

• Enhanced letterhead

• CMS files (Account Engagement only)

41

Components Automatically Added to First-Generation
Managed Packages

First-Generation Managed Packages

These components are automatically addedWhen you add this component

Permission set and authentication providerExternal Credential

Note: External credentials that use the Oauth 2.0 authentication protocol must
reference an authentication provider to capture the details of the authorization
endpoint. If you add an external credential that references an authentication provider,
the authentication provider is added to the package. See Authentication Providers for
information on which elements of an authentication provider are and aren’t
packageable.

Any referenced fieldsField set

All Lightning resources referenced by the page, such as record types, actions, custom
components, events, and interfaces. Custom fields, custom objects, list views, page layouts,
Visualforce pages, and Apex classes referenced by the components on the page.

Lightning page

Lightning pageLightning page tab

Custom objects, custom fields, Apex classes, and Visualforce pagesFlow

Everything in the folderFolder

All Lightning resources referenced by the application, such as components, events, and
interfaces. Custom fields, custom objects, list views, page layouts, and Apex classes referenced
by the application.

Lightning application

All Lightning resources referenced by the component, such as nested components, events,
and interfaces. Custom fields, custom objects, list views, page layouts, and Apex classes
referenced by the component.

Lightning component

Custom fields, custom objects, list views, and page layoutsLightning event

Custom fields, custom objects, list views, and page layoutsLightning interface

All Lightning web component resources referenced by the component, such as nested
components and modules. Custom fields, custom objects, list views, page layouts, and Apex
classes referenced by the component

Lightning web component

External credential; for legacy named credentials, an authentication providerNamed Credential

Actions, custom buttons, custom links, s-controls, and Visualforce pagesPage layout

Any custom permissions, external data sources, Visualforce pages, record types, and Apex
classes that are assigned in the permission set

Permission set

Record type mappings, compact layoutRecord type

Folder, custom fields, custom objects, custom report types, and custom s-controlsReport

ReportsReporting Snapshot

Custom fields and custom objectsS-control

Translated terms for the selected language on any component in the packageTranslation

Custom fields (referenced in the formula)Validation rule

42

Components Automatically Added to First-Generation
Managed Packages

First-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.sso_authentication_providers.htm&language=en_US

These components are automatically addedWhen you add this component

Associated Visualforce pageVisualforce home page component

Apex classes that are used as custom controllers, Visualforce custom components, and
referenced field sets

Visualforce pages

All associated workflow alerts, field updates, outbound messages, and tasks; also, if the
workflow rule is designed for a custom object, the custom object is automatically included

Workflow rule

Note: Some package components, such as validation rules or record types, don’t appear in the list of package components, but
are included and install with the other components.

Protected Components in Managed Packages
Developers can mark certain components as protected. Protected components can’t be linked to or referenced by components created
in a subscriber org. A developer can delete a protected component in a future release without worrying about failing installations.
However, after a component is marked as unprotected and is released globally, the developer can’t delete it.

Developers can mark these components as protected in managed packages.

• Custom labels

• Custom links (for Home page only)

• Custom metadata types

• Custom objects

• Custom permissions

• Custom settings

• Workflow alerts

• Workflow field updates

• Workflow outbound messages

• Workflow tasks

Considerations for Protected Custom Objects in Subscriber Sandboxes
When a subscriber creates a partial copy sandbox, protected custom objects don’t display in the list of objects to copy. Data contained
in the records of protected custom objects is never copied to sandboxes, regardless of sandbox type.

Set Up a Platform Cache Partition with Provider Free Capacity
Salesforce provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This is made available through a
capacity type called Provider Free capacity and is automatically enabled in all Developer edition orgs.

Follow the steps here to allocate the Provider Free capacity to a Platform Cache partition before adding it to your managed package.

Note: If a Platform Cache partition is already part of your managed package, you can choose to edit the existing partition and
allocate the Provider Free capacity to it.

Create a partition from the Platform Cache page and then set it up to use the Provider Free capacity

1. From Setup, in the Quick Find box, enter Platform Cache, and then select Platform Cache.

43

Protected Components in Managed PackagesFirst-Generation Managed Packages

As the Provider Free capacity is automatically enabled in all Developer edition orgs, the Org’s Capacity Breakdown donut chart shows
the Provider Free capacity.

2. Click New Platform Cache Partition.

3. In the Label box, enter a name for the partition. The name can contain alphanumeric characters only and must be unique in your
org.

4. In the Description box, enter an optional description for the partition.

5. In the Capacity section, allocate separate capacities for session cache and org cache from the available Provider Free capacity.

6. Save the new Platform Cache partition.

You can add this new Platform Cache partition to your managed package. When a security-reviewed managed package with Platform
Cache partition is installed on the subscriber org, the Provider Free capacity is allocated and automatically made available to the installed
partition. The managed package can start using the Platform Cache partition; no post-install script or manual allocation is required.

Note: If the managed package is not AppExchange-certified and security-reviewed, the Provider Free capacity resets to zero and
will not be allocated to the installed Platform Cache partition.

When a Platform Cache partition with Provider Free capacity is installed in a subscriber org, the Provider Free capacity allocated is
non-editable. The provider free capacity of one installed partition can’t be used for any other partition.

Tip: After you install a Platform Cache partition with Provider Free capacity, you can edit the partition and make additional
allocations from the available platform cache capacity of the org.

Package Dependencies in First-Generation Managed Packages

EDITIONS

AppExchange packages
and Visualforce are
available in: Group,
Professional, Enterprise,
Performance, Unlimited,
and Developer Editions

Apex available in:
Enterprise, Performance,
Unlimited, and Developer
Editions

USER PERMISSIONS

To upload packages:
• Upload AppExchange

Packages

To view Visualforce
dependencies:
• Developer Mode

Package dependencies are created when a component references another component, permission,
or preference that is required for the component to be valid.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

Packages, Apex classes, Apex triggers, Visualforce components, and Visualforce pages can have
dependencies on components within an org. These dependencies are recorded on the Show
Dependencies page.

Dependencies are important for packaging because any dependency in a component of a package
is considered a dependency of the package as a whole.

Note: An installer’s organization must meet all dependency requirements listed on the Show
Dependencies page or else the installation fails. For example, the installer's org must have
divisions enabled to install a package that references divisions.

Dependencies are important for Apex classes or triggers. Any component on which a class or trigger
depends must be included with the class or trigger when the code is deployed or packaged.

In addition to dependencies, the operational scope is also displayed on the Show Dependencies
page. The operational scope is a table that lists any data manipulation language (DML) operations
(such as insert or merge) that Apex executes on a specified object. The operational scope
can be used when installing an application to determine the full extent of the application’s database
operations.

44

Package Dependencies in First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

To view the dependencies and operational scope for a package, Apex class, Apex trigger, or Visualforce page:

1. Navigate to the appropriate component from Setup.

• For packages, enter Packages in the Quick Find box, then select Packages.

• For Apex classes, enter Apex Classes in the Quick Find box, then select Apex Classes.

• For Apex triggers, from the management settings for the appropriate object, go to Triggers.

• For Visualforce pages, enter Visualforce Pages in the Quick Find box, then select Visualforce Pages.

2. Select the name of the component.

3. Click View Dependencies for a package, or Show Dependencies for all other components, to see a list of objects that depend
upon the selected component.

If a list of dependent objects displays, click Fields to access the field-level detail of the operational scope. The field-level detail includes
information, such as whether Apex updates a field. For more information, see Field Operational Scope.

Packages, Apex code, and Visualforce pages can depend many components, including but not limited to:

• Custom field definitions

• Validation formulas

• Reports

• Record types

• Apex

• Visualforce pages and components

For example, if a Visualforce page includes a reference to a multicurrency field, such as {!contract.ISO_code}, that Visualforce
page has a dependency on multicurrency. If a package contains this Visualforce page, it also has a dependency on multicurrency. Any
organization that wants to install this package must have multicurrency enabled.

Metadata Access in Apex Code
Use the Metadata namespace in Apex to access metadata in your package.

Your package may need to retrieve or modify metadata during installation or update. The Metadata namespace in Apex provides
classes that represent metadata types, as well as classes that let you retrieve and deploy metadata components to the subscriber org.
These considerations apply to metadata in Apex:

• You can create, retrieve, and update metadata components in Apex code, but you can’t delete components.

• You can currently access records of custom metadata types and page layouts in Apex.

• Managed packages not approved by Salesforce can’t access metadata in the subscriber org, unless the subscriber org enables the
Allow metadata deploy by Apex from non-certified Apex package version org preference. Use this org preference when
doing test or beta releases of your managed packages.

If your package accesses metadata during installation or update, or contains a custom setup interface that accesses metadata, you must
notify the user. For installs that access metadata, notify the user in the description of your package. The notice should let customers
know that your package has the ability to modify the subscriber org’s metadata.

You can write your own notice, or use this sample:

This package can access and change metadata outside its namespace in the Salesforce
org where it’s installed.

Salesforce verifies the notice during the security review.

For more information, see Metadata in the Apex Developer Guide.

45

Metadata Access in Apex CodeFirst-Generation Managed Packages

https://help.salesforce.com/articleView?id=field_operational_scope.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_metadata.htm

Permission Sets and Profile Settings in Packages

EDITIONS

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

Permission sets are
available in: Contact
Manager, Professional,
Group, Enterprise,
Performance, Unlimited,
Developer, and
Database.com Editions

Permission sets, permission set groups, and profile settings are all ways to grant permissions and
other access settings to a package. Only use a profile setting if permission sets don’t support the
specific access you need to grant. In all other instances, use permission sets or permission set groups.

Important: Where possible, we changed noninclusive terms to align with our company
value of Equality. We maintained certain terms to avoid any effect on customer
implementations.

Profile SettingsPermission SetsBehavior

What permissions and settings
are included?

•• Assigned custom appsAssigned custom apps

• •Custom object permissions Assigned connected apps

•• Tab settingsExternal object permissions

• •Custom field permissions Page layout assignments

• Record type assignments• Custom metadata types
permissions • Custom field permissions

• Custom permissions • Custom metadata type
permissions• Custom settings

permissions • Custom object permissions
• Custom tab visibility

settings
• Custom permissions

• Custom settings
permissions• Apex class access

• Visualforce page access • External object permissions
• External data source access • Apex class access
• Record types • Visualforce page access

Note: Although
permission sets include

• External data source access

standard tab visibility
settings, these settings
can’t be packaged as
permission set
components.

If a permission set
includes an assigned
custom app, it’s possible
that a subscriber can
delete the app. In that
case, when the package
is later upgraded, the
assigned custom app is
removed from the
permission set.

46

Permission Sets and Profile Settings in PackagesFirst-Generation Managed Packages

Profile SettingsPermission SetsBehavior

Profile settings are applied to existing
profiles in the subscriber’s org on install or

Yes.Can they be upgraded in managed
packages?

upgrade. Only permissions related to new
components created as part of the install or
upgrade are applied.

Yes.No.Can subscribers edit them?

Yes. Subscribers can clone any profile that
includes permissions and settings related
to packaged components.

Yes. However, if a subscriber clones a
permission set or creates one that’s based
on a packaged permission set, it isn’t
updated in subsequent upgrades. Only the

Can you clone or create them?

permission sets included in a package are
upgraded.

No.No. Also, you can’t include object
permissions for a custom object in a

Do they include standard object
permissions?

master-detail relationship where the master
is a standard object.

No.No.Do they include user permissions?

Yes. Profile settings are applied to existing
profiles in the subscriber’s org on install or

No. Subscribers must assign permission sets
after installation.

Are they included in the installation wizard?

upgrade. Only permissions related to new
components created as part of the install or
upgrade are applied. Affected components
(listed with the developerName) can include
new:

• Fields (CustomField)

• Objects (CustomObject),

• Tabs (CustomTab)

• Apps (CustomApplication)

• Apex classes (ApexClass)

• Apex pages (ApexPage)

• Layouts (Layout)

• Record types (RecordType)

• Custom permissions
(CustomPermission)

• Custom settings (CustomSetting)

• Custom metadata types
(CustomMetadata)

None. In a subscriber org, the installation
overrides the profile settings, not their user
licenses.

A permission set is only installed if the
subscriber org has at least one user license
that matches the permission set. For
example, permission sets with the Salesforce

What are the user license requirements?

47

Permission Sets and Profile Settings in PackagesFirst-Generation Managed Packages

Profile SettingsPermission SetsBehavior

Platform user license aren’t installed in an
org that has no Salesforce Platform user
licenses. If a subscriber later acquires a
license, the subscriber must reinstall the
package to get the permission sets
associated with the newly acquired license.

Permission sets with no user license are
always installed. If you assign a permission
set that doesn’t include a user license, the
user’s existing license must allow its enabled
settings and permissions. Otherwise, the
assignment fails.

Profile settings are applied to existing
profiles.

Subscribers must assign packaged
permission sets after installing the package.

How are they assigned to users?

Same behavior as for permission sets.A permission set in the extension package
can't modify access permissions for either

Can permission sets in an extension package
grant access to objects installed in a base
package? the parent objects in the base package or

the associated child objects in the extension
package.

Best Practices
• If users need access to apps, standard tabs, page layouts, and record types, don't use permission sets as the sole permission-granting

model for your app.

• Create packaged permission sets that grant access to the custom components in a package, but not standard Salesforce components.

Permission Set Groups
You can organize permission sets into groups and include them in first and second-generation managed packages. Permission set groups
can be updated when you upgrade the package.

Keep these considerations in mind when you organize permission sets into groups to include in your managed packages:

Important: You can't include object permissions for standard objects in managed packages. During package installation, all
object permissions for standard objects are ignored, and aren't installed in the org.

Also:

• You can’t add permission sets constrained by a permission set license to managed or unmanaged packages.

• You can only package permissions for metadata that’s included in your package.

48

Permission Set GroupsFirst-Generation Managed Packages

• You can add or remove permission sets in permission set groups as part of a package upgrade. Subscribers can also modify the
permission set groups by muting permissions or adding or removing local permissions sets.

SEE ALSO:

Create a Permission Set Group

Permission Set Groups Considerations

Custom Profile Settings
Create profiles to define how users access objects and data, and what they can do within your app. For example, profiles specify custom
object permissions and the tab visibility for your app. When installing or upgrading your app, admins can associate your custom profiles
with existing non-standard profiles. Permissions in your custom profile that are related to new components created as part of the install
or upgrade are added to the existing profile. The security settings associated with standard objects and existing custom objects in an
installer’s organization are unaffected.

Consider these tips when creating custom profiles for apps you want to publish.

• Give each custom profile a name that identifies the profile as belonging to the app. For example, if you’re creating a Human Resources
app named “HR2GO,” a good profile name would be ”HR2GO Approving Manager.”

• If your custom profiles have a hierarchy, use a name that indicates the profile’s location in the hierarchy. For example, name a
senior-level manager’s profile ”HR2GO Level 2 Approving Manager.”

• Avoid custom profile names that can be interpreted differently in other organizations. For example, the profile name ”HR2GO Level
2 Approving Manager” is open to less interpretation than ”Sr. Manager.”

• Provide a meaningful description for each profile. The description displays to the user installing your app.

Alternatively, you can use permission sets to maintain control of permission settings through the upgrade process. Permission sets
contain a subset of profile access settings, including object permissions, field permissions, Apex class access, and Visualforce page access.
These permissions are the same as those available on profiles. You can add a permission set as a component in a package.

Note: In packages, assigned apps and tab settings aren’t included in permission set components.

Protecting Your Intellectual Property
The details of your custom objects, custom links, reports, and other installed items are revealed to installers so that they can check for
malicious content. However, revealing an app’s components prevents developers from protecting some intellectual property.

To protect your intellectual property, consider the following:

• Only publish package components that are your intellectual property and that you have the rights to share.

• After your components are available on AppExchange, you can’t recall them from anyone who has installed them.

• The information in the components that you package and publish might be visible to customers. Use caution when adding your
code to a formula, Visualforce page, or other component that you can’t hide in your app.

• The code contained in an Apex class, trigger, Lightning, or Visualforce component that’s part of a managed package is obfuscated
and can’t be viewed in an installing org. The only exceptions are methods declared as global. You can view global method signatures
in an installing org. In addition, License Management Org users with the View and Debug Managed Apex permission can view their
packages’ obfuscated Apex classes when logged in to subscriber orgs via the Subscriber Support Console.

• If a custom setting is contained in a managed package, and the Visibility is specified as Protected, the custom setting isn’t
contained in the list of components for the package on the subscriber’s org. All data for the custom setting is hidden from the
subscriber.

49

Custom Profile SettingsFirst-Generation Managed Packages

https://help.salesforce.com/apex/HTViewHelpDoc?id=perm_set_groups_create.htm&language=en_US#perm_set_groups_create
https://help.salesforce.com/apex/HTViewHelpDoc?id=perm_set_groups_considerations.htm&language=en_US#perm_set_groups_considerations

Call Salesforce URLs Within a Package
The URLs that Salesforce serves for a target org vary based on the org type and configuration. To build packages that support all possible
URL formats, use relative URLs whenever possible. If your package functionality requires a full URL, use the Apex DomainCreator
class to get the corresponding hostname. This method allows your package to work in all orgs, regardless of the org type and My Domain
settings.

The formats for My Domain URLs vary between production and sandbox orgs. With partitioned domains, hostname formats also vary
for demo, Developer Edition, free, patch, and scratch orgs, plus Trailhead playgrounds. For example, there are currently two possible
formats for sandbox My Domain login hostname formats and ten possible Visualforce hostname formats. For more information, see My
Domain URL Formats and Partitioned Domains in Salesforce Help.

In general, use relative URLs whenever possible within your packages. If a full URL is required, use the System.DomainCreator
Apex class to get the URL’s hostname.

Note: The System.DomainCreator Apex class is available in API version 54.0 and later.

Use the My Domain Login URL for Logins
All Salesforce orgs have a My Domain, an org-specific subdomain for the URLs that Salesforce hosts for that org. Customers have the
option to prevent user and SOAP API logins from the generic login.salesforce.com and test.salesforce.com
hostnames. When those options are enabled, logins require the My Domain login URL.

To get the My Domain login URL format for an org, use the getOrgMyDomainHostname() method of the
System.DomainCreator Apex class.

//Get the My Domain login hostname
String myDomainHostname = DomainCreator.getOrgMyDomainHostname();

In this case, in a production org with a My Domain name of mycompany, myDomainHostname returns
mycompany.my.salesforce.com.

Use Relative URLs
Whenever possible, we recommend that you use a relative URL, which only includes the path within your packages.

For example, assume that you want to add a link on the Visualforce page with a URL of
https://MyDomainName--PackageName.vf.force.com/apex/myCases to a Visualforce page with the URL,
https://MyDomainName--PackageName.vf.force.com/apex/newCase. In this case, use the relative path when
referencing the page: /apex/newCase.

Generate Hostnames for Full URLs
Sometimes a full URL is required. For example, when your package delivers a Visualforce page that includes content delivered by your
package. If your package includes full URLs, use the System.DomainCreator Apex class to get the associated hostnames.
Otherwise, users can experience issues with your package functionality.

For example, to return the hostname for Visualforce pages, use the getVisualforceHostname(packageName) method of
the System.DomainCreator Apex class.

//Define the name of your package as a string
String packageName = 'abcpackage';

//Get the Visualforce hostname

50

Call Salesforce URLs Within a PackageFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.domain_name_app_url_changes.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.domain_name_app_url_changes.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.domain_name_partitioned_domains.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_class_System_DomainCreator.htm

String vfHostname = DomainCreator.getVisualforceHostname(packageName);

//Build the URL for creating a new case
System.URL vfNewCaseUrl = new URL('https', vfHostname, '/apex/newCase');

In this example, in a production org with enhanced domains and a My Domain name of mycompany, vfNewCaseUrl returns
https://mycompany--abcpackage.vf.force.com/apex/newCase.

Get Part of a Domain
If you find code in your package that parses a known URL or domain to get a value, we recommend that you update that code to use
one of the newer Apex classes. Code that assumes a specific URL format can fail.

If you need a hostname, assess whether you can use the System.DomainCreator class.

If you need that value for another reason, use the Apex System.DomainParser or System.Domain class instead.

In this example, we parse a known URL to get the domain type, the org’s My Domain name, and the package name.

//Parse a known URL
System.Domain domain = DomainParser.parse('https://mycompany--abcpackage.vf.force.com');

//Get the domain type
System.DomainType domainType = domain.getDomainType(); // Returns VISUALFORCE_DOMAIN

//Get the org’s My Domain name
String myDomainName = domain.getMyDomainName(); // Returns mycompany

//Get the package name
String packageName = domain.getPackageName(); // Returns abcpackage

Develop App Documentation
To help your subscribers make the most of your app, provide documentation about how to configure and customize your app.

• Configure Option—You can include a Configure option for installers. This option can link to installation and configuration details,
such as:

– Provisioning the external service of a client app

– Custom app settings

The Configure option is included in your package as a custom link. You can create a custom link for your home page layouts and
add it to your package.

1. Create a custom link to a URL that contains configuration information, or a Visualforce page that implements the configuration.
When you create your custom link, set the display properties to Open in separate popup window so that the user
returns to the same Salesforce page when done.

2. When you create the package, choose this custom link in the Configure Custom Link field of your package detail.

• Data Sheet—Give installers the fundamental information they must know about your app before they install.

• Customization and Enhancement Guide—Let installers know what they must customize after installation as part of their
implementation.

• Custom Help—You can provide custom help for your custom object records and custom fields.

51

Develop App DocumentationFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_class_System_DomainParser.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_class_System_Domain.htm

API and Dynamic Apex Access in Packages
Apex Package components have access via dynamic Apex and the API to standard and custom objects in the organization where they’re
installed.

API Access is a package setting that controls the dynamic Apex and API access that package components have to standard and
custom objects. The setting displays for both the developer and installer on the package detail page. With this setting:

• The developer of an AppExchange package can restrict API access for a package before uploading it to AppExchange. After it’s
restricted, the package components receive Apex and API sessions that are restricted to the custom objects in the package. The
developer can also enable access to specific standard objects, and any custom objects in other packages that this package depends
on.

• The installer of a package can accept or reject package access privileges when installing the package to their organization.

• After installation, an administrator can change Apex and API access for a package at any time. The installer can also enable access
on additional objects such as custom objects created in the installer's organization or objects installed by unrelated packages.

There are two possible options for the API Access setting:

• The default Unrestricted, which gives the package components the same API access to standard objects as the user who is
logged in when the component sends a request to the API. Apex runs in system mode. Unrestricted access gives Apex read access
to all standard and custom objects.

• Restricted, which allows the administrator to select which standard objects the components in the package can access. Further,
the components in restricted packages can only access custom objects in the current package if the user has the object permissions
that provide access to them.

Considerations for API and Dynamic Apex Access in Packages
By default, dynamic Apex can only access the components with which the code is packaged. To provide access to standard objects not
included in the package, the developer must set the API Access.

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Select the package that contains a dynamic Apex that needs access to standard objects in the installing organization.

3. In the Package Detail related list, click Enable Restrictions or Restricted, whichever is available.

4. Set the access level (Read, Create, Edit, Delete) for the standard objects that the dynamic Apex can access.

5. Click Save.

Choosing Restricted for the API Access setting in a package affects the following:

• API access in a package overrides the following user permissions:

– Author Apex

– Customize Application

– Edit HTML Templates

– Edit Read Only Fields

– Manage Billing

– Manage Call Centers

– Manage Categories

– Manage Custom Report Types

– Manage Dashboards

– Manage Letterheads

52

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

– Manage Package Licenses

– Manage Public Documents

– Manage Public List Views

– Manage Public Reports

– Manage Public Templates

– Manage Users

– Transfer Record

– Use Team Reassignment Wizards

– View Setup and Configuration

– Weekly Export Data

• If Read, Create, Edit, and Delete access aren’t selected in the API access setting for objects, users don’t have access to
those objects from the package components, even if the user has the Modify All Data and View All Data permissions.

• A package with Restricted API access can’t create users.

• Salesforce denies access to Web service and executeanonymous requests from an AppExchange package that has
Restricted access.

The following considerations also apply to API access in packages:

• Workflow rules and Apex triggers fire regardless of API access in a package.

• If a component is in more than one package in an organization, API access is unrestricted for that component in all packages in the
organization regardless of the access setting.

• If Salesforce introduces a new standard object after you select restricted access for a package, access to the new standard object
isn’t granted by default. You must modify the restricted access setting to include the new standard object.

• When you upgrade a package, changes to the API access are ignored even if the developer specified them, which ensures that the
administrator installing the upgrade has full control. Installers must carefully examine the changes in package access in each upgrade
during installation and note all acceptable changes. Then, because those changes are ignored, the administrator must manually
apply any acceptable changes after installing an upgrade.

• S-controls are served by Salesforce and rendered inline in Salesforce. Because of this tight integration, there are several means by
which an s-control in an installed package could escalate its privileges to the user’s full privileges. In order to protect the security of
organizations that install packages, s-controls have the following limitations:

– For packages you’re developing (that is, not installed from AppExchange), you can only add s-controls to packages with the
default Unrestricted API access. After a package has an s-control, you can’t enable Restricted API access.

– For packages you’ve installed, you can enable access restrictions even if the package contains s-controls. However, access
restrictions provide only limited protection for s-controls. Salesforce recommends that you understand the JavaScript in an
s-control before relying on access restriction for s-control security.

– If an installed package has Restricted API access, upgrades are successful only if the upgraded version doesn’t contain any
s-controls. If s-controls are present in the upgraded version, you must change the currently installed package to Unrestricted
API access.

Manage API and Dynamic Apex Access in Packages

API Access is a package setting that controls the dynamic Apex and API access that package components have to standard
and custom objects. The setting displays for both the developer and installer on the package detail page.

Configure Default Package Versions for API Calls

You can specify the default package versions for enterprise API and partner API calls.

53

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

About the Partner WSDL

The Partner Web Services WSDL is used for client applications that are metadata-driven and dynamic in nature. It’s particularly—but
not exclusively—useful to Salesforce partners who are building client applications for multiple organizations.

Generate an Enterprise WSDL with Managed Packages

If you’re downloading an enterprise WSDL and you have managed packages installed in your organization, you must take an extra
step to select the version of each installed package to include in the generated WSDL.

Work with Services Outside of Salesforce

Manage API and Dynamic Apex Access in Packages

USER PERMISSIONS

To edit API and dynamic
Apex access for a package
you’ve created or installed:
• Create AppExchange

packages

To accept or reject package
API and dynamic Apex
access for a package as
part of installation:
• Download AppExchange

packages

API Access is a package setting that controls the dynamic Apex and API access that package
components have to standard and custom objects. The setting displays for both the developer and
installer on the package detail page.

• The developer of an AppExchange package can restrict API access for a package before uploading
it to AppExchange. After it’s restricted, the package components receive Apex and API sessions
that are restricted to the custom objects in the package. The developer can also enable access
to specific standard objects, and any custom objects in other packages that this package depends
on.

• The installer of a package can accept or reject package access privileges when installing the
package to their organization.

• After installation, an administrator can change Apex and API access for a package at any time.
The installer can also enable access on additional objects such as custom objects created in the
installer's organization or objects installed by unrelated packages.

Setting API and Dynamic Apex Access in Packages
To change package access privileges in a package you or someone in your organization has created:

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Select a package.

3. The API Access field displays the current setting, Restricted or Unrestricted, and a link to either Enable Restrictions
or Disable Restrictions. If Read, Create, Edit, and Delete access aren’t selected in the API access setting for objects, users
don’t have access to those objects from the package components, even if the user has the Modify All Data and View All Data
permissions.

Use the API Access field to:

• Enable Restrictions— This option is available only if the current setting is Unrestricted. Select this option if you want
to specify the dynamic Apex and API access that package components have to standard objects in the installer's organization.
When you select this option, the Extended Object Permissions list is displayed. To enable access for each object in the list, select
the Read, Create, Edit, or Delete checkboxes. This selection is disabled in some situations. Click Save when finished.
For more information about choosing the Restricted option, including information about when it’s disabled, see
Considerations for API and Dynamic Apex Access in Packages on page 52.

• Disable Restrictions—This option is available only if the current setting is Restricted. Select this option if you don’t want
to restrict the Apex and API access privileges that the components in the package have to standard and custom objects. This
option gives all the components in the package the same API access as the user who is logged in. For example, if a user can
access accounts, an Apex class in the package that accesses accounts would succeed when triggered by that user.

• Restricted—Click this link if you already restricted API access and wish to edit the restrictions.

54

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

Accepting or Rejecting API and Dynamic Apex Access Privileges during Installation
To accept or reject the API and dynamic Apex access privileges for a package you’re installing:

• Start the installation process on AppExchange.

• In Approve API Access, either accept by clicking Next, or reject by clicking Cancel. Complete the installation steps if you haven’t
canceled.

Changing API and Dynamic Apex Access Privileges After Installation
To edit the package API and dynamic Apex access privileges after you’ve installed a package:

1. From Setup, enter Installed Packages in the Quick Find box, then select Installed Packages.

2. Click the name of the package you wish to edit.

3. The API Access field displays the current setting, Restricted or Unrestricted, and a link to either Enable Restrictions
or Disable Restrictions. If Read, Create, Edit, and Delete access aren’t selected in the API access setting for objects, users
don’t have access to those objects from the package components, even if the user has the Modify All Data and View All Data
permissions.

Use the API Access field to:

• Enable Restrictions— This option is available only if the current setting is Unrestricted. Select this option if you want
to specify the dynamic Apex and API access that package components have to standard objects in the installer's organization.
When you select this option, the Extended Object Permissions list is displayed. To enable access for each object in the list, select
the Read, Create, Edit, or Delete checkboxes. This selection is disabled in some situations. Click Save when finished.
For more information about choosing the Restricted option, including information about when it’s disabled, see
Considerations for API and Dynamic Apex Access in Packages on page 52.

• Disable Restrictions—This option is available only if the current setting is Restricted. Select this option if you don’t want
to restrict the Apex and API access privileges that the components in the package have to standard and custom objects. This
option gives all the components in the package the same API access as the user who is logged in. For example, if a user can
access accounts, an Apex class in the package that accesses accounts would succeed when triggered by that user.

• Restricted—Click this link if you have already restricted API access and wish to edit the restrictions.

Configure Default Package Versions for API Calls

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
and Developer, Editions

USER PERMISSIONS

To configure default
package versions for API
calls:
• Customize Application

You can specify the default package versions for enterprise API and partner API calls.

A package version is a number that identifies the set of components uploaded in a package. The
version number has the format majorNumber.minorNumber.patchNumber (for example,
2.1.3). The major and minor numbers increase to a chosen value during every major release. The
patchNumber is generated and updated only for a patch release. Publishers can use package
versions to evolve the components in their managed packages gracefully by releasing subsequent
package versions without breaking existing customer integrations using the package.

Default package versions for API calls provide fallback settings if package versions aren’t provided
by an API call. Many API clients don’t include package version information, so the default settings
maintain existing behavior for these clients.

You can specify the default package versions for enterprise API and partner API calls. The enterprise
WSDL is for customers who want to build an integration with their Salesforce organization only. It’s
strongly typed, which means that calls operate on objects and fields with specific data types, such
as int and string. The partner WSDL is for customers, partners, and ISVs who want to build

55

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

an integration that can work across multiple Salesforce organizations, regardless of their custom objects or fields. It is loosely typed,
which means that calls operate on name-value pairs of field names and values instead of specific data types.

You must associate the enterprise WSDL with specific package versions to maintain existing behavior for clients. There are options for
setting the package version bindings for an API call from client applications using either the enterprise or partner WSDL. The package
version information for API calls issued from a client application based on the enterprise WSDL is determined by the first match in the
following settings.

1. The PackageVersionHeader SOAP header.

2. The SOAP endpoint contains a URL with a format of serverName/services/Soap/c/api_version/ID where
api_version is the version of the API, such as 60.0, and ID encodes your package version selections when the enterprise WSDL
was generated.

3. The default enterprise package version settings.

The partner WSDL is more flexible as it’s used for integration with multiple organizations. If you choose the Not Specified option for a
package version when configuring the default partner package versions, the behavior is defined by the latest installed package version.
This means that behavior of package components, such as an Apex trigger, could change when a package is upgraded and that change
would immediately impact the integration. Subscribers may want to select a specific version for an installed package for all partner API
calls from client applications to ensure that subsequent installations of package versions don’t affect their existing integrations.

The package version information for partner API calls is determined by the first match in the following settings.

1. The PackageVersionHeader SOAP header.

2. An API call from a Visualforce page uses the package versions set for the Visualforce page.

3. The default partner package version settings.

To configure default package versions for API calls:

1. From Setup, enter API in the Quick Find box, then select API.

2. Click Configure Enterprise Package Version Settings or Configure Partner Package Version Settings. These links are only
available if you have at least one managed package installed in your organization.

3. Select a Package Version for each of your installed managed packages. If you’re unsure which package version to select, you
should leave the default selection.

4. Click Save.

Note: Installing a new version of a package in your organization doesn’t affect the current default settings.

About the Partner WSDL
The Partner Web Services WSDL is used for client applications that are metadata-driven and dynamic in nature. It’s particularly—but
not exclusively—useful to Salesforce partners who are building client applications for multiple organizations.

As a loosely typed representation of the Salesforce data model that works with name-value pairs of field names and values instead of
specific data types, it can be used to access data within any organization. This WSDL is most appropriate for developers of clients that
can issue a query call to get information about an object before the client acts on the object. The partner WSDL document needs to be
downloaded and consumed only once per version of the API.

For more information about the Partner WSDL, see Using the Partner WSDL in SOAP API Developer Guide.

56

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.api.meta/api/sforce_api_partner.htm

Generate an Enterprise WSDL with Managed Packages

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
and Developer, Editions

USER PERMISSIONS

To download a WSDL:
• Customize Application

If you’re downloading an enterprise WSDL and you have managed packages installed in your
organization, you must take an extra step to select the version of each installed package to include
in the generated WSDL.

The enterprise WSDL is strongly typed, which means that it contains objects and fields with specific
data types, such as int and string.

A package version is a number that identifies the set of components uploaded in a package. The
version number has the format majorNumber.minorNumber.patchNumber (for example,
2.1.3). The major and minor numbers increase to a chosen value during every major release. The
patchNumber is generated and updated only for a patch release. Publishers can use package
versions to evolve the components in their managed packages gracefully by releasing subsequent
package versions without breaking existing customer integrations using the package. A subscriber
can select a package version for each installed managed package to allow their API client to continue
to function with specific, known behavior even when they install subsequent versions of a package.
Each package version can have variations in the composition of its objects and fields, so you must
select a specific version when you generate the strongly typed WSDL.

To download an enterprise WSDL when you have managed packages installed:

1. From Setup, enter API in the Quick Find box, then select API.

2. Click Generate Enterprise WSDL.

3. Select the Package Version for each of your installed managed packages. If you’re unsure which package version to select,
you should leave the default, which is the latest package version.

4. Click Generate.

5. Use the File menu in your browser to save the WSDL to your computer.

6. On your computer, import the local copy of the WSDL document into your development environment.

Note the following in your generated enterprise WSDL:

• Each of your managed package version selections is included in a comment at the top of the WSDL.

• The generated WSDL contains the objects and fields in your organization, including those available in the selected versions of each
installed package. If a field or object is added in a later package version, you must generate the enterprise WSDL with that package
version to work with the object or field in your API integration.

• The SOAP endpoint at the end of the WSDL contains a URL with a format of
serverName/services/Soap/c/api_version/ID where api_version is the version of the API, such as 52.0,

and ID encodes your package version selections when you communicate with Salesforce.

You can also select the default package versions for the enterprise WSDL without downloading a WSDL from the API page in Setup.
Default package versions for API calls provide fallback settings if package versions aren’t provided by an API call. Many API clients don’t
include package version information, so the default settings maintain existing behavior for these clients.

Work with Services Outside of Salesforce
You might want to update your Salesforce data when changes occur in another service. Likewise, you might also want to update the
data in a service outside of Salesforce based on changes to your Salesforce data. For example, you might want to send a mass email to
more contacts and leads than Salesforce allows. You can use an external mail service that allows users to build a recipient list of names
and email addresses using the contact and lead information in your Salesforce organization.

An app built on the Salesforce Platform can connect with a service outside of Salesforce in many ways. For example, you can:

57

API and Dynamic Apex Access in PackagesFirst-Generation Managed Packages

• create a custom link or custom formula field that passes information to an external service.

• use the Platform APIs to transfer data in and out of Salesforce.

• use an Apex class that contains a Web service method.

Warning: Don’t store usernames and passwords within any external service.

Provisioning a Service External to Salesforce
If your app links to an external service, users who install the app must be signed up to use the service. Provide access in one of two ways:

• Access by all active users in an organization with no real need to identify an individual

• Access on a per user basis where identification of the individual is important

The Salesforce service provides two globally unique IDs to support these options. The user ID identifies an individual and is unique across
all organizations. User IDs are never reused. Likewise, the organization ID uniquely identifies the organization.

Avoid using email addresses, company names, and Salesforce usernames when providing access to an external service. Usernames can
change over time and email addresses and company names can be duplicated.

If you’re providing access to an external service, we recommend the following:

• Use Single Sign-On (SSO) techniques to identify new users when they use your service.

• For each point of entry to your app, such as a custom link or web tab, include the user ID in the parameter string. Have your service
examine the user ID to verify that the user ID belongs to a known user. Include a session ID in the parameter string so that your
service can read back through the Lightning Platform API and validate that this user has an active session and is authenticated.

• Offer the external service for any known users. For new users, display an alternative page to collect the required information.

• Don’t store passwords for individual users. Besides the obvious security risks, many organizations reset passwords on a regular basis,
which requires the user to update the password on your system as well. We recommend designing your external service to use the
user ID and session ID to authenticate and identify users.

• If your application requires asynchronous updates after a user session has expired, dedicate a distinct administrator user license for
this.

Connected Apps
A connected app is a framework that enables an external application to integrate with Salesforce using APIs and standard protocols,
such as SAML, OAuth, and OpenID Connect. Connected apps use these protocols to authenticate, authorize, and provide single sign-on
(SSO) for external apps. The external apps that are integrated with Salesforce can run on the customer success platform, other platforms,
devices, or SaaS subscriptions. For example, when you log in to your Salesforce mobile app and see your data from your Salesforce org,
you’re using a connected app.

By capturing metadata about an external app, a connected app tells Salesforce which authentication protocol—SAML, OAuth, and
OpenID Connect—the external app uses, and where the external app runs. Salesforce can then grant the external app access to its data,
and attach policies that define access restrictions, such as when the app’s access expires. Salesforce can also audit connected app usage.

To learn more about how to use, configure, and manage connected apps, see the following topics in Salesforce Help:

• Connected App Use Cases

• Create a Connected App

• Edit a Connected App

• Manage Access to a Connected App

58

Connected AppsFirst-Generation Managed Packages

https://help.salesforce.com/articleView?id=connected_app_about.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_create.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_edit_parent.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_manage.htm&language=en_US

More Resources
Here are some additional resources to help you navigate connected apps:

• Salesforce Help: Connected Apps

• Salesforce Help: Authorize Apps with OAuth

• Trailhead: Build Integrations Using Connected Apps

Package and Test Your First-Generation Managed Package

Learn how to package, upload, and install a beta version of your first-generation managed package as part an iterative development
approach. After your beta is up and running, learn how to test, fix, extend, and uninstall the package.

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.
We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

Install a Managed Package

During the development and testing cycle, you might need to periodically install and uninstall packages before you install the next
beta. Follow these steps to install a package.

Install First-Generation Managed Packages Using Metadata API

You can install, upgrade, and uninstall managed packages using the Metadata API, instead of the user interface. Automating these
repeated tasks can help you can work more efficiently and speed up application development.

Component Availability After Deployment

Many components have an Is Deployed attribute that controls whether they’re available for end users. After installation, all
components are immediately available if they were available in the developer's organization.

Install Notifications for Unauthorized Managed Packages

When you distribute a managed package that AppExchange Partner Program hasn’t authorized, we notify customers during the
installation process. The notification is removed after the package is approved.

Resolve Apex Test Failures

Run Apex on Package Install/Upgrade

App developers can specify an Apex script to run automatically after a subscriber installs or upgrades a managed package. This script
makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization. For instance, you
can use the script to populate custom settings, create sample data, send an email to the installer, notify an external system, or kick
off a batch operation to populate a new field across a large set of data. For simplicity, you can only specify one post install script. It
must be an Apex class that is a member of the package.

Run Apex on Package Uninstall

App developers can specify an Apex script to run automatically after a subscriber uninstalls a managed package. This script makes
it possible to perform cleanup and notification tasks based on details of the subscriber’s organization. For simplicity, you can only
specify one uninstall script. It must be an Apex class that is a member of the package.

Uninstall a Managed Package

Uninstalling a managed package removes its components and data from the org. During the uninstall process, any customizations,
including custom fields or links, that you’ve made to the package are removed.

59

Package and Test Your First-Generation Managed PackageFirst-Generation Managed Packages

https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US
https://help.salesforce.com/articleView?id=remoteaccess_authenticate.htm&language=en_US
https://trailhead.salesforce.com/en/content/learn/trails/build-integrations-using-connected-apps
https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

Install a Managed Package
During the development and testing cycle, you might need to periodically install and uninstall packages before you install the next beta.
Follow these steps to install a package.

Pre-Installation
1. In a browser, type in the installation URL you received when you uploaded the package.

2. Enter your username and password for the Salesforce organization in which you want to install the package, and then click Log In.

3. If the package is password-protected, enter the password you received from the publisher.

Default Installation
Click Install. You’ll see a message that describes the progress and a confirmation message after the installation is complete.

Custom Installation
Follow these steps if you need to modify the default settings, as an administrator.

1. Choose one or more of these options, as appropriate.

• Click View Components. You see an overlay with a list of components in the package. For managed packages, the screen also
contains a list of connected apps (trusted applications that are granted access to a user's Salesforce data after the user and the
application are verified). To confirm that the components and any connected apps shown are acceptable, review the list and
then close the overlay.

Note: Some package items, such as validation rules, record types, or custom settings don’t appear in the Package
Components list but are included in the package and installed with the other items. If there are no items in the Package
Components list, it’s likely that the package contains only minor changes.

• If the package contains a remote site setting, you must approve access to websites outside of Salesforce. The dialog box lists all
the websites that the package communicates with. We recommend that a website uses SSL (secure sockets layer) for transmitting
data. After you verify that the websites are safe, select Yes, grant access to these third-party websites and click Continue,
or click Cancel to cancel the installation of the package.

Warning: By installing remote site settings, you’re allowing the package to transmit data to and from a third-party website.
Before using the package, contact the publisher to understand what data is transmitted and how it's used. If you have an
internal security contact, ask the contact to review the application so that you understand its impact before use.

• Click API Access. You see an overlay with a list of the API access settings that package components have been granted. Review
the settings to verify they’re acceptable, and then close the overlay to return to the installer screen.

• In Enterprise, Performance, Unlimited, and Developer Editions, choose one of the following security options.

Note: This option is visible only in specific types of installations. For example, in Group and Professional Editions, or if the
package doesn’t contain a custom object, Salesforce skips this option, which gives all users full access.

Install for Admins Only
Specifies the following settings on the installing administrator’s profile and any profile with the "Customize Application"
permission.

– Object permissions—Read, Create, Edit, Delete, View All, and Modify All enabled

– Field-level security—set to visible and editable for all fields

60

Install a Managed PackageFirst-Generation Managed Packages

– Apex classes—enabled

– Visualforce pages—enabled

– App settings—enabled

– Tab settings—determined by the package developer

– Page layout settings—determined by the package developer

– Record Type settings—determined by the package developer

After installation, if you have Enterprise, Performance, Unlimited, or Developer Edition, set the appropriate user and object
permissions on custom profiles as needed.

Install for All Users
Specifies the following settings on all internal custom profiles.

– Object permissions— Read, Create, Edit, and Delete enabled

– Field-level security—set to visible and editable for all fields

– Apex classes—enabled

– Visualforce pages—enabled

– App settings—enabled

– Tab settings—determined by the package developer

– Page layout settings—determined by the package developer

– Record Type settings—copied from admin profile

Note: The Customer Portal User, Customer Portal Manager, High Volume Customer Portal, Authenticated Website,
Partner User, and standard profiles receive no access.

Install for Specific Profiles...
Lets you determine package access for all custom profiles in your org. You can set each profile to have full access or no access
for the new package and all its components.

– Full Access—Specifies the following settings for each profile.

• Object permissionsRead, Create, Edit, and Delete enabled

• Field-level security—set to visible and editable for all fields

• Apex classes—enabled

• Visualforce pages—enabled

• App settings—enabled

• Tab settings—enabled

• Page layout settings—determined by the package developer

• Record Type settings—determined by the package developer

– No Access—Page layout and Record Type settings are determined by the package developer. All other settings are
hidden or disabled.

If the package developer has included settings for custom profiles, you can incorporate the settings of the publisher’s custom
profiles into your profiles without affecting your settings. Choose the name of the profile settings in the dropdown list next
to the profile that you’re applying them to. The current settings in that profile remain intact.

Alternatively, click Set All next to an access level to give this setting to all user profiles.

2. Click Install. You’ll see a message that describes the progress and a confirmation message after the installation is complete.

61

Install a Managed PackageFirst-Generation Managed Packages

Post-Installation Steps
If the package includes post-installation instructions, they’re displayed after the installation is completed. Review and follow the instructions
provided. In addition, before you deploy the package to your users, make any necessary changes for your implementation. Depending
on the contents of the package, some of the following customization steps are required.

• If the package includes permission sets, assign the included permission sets to your users who need them. In managed packages,
you can't edit permission sets that are included in the package, but subsequent upgrades happen automatically. If you clone a
permission set that comes with a managed package or create your own, you can edit the permission set, but subsequent upgrades
won't affect it.

• If you’re reinstalling a package and need to reimport the package data by using the export file that you received after uninstalling,
see Import Package Data.

• If you installed a managed package, click Manage Licenses to assign licenses to users.

Note: You can’t assign licenses in Lightning Experience. To assign a license, switch to Salesforce Classic.

• Configure components in the package as required.

Install First-Generation Managed Packages Using Metadata API
You can install, upgrade, and uninstall managed packages using the Metadata API, instead of the user interface. Automating these
repeated tasks can help you can work more efficiently and speed up application development.

To install, upgrade, or uninstall a package, use the standard Metadata API deploy() call with the InstalledPackage metadata
type. The following operations are supported.

• Deploying an InstalledPackage installs the package in the deploying organization.

• Deploying a newer version of a currently installed package upgrades the package.

• Deploying an InstalledPackage using a manifest called destructiveChanges.xml, instead of package.xml,
uninstalls it from the organization.

To specify whether all users, or only admins, can access the package you’re installing, use the securityType field on the
InstalledPackage metadata type. The default value is AllUsers. This field is available in API version 57.0 and later.

Note: InstalledPackage must be the only metadata type specified in the manifest file.

The following is a typical project manifest (package.xml) for installing a package. The manifest must not contain a fullName or
namespacePrefix element.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>*</members>
<name>InstalledPackage</name>

</types>
<version>28.0</version>

</Package>

The package is specified in a file called MyNamespace.installedPackage, where MyNamespace is the namespace prefix of
the package. The file must be in a directory called installedPackages, and its contents must have this format.

<?xml version="1.0" encoding="UTF-8"?>
<InstalledPackage xmlns="http://soap.sforce.com/2006/04/metadata">
<versionNumber>1.0</versionNumber>

62

Install First-Generation Managed Packages Using Metadata
API

First-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.distribution_reimport_package_data.htm&language=en_US

<password>optional_password</password>
<securityType>AdminsOnly</securityType>

</InstalledPackage>

The securityType field is optional. If it’s not specified, the default security type is AllUsers.

InstalledPackage in API version 43.0 and later must include the activateRSS field set to either of these values.

true
Keep the isActive state of any Remote Site Settings(RSS) or Content Security Policies(CSP) in the package.

false
Override the isActive state of any RSS or CSP in the package and set it to false.

The default value is false.

Note: Regardless of what activateRSS is set to, a retrieve of InstalledPackage always returns <activateRSS
xsi:nil=”true”/>. Therefore, before you deploy a package, inspect the information you’ve retrieved from
InstalledPackage and set activateRSS to the desired value.

To uninstall a package, deploy this destructiveChanges.xml manifest file in addition to the package.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>MyNamespace</members>
<name>InstalledPackage</name>
</types>

</Package>

Retrieving an InstalledPackage, using the retrieve() call creates an XML representation of the package installed in an org.
If the installed package has a password or security type specified, that information isn’t retrieved. Deploying the retrieved file in a different
org installs the package in that organization.

For more information on the deploy() and retrieve() commands, see the Metadata API Developer’s Guide.

Component Availability After Deployment
Many components have an Is Deployed attribute that controls whether they’re available for end users. After installation, all components
are immediately available if they were available in the developer's organization.

Installed packages are available to users in your organization with the appropriate permissions and page layout settings.

Install Notifications for Unauthorized Managed Packages
When you distribute a managed package that AppExchange Partner Program hasn’t authorized, we notify customers during the installation
process. The notification is removed after the package is approved.

63

Component Availability After DeploymentFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/

The notification appears when customers configure the package installation settings (1). Before customers install the package, they must
confirm that they understand that the package isn’t authorized for distribution (2).

The notification displays when a managed package:

• Has never been through security review or is under review

• Didn’t pass the security review

• Isn’t authorized by AppExchange Partner Program for another reason

If the AppExchange Partner Program approves the package, it’s authorized for distribution, and the notification is removed. When you
publish a new version of the package, it’s automatically authorized for distribution.

For information about the AppExchange Partner Program and its requirements, visit the Salesforce Partner Community.

Resolve Apex Test Failures
Package installs or upgrades may fail for not passing Apex test coverage. However, some of these failures can be ignored. For example,
a developer might write an Apex test that makes assumptions about a subscriber's data.

If your install fails due to an Apex test failure, check for the following:

• Make sure that you’re staging all necessary data required for your Apex test, instead of relying on subscriber data that exists.

• If a subscriber creates a validation rule, required field, or trigger on an object referenced by your package, your test might fail if it
performs DML on this object. If this object is created only for testing purposes and never at runtime, and the creation fails due to
these conflicts, you might be safe to ignore the error and continue the test. Otherwise, contact the customer and determine the
impact.

Run Apex on Package Install/Upgrade
App developers can specify an Apex script to run automatically after a subscriber installs or upgrades a managed package. This script
makes it possible to customize the package install or upgrade, based on details of the subscriber’s organization. For instance, you can
use the script to populate custom settings, create sample data, send an email to the installer, notify an external system, or kick off a batch
operation to populate a new field across a large set of data. For simplicity, you can only specify one post install script. It must be an Apex
class that is a member of the package.

The post install script is invoked after tests have been run, and is subject to default governor limits. It runs as a special system user that
represents your package, so all operations performed by the script appear to be done by your package. You can access this user by using
UserInfo. You can only see this user at runtime, not while running tests.

64

Resolve Apex Test FailuresFirst-Generation Managed Packages

https://partners.salesforce.com/s/education/general/Partner_Program

If the script fails, the install/upgrade is aborted. Any errors in the script are emailed to the user specified in the Notify on Apex Error
field of the package. If no user is specified, the install/upgrade details are unavailable.

The post install script has the following additional properties.

• It can initiate batch, scheduled, and future jobs.

• It can’t access Session IDs.

• It can only perform callouts using an async operation. The callout occurs after the script is run and the install is complete and
committed.

• It can’t call another Apex class in the package if that Apex class uses the with sharing keyword. This keyword can prevent the
package from successfully installing. To learn more, see the Apex Developer Guide.

Note: You can’t run a post install script in a new trial organization provisioned using Trialforce. The script only runs when a
subscriber installs your package in an existing organization.

How Does a Post Install Script Work?

A post install script is an Apex class that implements the InstallHandler interface.

Example of a Post Install Script

Specifying a Post Install Script

After you’ve created and tested the post install script, you can specify it in the Post Install Script lookup field on the Package Detail
page. In subsequent patch releases, you can change the contents of the script but not the Apex class.

How Does a Post Install Script Work?
A post install script is an Apex class that implements the InstallHandler interface.

This interface has a single method called onInstall that specifies the actions to be performed on installation.

global interface InstallHandler {
void onInstall(InstallContext context)

}

The onInstall method takes a context object as its argument, which provides the following information.

• The org ID of the organization in which the installation takes place.

• The user ID of the user who initiated the installation.

• The version number of the previously installed package (specified using the Version class). This is always a three-part number,
such as 1.2.0.

• Whether the installation is an upgrade

• Whether the installation is a push

The context argument is an object whose type is the InstallContext interface. This interface is automatically implemented by
the system. The following definition of the InstallContext interface shows the methods you can call on the context argument.

global interface InstallContext {
ID organizationId();
ID installerId();
Boolean isUpgrade();
Boolean isPush();
Version previousVersion();

}

65

Run Apex on Package Install/UpgradeFirst-Generation Managed Packages

Version Methods and Class

You can use the methods in the System.Version class to get the version of a managed package and to compare package versions.
A package version is a number that identifies the set of components in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3). The major and minor numbers increase to a chosen value
during every non-patch release. Major and minor number increases always use a patch number of 0.

The following are instance methods for the System.Version class.

DescriptionReturn TypeArgumentsMethod

Compares the current version with the specified
version and returns one of the following values:

IntegerSystem.Version versioncompareTo

• Zero if the current package version is equal
to the specified package version

• An Integer value greater than zero if the
current package version is greater than the
specified package version

• An Integer value less than zero if the
current package version is less than the
specified package version

If a two-part version is being compared to a
three-part version, the patch number is ignored
and the comparison is based only on the major
and minor numbers.

Returns the major package version of the calling
code.

Integermajor

Returns the minor package version of the
calling code.

Integerminor

Returns the patch package version of the calling
code or null if there’s no patch version.

Integerpatch

The System class contains two methods that you can use to specify conditional logic, so different package versions exhibit different
behavior.

• System.requestVersion: Returns a two-part version that contains the major and minor version numbers of a package.Using
this method, you can determine the version of an installed instance of your package from which the calling code is referencing your
package. Based on the version that the calling code has, you can customize the behavior of your package code.

• System.runAs(System.Version): Changes the current package version to the package version specified in the argument.

When a subscriber has installed multiple versions of your package and writes code that references Apex classes or triggers in your
package, they must select the version they’re referencing. You can execute different code paths in your package’s Apex code based on
the version setting of the calling Apex code making the reference. You can determine the calling code’s package version setting by
calling the System.requestVersion method in the package code.

Example of a Post Install Script
The following sample post install script performs these actions on package install/upgrade.

66

Run Apex on Package Install/UpgradeFirst-Generation Managed Packages

• If the previous version is null, that is, the package is being installed for the first time, the script:

– Creates a new Account called Newco and verifies that it was created.

– Creates a new instance of the custom object Survey, called Client Satisfaction Survey.

– Sends an email message to the subscriber confirming installation of the package.

• If the previous version is 1.0, the script creates a new instance of Survey called ”Upgrading from Version 1.0”.

• If the package is an upgrade, the script creates a new instance of Survey called ”Sample Survey during Upgrade”.

• If the upgrade is being pushed, the script creates a new instance of Survey called ”Sample Survey during Push”.

public class PostInstallClass implements InstallHandler {
global void onInstall(InstallContext context) {
if(context.previousVersion() == null) {
Account a = new Account(name='Newco');
insert(a);

Survey__c obj = new Survey__c(name='Client Satisfaction Survey');
insert obj;

User u = [Select Id, Email from User where Id =:context.installerID()];
String toAddress= u.Email;
String[] toAddresses = new String[]{toAddress};
Messaging.SingleEmailMessage mail =
new Messaging.SingleEmailMessage();

mail.setToAddresses(toAddresses);
mail.setReplyTo('support@package.dev');
mail.setSenderDisplayName('My Package Support');
mail.setSubject('Package install successful');
mail.setPlainTextBody('Thanks for installing the package.');
Messaging.sendEmail(new Messaging.Email[] { mail });
}

else
if(context.previousVersion().compareTo(new Version(1,0)) == 0) {
Survey__c obj = new Survey__c(name='Upgrading from Version 1.0');
insert(obj);
}

if(context.isUpgrade()) {
Survey__c obj = new Survey__c(name='Sample Survey during Upgrade');
insert obj;
}

if(context.isPush()) {
Survey__c obj = new Survey__c(name='Sample Survey during Push');
insert obj;
}

}
}

You can test a post install script using the new testInstall method of the Test class. This method takes the following arguments.

• A class that implements the InstallHandler interface.

• A Version object that specifies the version number of the existing package.

• An optional Boolean value that is true if the installation is a push. The default is false.

67

Run Apex on Package Install/UpgradeFirst-Generation Managed Packages

This sample shows how to test a post install script implemented in the PostInstallClass Apex class.

@isTest
static void testInstallScript() {
PostInstallClass postinstall = new PostInstallClass();
Test.testInstall(postinstall, null);
Test.testInstall(postinstall, new Version(1,0), true);
List<Account> a = [Select id, name from Account where name ='Newco'];
System.assertEquals(1, a.size(), 'Account not found');

}

Specifying a Post Install Script
After you’ve created and tested the post install script, you can specify it in the Post Install Script lookup field on the Package Detail
page. In subsequent patch releases, you can change the contents of the script but not the Apex class.

The class selection is also available via the Metadata API as Package.postInstallClass. This is represented in package.xml as
a <postInstallClass>foo</postInstallClass> element.

Run Apex on Package Uninstall
App developers can specify an Apex script to run automatically after a subscriber uninstalls a managed package. This script makes it
possible to perform cleanup and notification tasks based on details of the subscriber’s organization. For simplicity, you can only specify
one uninstall script. It must be an Apex class that is a member of the package.

The uninstall script is subject to default governor limits. It runs as a special system user that represents your package, so all operations
performed by the script appear to be done by your package. You can access this user by using UserInfo. You can only see this user at
runtime, not while running tests.

If the script fails, the uninstall continues but none of the changes performed by the script are committed. Any errors in the script are
emailed to the user specified in the Notify on Apex Error field of the package. If no user is specified, the uninstall details are unavailable.

The uninstall script has the following restrictions. You can’t use it to initiate batch, scheduled, and future jobs, to access Session IDs, or
to perform callouts.

How Does an Uninstall Script Work?

An uninstall script is an Apex class that implements the UninstallHandler interface. This interface has a single method called
onUninstall that specifies the actions to be performed on uninstall.

Example of an Uninstall Script

This sample uninstall script performs the following actions on package uninstall.

Specifying an Uninstall Script

After you’ve created and tested the uninstall script and included it as a member of your package, you can specify it in the Uninstall
Script lookup field on the Package Detail page.

68

Run Apex on Package UninstallFirst-Generation Managed Packages

How Does an Uninstall Script Work?
An uninstall script is an Apex class that implements the UninstallHandler interface. This interface has a single method called
onUninstall that specifies the actions to be performed on uninstall.

global interface UninstallHandler {
void onUninstall(UninstallContext context)

}

The onUninstall method takes a context object as its argument, which provides the following information.

• The org ID of the organization in which the uninstall takes place.

• The user ID of the user who initiated the uninstall.

The context argument is an object whose type is the UninstallContext interface. This interface is automatically implemented
by the system. The following definition of the UninstallContext interface shows the methods you can call on the context
argument.

global interface UninstallContext {
ID organizationId();
ID uninstallerId();

}

Example of an Uninstall Script
This sample uninstall script performs the following actions on package uninstall.

• Inserts an entry in the feed describing which user did the uninstall and in which organization

• Creates and sends an email message confirming the uninstall to that user

global class UninstallClass implements UninstallHandler {
global void onUninstall(UninstallContext ctx) {
FeedItem feedPost = new FeedItem();
feedPost.parentId = ctx.uninstallerID();
feedPost.body = 'Thank you for using our application!';
insert feedPost;

User u = [Select Id, Email from User where Id =:ctx.uninstallerID()];
String toAddress= u.Email;
String[] toAddresses = new String[] {toAddress};
Messaging.SingleEmailMessage mail = new Messaging.SingleEmailMessage();
mail.setToAddresses(toAddresses);
mail.setReplyTo('support@package.dev');
mail.setSenderDisplayName('My Package Support');
mail.setSubject('Package uninstall successful');
mail.setPlainTextBody('Thanks for uninstalling the package.');
Messaging.sendEmail(new Messaging.Email[] { mail });

}
}

You can test an uninstall script using the testUninstall method of the Test class. This method takes as its argument a class
that implements the UninstallHandler interface.

69

Run Apex on Package UninstallFirst-Generation Managed Packages

This sample shows how to test an uninstall script implemented in the UninstallClass Apex class.

@isTest
static void testUninstallScript() {
Id UninstallerId = UserInfo.getUserId();
List<FeedItem> feedPostsBefore =
[SELECT Id FROM FeedItem WHERE parentId=:UninstallerId AND CreatedDate=TODAY];

Test.testUninstall(new UninstallClass());
List<FeedItem> feedPostsAfter =
[SELECT Id FROM FeedItem WHERE parentId=:UninstallerId AND CreatedDate=TODAY];

System.assertEquals(feedPostsBefore.size() + 1, feedPostsAfter.size(),
'Post to uninstaller failed.');

}

Specifying an Uninstall Script
After you’ve created and tested the uninstall script and included it as a member of your package, you can specify it in the Uninstall
Script lookup field on the Package Detail page.

In subsequent patch releases, you can change the contents of the script but not the Apex class.

The class selection is also available via the Metadata API as Package.uninstallClass. This is represented in package.xml as an
<uninstallClass>foo</uninstallClass> element.

Uninstall a Managed Package
Uninstalling a managed package removes its components and data from the org. During the uninstall process, any customizations,
including custom fields or links, that you’ve made to the package are removed.

1. From Setup, enter Installed Packages in the Quick Find box, then select Installed Packages.

2. Click Uninstall next to the package that you want to remove.

3. Determine whether to save and export a copy of the package’s data, and then select the corresponding radio button.

4. Select Yes, I want to uninstall and click Uninstall.

When you uninstall packages, consider the following:

• If you’re uninstalling a package that includes a custom object, all components on that custom object are also deleted. Deleted items
include custom fields, validation rules, custom buttons, and links, workflow rules, and approval processes.

• You can’t uninstall a package whenever a component not included in the uninstall references any component in the package. For
example:

– When an installed package includes any component on a standard object that another component references, Salesforce prevents
you from uninstalling the package. An example is a package that includes a custom user field with a workflow rule that gets
triggered when the value of that field is a specific value. Uninstalling the package would prevent your workflow from working.

– When you’ve installed two unrelated packages that each include a custom object and one custom object component references
a component in the other, you can’t uninstall the package. An example is if you install an expense report app that includes a
custom user field and create a validation rule on another installed custom object that references that custom user field. However,
uninstalling the expense report app prevents the validation rule from working.

– When an installed folder contains components you added after installation, Salesforce prevents you from uninstalling the package.

– When an installed letterhead is used for an email template you added after installation, Salesforce prevents you from uninstalling
the package.

70

Uninstall a Managed PackageFirst-Generation Managed Packages

– When an installed package includes a custom field that’s referenced by Einstein Prediction Builder or Case Classification, Salesforce
prevents you from uninstalling the package. Before uninstalling the package, edit the prediction in Prediction Builder or Case
Classification so that it no longer references the custom field.

• You can’t uninstall a package that removes all active business and person account record types. Activate at least one other business
or person account record type, and try again.

• You can’t uninstall a package if a background job is updating a field added by the package, such as an update to a roll-up summary
field. Wait until the background job finishes, and try again.

Update Your First-Generation Managed Package

Your app is ready for an update. Learn how to fix small issues with patches and make major changes with upgrades.

Package Versions in First-Generation Managed Packages

A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3).

Create and Upload Patches in First-Generation Managed Packages

Patch versions are developed and maintained in a patch development org.

Work with Patch Versions

A patch version enables a developer to change the functionality of existing components in a managed package. Subscribers experience
no visible changes to the package. Patches are minor upgrades to a Managed - Released package and only used for fixing bugs
or other errors.

Versioning Apex Code

When subscribers install multiple versions of your package and write code that references Apex classes or triggers in your package,
they must specify the version that they’re referencing.

Apex Deprecation Effects for Subscribers

Explore how deprecation of an Apex method impacts subscribers that install your managed package.

Package Versions in First-Generation Managed Packages
A package version is a number that identifies the set of components uploaded in a package. The version number has the format
majorNumber.minorNumber.patchNumber (for example, 2.1.3).

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.
We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

Version numbers depend on the package release type, which identifies the way packages are distributed. There are two kinds:

Major Release
A major release denotes a Managed - Released package. During these releases, the major and minor numbers of a package
version increase to a chosen value.

Patch Release
A patch release is only for patch versions of a package. During these releases, the patch number of a package version increments.

The following table shows a sequence of version numbers for a series of uploads:

71

Update Your First-Generation Managed PackageFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

NotesVersion
Number

TypeUpload
Sequence

The firstManaged - Beta upload.1.0Managed - BetaFirst upload

A Managed - Released upload. The version number doesn’t change.1.0Managed -
Released

Second upload

Note the change of the minor release number for this Managed - Released
upload. If you’re uploading a new patch version, you can't change the patch
number.

1.1Managed -
Released

Third upload

The first> Managed - Beta upload for version number 2.0. Note the major
version number update.

2.0Managed - BetaFourth upload

A Managed - Released upload. The version number doesn’t change.2.0Managed -
Released

Fifth upload

When an existing subscriber installs a new package version, there’s still only one instance of each component in the package, but the
components can emulate older versions. For example, a subscriber can use a managed package that contains an Apex class. If the
publisher decides to deprecate a method in the Apex class and release a new package version, the subscriber still sees only one instance
of the Apex class after installing the new version. However, this Apex class can still emulate the previous version for any code that
references the deprecated method in the older version.

Package developers can use conditional logic in Apex classes and triggers to exhibit different behavior for different versions. Conditional
logic lets the package developer support existing behavior in classes and triggers in previous package versions while evolving the code.

When you’re developing client applications using the API, you can specify the version of each package that you use in your integrations.

Create and Upload Patches in First-Generation Managed Packages

EDITIONS

Available in: Developer
Edition

USER PERMISSIONS

To push an upgrade or
create a patch development
org
• Upload AppExchange

Packages

Patch versions are developed and maintained in a patch development org.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

To create a patch version:

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Click the name of your managed package.

3. On the Patch Organization tab, click New.

4. Select the package version that you want to create a patch for in the Patching Major Release
dropdown. The release type must be Managed - Released.

5. Enter a username for a login to your patch org.

6. Enter an email address associated with your login.

7. Click Save.

72

Create and Upload Patches in First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

Note: If you ever lose your login information, click Reset on the package detail page under Patch Development Organizations
to reset the login to your patch development org.

The name of the patch development org’s My Domain name is randomly generated.

After you receive an email that Salesforce has created your patch development org, you can click Login to begin developing your patch
version.

Development in a patch development org is restricted.

• You can’t add package components.

• You can’t delete existing package components.

• API and dynamic Apex access controls can’t change for the package.

• No deprecation of any Apex code.

• You can’t add new Apex class relationships, such as extends.

• You can’t add Apex access modifiers, such as virtual or global.

• You can’t add new web services.

• You can’t add feature or component dependencies.

You can remove a feature or component dependency from a patch, but after the dependency is removed and the patch version is
uploaded, you can't reinstate that dependency in a new patch version. To reinstate the dependency, create a new major or minor
package version.

When you finish developing your patch, upload it through the UI in your patch development org. You can also upload a package using
the Tooling API. For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.

Note: When you upload a new package in your patch development org, the upload process is asynchronous. Because the time
to process the request varies, the package isn’t available immediately after the upload. While waiting, you can run SOQL queries
on the PackageUploadRequest status field to monitor the request.

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Click the name of the package.

3. On the Upload Package page, click Upload.

4. Enter a Version Name. As a best practice, it's useful to have a short description and the date.

5. Notice that the Version Number has had its patchNumber incremented.

6. For managed packages, select a Release Type:

• Choose Managed - Released to upload an upgradeable version. After upload, some attributes of the metadata components are
locked.

• Choose Managed - Beta if you want to upload a version of your package to a small sampling of your audience for testing purposes.
You can still change the components and upload other beta versions.

Note: Beta packages can only be installed in Developer Edition,scratch, or sandbox orgs, and thus can't be pushed to
customer orgs.

7. Change the Description, if necessary.

8. (Optional) Enter and confirm a password to share the package privately with anyone who has the password. Don't enter a password
if you want to make the package available to anyone on AppExchange and share your package publicly.

9. Salesforce automatically selects the requirements it finds. In addition, select any other required components from the Package
Requirements and Object Requirements sections to notify installers of any requirements for this package.

73

Create and Upload Patches in First-Generation Managed
Packages

First-Generation Managed Packages

10. Click Upload.

To distribute your patch, you can either share the upload link or schedule a push upgrade.

Work with Patch Versions
A patch version enables a developer to change the functionality of existing components in a managed package. Subscribers experience
no visible changes to the package. Patches are minor upgrades to a Managed - Released package and only used for fixing bugs or
other errors.

Patch versions can only be created for Major Releases. Subscribers can receive patch upgrades just like any other package version.
However, you can also distribute a patch by using push upgrades.

When you create a patch, the patchNumber on a package's Version Number increments by one. For example, suppose that
you release a package with the version number 2.0. When you release a patch, the number changes to 2.0.1. This value can't be changed
manually.

Patch Development Organizations
Every patch is developed in a package version, which is the organization where patch versions are developed, maintained, and uploaded.
To start developing a patch, create a package version. See Create and Upload Patches in First-Generation Managed Packages on page
72. Patch development organizations are necessary to permit developers to change existing components without causing incompatibilities
between existing subscriber installations.

A package version can upload an unlimited number of patches. Only one package version can exist per major release of your package.
A package version for a package with a version number of 4.2 can only work on patches such as 4.2.1, 4.2.2, 4.2.3, and so on. It doesn’t
work on version 4.1 or 4.3.

Integrating Patch Development
The following diagram illustrates the workflow of creating a patch and integrating any work into future versions:After version 2.0 is
released, the developer creates a patch. The package version number in the package version starts at 2.0.1. As the main development
organization moves towards a released version of 3.0, a second patch is created for 2.0.2. Finally, the developer merges the changes
between the main development organization, and the package version, and releases the package as version 3.0.

74

Work with Patch VersionsFirst-Generation Managed Packages

Patch Development Workflow

Git source control is the best way to monitor your package versions. To learn about Git, complete the Git and GitHub Basics Trailhead
module.

Version control is integrated into Visual Studio Code. See Salesforce Extensions for Visual Studio Code and Version Control in Visual Studio
Code for details.

Versioning Apex Code
When subscribers install multiple versions of your package and write code that references Apex classes or triggers in your package, they
must specify the version that they’re referencing.

Within the Apex code that is being referenced in your package, you can conditionally execute different code paths based on the version
setting of the calling Apex code that is making the reference. The package version setting of the calling code can be determined within
the package code by calling the System.requestVersion method. In this way, package developers can determine the request
context and specify different behavior for different versions of the package.

The following sample shows different behavior in a trigger for different package versions:

trigger oppValidation on Opportunity (before insert, before update) {

for (Opportunity o : Trigger.new){

// Add a new validation to the package
// Applies to versions of the managed package greater than 1.0
if (System.requestVersion().compareTo(new Version(1,0)) > 0) {

75

Versioning Apex CodeFirst-Generation Managed Packages

https://trailhead.salesforce.com/en/content/learn/modules/git-and-git-hub-basics
https://forcedotcom.github.io/salesforcedx-vscode/
https://code.visualstudio.com/docs/editor/versioncontrol
https://code.visualstudio.com/docs/editor/versioncontrol

if (o.Probability >= 50 && o.Description == null) {
o.addError('All deals over 50% require a description');

}
}

// Validation applies to all versions of the managed package.
if (o.IsWon == true && o.LeadSource == null) {

o.addError('A lead source must be provided for all Closed Won deals');
}

}
}

To compare different versions of your Apex classes, click the Class Definition tab when viewing the class details.

For more information about the System.requestVersion method, see the Apex Developer Guide.

Apex Deprecation Effects for Subscribers
Explore how deprecation of an Apex method impacts subscribers that install your managed package.

The table shows a typical sequence of actions by a package developer in the first column and actions by a subscriber in the second
column. Each row in the table denotes either a package developer or subscriber action.

NotesSubscriber ActionPackage Developer Action

Create a global Apex class,
PackageDevClass, containing a global
method m1.

Upload as Managed - Released version 1.0 of a
package that contains PackageDevClass.

The Version Number for
the package is 1.0. The First

Install version 1.0 of the package.

Installed Version
Number is 1.0.

Create an Apex class, SubscriberClass,
that references m1 in PackageDevClass.

Deprecate m1 and create a new method, m2.

Upload as Managed - Released version 2.0 of the
package.

The Version Number for
the package is 2.0. The First

Install version 2.0 of the package.

Installed Version
Number is still 1.0.
SubscriberClass still
references version 1.0 of the
package and continues to
function, as before.

76

Apex Deprecation Effects for SubscribersFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_methods_system_version.htm

NotesSubscriber ActionPackage Developer Action

Edit the version settings for
SubscriberClass to reference version 2.0
of the package. Save the class. Note an error
message indicating that m1 can’t be referenced
in version 2.0 of the package.

Change SubscriberClass to reference
m2 instead of m1. Successfully save the class.

Publish Upgrades to First-Generation Managed Packages

USER PERMISSIONS

To configure namespace
settings:
• Customize Application

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

As a publisher, first ensure that your app is upgradeable by converting it to a managed package.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

Any changes you make to the components in a managed package are automatically included in
subsequent uploads of that package, with one exception. When you upgrade a package, changes
to the API access are ignored even if the developer specified them. These changes are ignored so
that the administrator installing the upgrade has full control. Installers must carefully examine the
changes in package access in each upgrade during installation and note all acceptable changes.
Then, because those changes are ignored, the admin must manually apply any acceptable changes
after installing an upgrade.

1. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

2. Select the package from the list of available packages.

3. View the list of package components. Changes you have made to components in this package are automatically included in this
list. If the changes reference additional components, those components are automatically included as well. To add new components,
click Add to add them to the package manually.

4. Click Upload and upload it as usual.

After you upload a new version of your Managed - Released package, you can click Deprecate so installers can’t install an older
version. Deprecation prevents new installations of older versions without affecting existing installations.

You can’t deprecate the most recent version of a managed package upload.

5. When you receive an email with the link to the upload on AppExchange, notify your installed users that the new version is ready.
To distribute this information, use the list of installed users from the License Management Application (LMA). The License Management
Application (LMA) automatically stores the version number that your installers have in their organizations.

Plan the Release of First-Generation Managed Packages

Releasing a managed package is similar to releasing any other program in software development.

Remove Components from First-Generation Managed Packages

Remove metadata components such as Apex classes that you no longer want in your first-generation managed packages.

77

Publish Upgrades to First-Generation Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

Delete Components from First-Generation Managed Packages

After you've uploaded a Managed - Released first-generation managed package, you may find that a component needs to be deleted
from your packaging org.

Modifying Custom Fields after a Package Is Released

The following changes are allowed to custom fields in a package, after it’s released.

Manage Versions of First-Generation Managed Packages

After you upload a package to AppExchange, you can still manage it from the Package Manager page.

View Unused Components in a Managed Package

View components no longer being used in the current version of a package.

Push Package Upgrades to Subscribers

A push upgrade is a method of automatically upgrading your customers to a newer version of your package. This feature can be
used to ensure that all your customers are on the same or latest version of your package. You can push an upgrade to any number
of organizations that have installed your managed package.

Plan the Release of First-Generation Managed Packages
Releasing a managed package is similar to releasing any other program in software development.

Note: Building a new app? Have you considered using second-generation managed packages? Flexible versioning and the ability
to share a namespace across packages are just two reasons why developers love creating second-generation managed packages.
We think you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages, and Comparison of First-
and Second-Generation Managed Packages.

After you release a package by publishing it on AppExchange, anyone can install it. So, plan your release carefully. Review the states
defined in the following table to familiarize yourself with the release process. Salesforce automatically applies the appropriate state to
your package and components depending on the upload settings you choose and where it is in the release process.

DescriptionState

The package or component was created in the current Salesforce org and is managed,
but it isn’t released because of one of these reasons:

Managed - Beta

• It hasn’t been uploaded.

• It has been uploaded with Managed - Beta option selected. This option prevents
it from being published, publicly available on AppExchange. The developer can still
edit any component but the installer isn’t able to depending on which components
were packaged.

Don’t install a Managed - Beta package over a Managed - Released package. If you do,
the package is no longer upgradeable and your only option is to uninstall and reinstall
it.

The package or component was created in the current Salesforce org and is managed.
It’s also uploaded with the Managed - Released option selected, indicating that

 Managed - Released

it can be published on AppExchange and is publicly available. After you’ve moved a
package to this state, some properties of the components can’t be editable.

This type of release is considered a major release.

78

Plan the Release of First-Generation Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

DescriptionState

If you must provide a minor upgrade to a managed package, consider creating a patch
instead of a new major release. A patch enables a developer to change the functionality

Patch

of existing components in a managed package. Subscribers experience no visible changes
to the package.

This type of release is considered a patch release.

The package or component was installed from another Salesforce org but is managed. Managed - Installed

The package hasn’t been converted into a managed package.Unmanaged (Legacy)

A developer can refine the functionality in a managed package over time, uploading and releasing new versions as the requirements
evolve. Updates can involve redesigning some of the components in the managed package. Developers can delete some, but not all,
types of components in a Managed - Released package when upgrading it.

Remove Components from First-Generation Managed Packages
Remove metadata components such as Apex classes that you no longer want in your first-generation managed packages.

After a managed package has been promoted to the Managed-Released state, only certain components can be removed. To confirm
whether a specific component can be removed, see Components Available in Managed Packages in the Second-Generation Managed
Packaging Developer Guide.

Impact of Component Removal in Subscriber Orgs

During package upgrade only certain component types are hard deleted and removed from the subscriber org. Most metadata components
that were removed in a package version, will remain in the subscriber org after package upgrade, and marked as deprecated. When a
package is upgraded in the subscriber org, the Setup Audit Trail logs which components were removed. Admins of a subscriber org can
delete deprecated metadata.

To enable component deletion in your packaging org, log a support case in the Salesforce Partner Community.

Before you remove a component, ensure that there aren’t any dependencies on the metadata you plan to remove. If any component
in the package depends on or references the component you're removing, the package version creation operation fails. After you remove
a component or field, you can't access the component, or any customizations that depend on the removed component.

When you delete a component, you also permanently delete the data that exists in that component. Delete tracked history data is also
deleted, and integrations that rely on the component, such as assignment or escalation rules, are changed. After you delete a component
in a managed package, you can’t restore it or create another component with the same name.

Note: In a managed package, the API names of fields must be unique and can’t be reused even after you delete the component.
This restriction prevents conflicts during package installation and upgrade.

Data and metadata are never deleted in a subscriber org without specific action by the customer. When a subscriber upgrades to the
new package version, the deleted components are still available in the subscriber’s org. The components are displayed in the Unused
Components section of the Package Details page. This section ensures that subscribers have the opportunity to export data and modify
custom integrations involving those components before explicitly deleting them. For example, before deleting custom objects or fields,
customers can preserve a record of their data from Setup by entering Data Export in the Quick Find box and then selecting Data
Export.

Note: Educate your customers about the potential impact of deleted components. Consider listing all custom components that
you’ve deleted and specifying any actions needed in the Release Notes for your upgraded package.

79

Remove Components from First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm
https://partners.salesforce.com

These restrictions apply when deleting managed components.

• If a component is referenced by any other metadata, such as workflow rules, validation rules, or Apex classes, you can’t delete it.

• You can’t delete a custom object if it includes Apex Sharing Reason, Apex Sharing Recalculation, Related Lookup Filter, Compact
Layout, or Action.

• Salesforce doesn’t recommend deleting a custom field that is referenced by a custom report type in the same package. This type of
deletion causes an error when installing the upgraded package.

• When you delete a field that is used for bucketing or grouping in a custom report type that is part of a managed package, you receive
an error message.

• When you remove a connected app that is a component of a package, the app remains available until you update the package with
a new version. But if you delete the connected app, it’s permanently deleted. Any version of the package that contains the deleted
connected app is invalidated and can’t be installed. You can update a version of the package that doesn’t contain the connected
app as a component. Never delete a connected app that Salesforce distributes, such as the Salesforce app.

You can delete managed components either declaratively from the user interface or programmatically using Metadata API. With Metadata
API, specify the components that you want to delete in a destructiveChanges.xml manifest file and then use the standard
deploy() call. The process is identical to deleting components that aren’t managed. For more information, see the Metadata API
Developer Guide .

Removing Public Apex Classes and Public Visualforce Components
Because the behavior of managed package components differs from public Apex classes and public Visualforce components, you use
a two-stage process to delete Visualforce pages, global Visualforce components, and global Lightning components from a managed
package. When you upgrade a package in a subscriber org, the Visualforce pages, global Visualforce components, and Lightning
components that you deleted aren’t removed. Although a Delete button or link is available to org administrators, many orgs continue
using the obsolete pages and components. However, public Apex classes and public Visualforce components are deleted as part of the
upgrade process. If you delete pages and components without performing this two-stage procedure, Salesforce can’t warn you when
later deletions of public classes and components break your subscribers’ obsolete pages and components.

If you’re deleting these types of components, perform this two-stage process in the order presented.

• A Visualforce page or global Visualforce component that refers to or uses public Apex classes or public Visualforce components–

– An Aura component with global access

– A Lightning web component with an isExposed value of true

1. Stage one: Remove references.

i. Edit the global component that you want to delete.

– For Visualforce, edit your Visualforce page or global Visualforce component to remove all references to public Apex
classes or public Visualforce components.

– For Lightning components, edit the global Lightning component to remove all references to other Lightning components.

ii. Upload your new package version.

iii. Push the stage-one upgrade to your subscribers.

2. Stage two: Delete your obsolete pages or components.

i. Delete your Visualforce page, global Visualforce component, or global Lightning component.

ii. Optionally, delete other related components and classes.

iii. Upload your new package version.

iv. Push the stage-two upgrade to your subscribers.

80

Remove Components from First-Generation Managed
Packages

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/

Delete Components from First-Generation Managed Packages
After you've uploaded a Managed - Released first-generation managed package, you may find that a component needs to be deleted
from your packaging org.

One of the following situations may occur:

• The component, after it’s added to a package, can't be deleted.

• The component can be deleted, but can only be undeleted from the Deleted Package Components page.

• The component can be deleted, but can be undeleted from either the Deleted Package Components page or through the Recycle
Bin

After a package is uploaded with a component marked for deletion, the component is deleted forever.

Warning: When a component is deleted, its Name remains within Salesforce, and you can’t create a new component that uses
the deleted component’s name. The Deleted Package Components page lists the names that can no longer be used.

To access the Deleted Package Components page, from Setup, enter Package Manager in the Quick Find box, then select
Package Manager. Select the package that the component was uploaded to, and then click View Deleted Components. You can
retrieve components from the Recycle Bin and Deleted Package Components page any time before uploading a new version of the
package. To do this, click Undelete next to the component.

You can retrieve these types of components.

• Apex classes and triggers that don't have global access.

• Visualforce components with public access. (If the ability to remove components has been enabled for your packaging org then
these Visualforce components can’t be undeleted. As a result, they don’t show up in the Recycle Bin or the Deleted Package
Components page after they’ve been deleted.)

• Protected components, including:

– Custom labels

– Custom links (for Home page only)

– Custom metadata types

– Custom permissions

– Custom settings

– Workflow alerts

– Workflow field updates

– Workflow outbound messages

– Workflow tasks

– Workflow flow triggers

The pilot program for flow trigger workflow actions is closed. If you've already enabled the pilot in your org, you can continue
to create and edit flow trigger workflow actions. If you didn't enable the pilot in your org, use Flow Builder to create a
record-triggered flow, or use Process Builder to launch a flow from a process.

• Data components, such as Documents, Dashboards, and Reports. These components are the only types that can also be undeleted
from the Recycle Bin.

You can retrieve components from the Recycle Bin and Deleted Package Components page any time before uploading a new version
of the package. To do this, click Undelete next to the component.

The Deleted Components displays the following information (in alphabetical order):

81

Delete Components from First-Generation Managed
Packages

First-Generation Managed Packages

DescriptionAttribute

If the Managed - Released package hasn't been uploaded with
the component deleted, this contains an Undelete link that allows
you to retrieve the component.

Action

Displays the version number of the package in which a component
exists.

Available in Versions

Displays the name of the component.Name

Displays the name of the parent object a component is associated
with. For example, a custom object is the parent of a custom field.

Parent Object

Displays the type of the component.Type

Modifying Custom Fields after a Package Is Released

EDITIONS

Available in: Developer
Edition

The following changes are allowed to custom fields in a package, after it’s released.

• The length of a text field can be increased or decreased.

• The number of digits to the left or right of the decimal point in a number field can be increased
or decreased.

• A required field can be made non-required and vice versa. If a default value was required for a
field, that restriction can be removed and vice versa.

Manage Versions of First-Generation Managed Packages

USER PERMISSIONS

To upload packages:
• Upload AppExchange

Packages

After you upload a package to AppExchange, you can still manage it from the Package Manager
page.

Note: Building a new app? Have you considered using second-generation managed
packages? Flexible versioning and the ability to share a namespace across packages are just
two reasons why developers love creating second-generation managed packages. We think
you’d love it, too. To learn more, see: Why Switch to Second-Generation Managed Packages,
and Comparison of First- and Second-Generation Managed Packages.

To manage your versions:

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. Select the package that contains the app or components you uploaded.

3. Select the version number listed in the Versions tab.

• To change the password option, click Change Password link.

• To prevent new installations of this package while allowing existing installations to continue operating, click Deprecate.

Note: You can’t deprecate the most recent version of a managed package.

• To make a deprecated version available for installation again, click Undeprecate.

82

Modifying Custom Fields after a Package Is ReleasedFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/why_switch_2GP.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_dev2gp_comparison.htm

View Unused Components in a Managed Package

EDITIONS

Available in: Salesforce
Classic

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions

View components no longer being used in the current version of a package.

Any component shown here that’s part of a managed package is safe to delete unless you’ve used
it in custom integrations. After you've deleted an unused component, it appears in this list for 15
days. During that time, you can either undelete it to restore the component and all data stored in
it, or delete the component permanently. When you undelete a custom field, some properties on
the field will be lost or changed. After 15 days, the field and its data are permanently deleted.

Note: Before deleting a custom field, you can keep a record of its data. From Setup, enter
Data Export in the Quick Find box, then select Data Export.

The following component information is displayed (in alphabetical order):

DescriptionAttribute

Can be one of two options:Action

• Undelete

• Delete

Displays the name of the component.Name

Displays the name of the parent object a component is associated
with. For example, a custom object is the parent of a custom field.

Parent Object

Displays the type of the component.Type

Push Package Upgrades to Subscribers
A push upgrade is a method of automatically upgrading your customers to a newer version of your package. This feature can be used
to ensure that all your customers are on the same or latest version of your package. You can push an upgrade to any number of
organizations that have installed your managed package.

A package subscriber doesn’t need to do anything to receive the push upgrade. The only indication a subscriber receives after a successful
push upgrade is that the package’s Version Number on the Package Detail page has a higher value. The developer initiating the
push resolves upgrades that fail.

Use the Push Upgrade Exclusion List to exclude specific subscriber orgs from a push upgrade. You can specify up to 500 comma-separated
org IDs.

Push upgrades minimize the potential risks and support costs of having multiple subscribers running different versions of your app. You
can also automate many post-upgrade configuration steps, further simplifying the upgrade process for your customers.

The push upgrade feature is only available to first- and second-generation managed packages that have passed the AppExchange
security review. To enable push upgrades for your managed package, log a support case in the Salesforce Partner Community. For details
on the security review process, see Pass the AppExchange Security Review in the ISVforce Guide.

Push Upgrades

Push Upgrade Best Practices

Push Upgrade is one of the most powerful features we provide to our partners. Pushing an upgrade without proper planning and
preparation can result in significant customer satisfaction issues. Here are some best practices to consider.

83

View Unused Components in a Managed PackageFirst-Generation Managed Packages

https://partners.salesforce.com/
https://developer.salesforce.com/docs/atlas.en-us.248.0.packagingGuide.meta/packagingGuide/security_review_guidelines.htm

Assign Access to New and Changed Features in First- and Second-Generation Managed Packages

Determine how to provide existing non-admin users access to new and changed features. By default, any new components included
in the push upgrade package version are assigned only to admins.

Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed Packages

Automate the assignment of new components to existing users of a package.

Scheduling Push Upgrades

After you’ve created an updated version of your package, you can automatically deploy it to customers using a push upgrade.

Push Upgrades
Overview of Push Upgrade Steps

• Upgrade your managed package installed in a customer organization from version X to version Y

• Select one, many, or all customer organizations to upgrade and select a particular version to upgrade to

• Schedule the upgrade to start at a particular date and time

• View progress of upgrades, abort upgrades in progress, or view the result of a push upgrade

• In conjunction with push, you can use a post-install Apex script to automate post-upgrade configurations that your customers have
previously performed manually

Warning: When you push an upgrade, you’re making changes to a subscriber’s org without explicit consent. Therefore, it’s
important to plan ahead and exercise caution. You can also exclude specific subscriber orgs from a push upgrade by entering the
org IDs, separated by a comma, in the Push Upgrade Exclusion List.

Pushing a major upgrade entails a higher degree of risk as it can impact existing functionality in a subscriber’s organization. This is because
new components in the upgraded package might not be available to existing users of the package, or could overwrite users’ customizations.
As the app developer, it’s your responsibility to protect users from any adverse impact due to upgrading. We strongly recommend you
consider all potential consequences of the upgrade and take appropriate steps to prevent any problems.

When pushing a major upgrade, we recommend that you divide changes in your package into two categories:

1. Enhancements to existing features that users already have access to—Use a post install Apex script to automatically assign the
relevant components to existing users. This ensures all current users of the package can continue using it without explicit action by
administrators.

2. New features you’re introducing—Don’t use a post install Apex script to auto-assign components. This ensures your subscribers
have the opportunity to decide if and when to use the new features.

Here are some additional guidelines to keep in mind when planning a push upgrade.

• Avoid changes to validation rules, formula fields, and errors thrown from Apex triggers, as they may negatively impact subscribers’
integrations.

• Don’t make visible changes to a package in a patch. This is because other than a change in the package version number, subscribers
aren't notified of push upgrades.

• Test your upgraded package in multiple environments, replicating all relevant features of your customers’ organizations, including
editions, customizations, other installed packages, and permission sets.

• Schedule push upgrades at your customers’ off-peak hours and outside of Salesforce’s major release windows, to minimize potential
subscriber impact.

• Notify your subscribers in advance about the timing of the upgrade, its potential consequences, and any steps they need to take.

84

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

Push Upgrade Best Practices
Push Upgrade is one of the most powerful features we provide to our partners. Pushing an upgrade without proper planning and
preparation can result in significant customer satisfaction issues. Here are some best practices to consider.

Plan, Test, and Communicate

• Share an upgrade timeline plan with your customers so they know when you’ll upgrade, and how often.

• Plan when you want to push upgrades to your customers’ orgs. Keep in mind that most customers don’t want changes around their
month-end, quarter-end, and year-end or audit cycles. Do your customers have other critical time periods when they don’t want
any changes to their org? For example, there might be certain times when they don’t have staff available to verify changes or perform
any required post-installation steps.

• Schedule push upgrades during your customers’ off-peak hours, such as late evening and night. Have you considered time zone
issues? Do you have customers outside the United States who have different off-peak hours? You can schedule push upgrades to
any number of customer organizations at a time. Consider grouping organizations by time zone, if business hours vary widely across
your customer base.

• Don’t schedule push upgrades close to Salesforce-planned maintenance windows. In most cases, it might be better to wait 3-4
weeks after a major Salesforce release before you push major upgrades.

• Test, test, and test! Since you’re pushing changes to the organization instead of the customer pulling in changes, there’s a higher
bar to ensure the new version of your app works well in all customer configurations.

Stagger Your Push Upgrades

• Don’t push changes to all customers at once. It’s important to ensure that you have sufficient resources to handle support cases if
there are issues. Also, it’s important that you discover possible issues before your entire customer base is affected.

• Push to your own test organizations first to confirm that the push happens seamlessly. Log in to your test organization after the push
upgrade and test to see that everything works as expected.

• When applicable, push to the sandbox organizations of your customers first before pushing to their production organizations. Give
them a week or more to test, validate, and fix in the sandbox environment before you push to their production organizations.

• Push upgrades to small batches of customer production organizations initially. For example, if you have 1,000 customers, push
upgrades to 50 or 100 customers at a time, at least the first few times. After you have confidence in the results, you can upgrade
customers in larger batches.

Focus on Customer Trust

• You’re responsible for ensuring that your customers’ organizations aren’t adversely affected by your upgrade. Avoid making changes
to the package, such as changes to validation rules or formula fields, that might break external integrations made by the customer.
If for some reason you do, test and communicate well in advance. Please keep in mind that you can impact customer data, not just
metadata, by pushing an upgrade that has bugs.

• Write an Apex test on install to do basic sanity testing to confirm that the upgraded app works as expected.

• If you’re enhancing an existing feature, use a post-install script to automatically assign new components to existing users using
permission sets.

• If you’re adding a new feature, don’t auto-assign the feature to existing users. Communicate and work with the admins of the
customer org so they can determine who should have access to the new feature, and the timing of the rollout.

85

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

Assign Access to New and Changed Features in First- and Second-Generation
Managed Packages
Determine how to provide existing non-admin users access to new and changed features. By default, any new components included
in the push upgrade package version are assigned only to admins.

We recommend you:If the push upgrade includes:

Notify admins about the changes the upgrade introduces, and ask
them to assign permissions to all users of the package.

This approach allows admins to choose when to make the new
features available.

New features

Include a post-install script in the package that assigns permissions
to the new components or new fields automatically.

This approach ensures that current users of the package can
continue using features without interruption.

Enhancements to existing features

Note: Post-install scripts aren’t available to unlocked
packages.

Sample Post Install Script for a Push Upgrade for First- and Second-Generation
Managed Packages
Automate the assignment of new components to existing users of a package.

Note: Post-install scripts can be used with first and second-generation managed packages only.

For more information on writing a post-install Apex script, see Run Apex on Package Install/Upgrade on page 64.

In this sample script, the package upgrade contains new Visualforce pages and a new permission set that grants access to those pages.
The script performs the following actions.

• Gets the Id of the Visualforce pages in the old version of the package

• Gets the permission sets that have access to those pages

• Gets the list of profiles associated with these permission sets

• Gets the list of users who have those profiles assigned

• Assigns the permission set in the new package to those users

global class PostInstallClass implements InstallHandler {
global void onInstall(InstallContext context) {

//Get the Id of the Visualforce pages
List<ApexPage> pagesList = [SELECT Id FROM ApexPage WHERE NamespacePrefix =

'TestPackage' AND Name = 'vfpage1'];

//Get the permission sets that have access to those pages
List<SetupEntityAccess> setupEntityAccessList = [SELECT Id,

ParentId, SetupEntityId, SetupEntityType FROM SetupEntityAccess
WHERE SetupEntityId IN :pagesList];

86

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

Set<ID> PermissionSetList = new Set<ID> ();

for (SetupEntityAccess sea : setupEntityAccessList) {
PermissionSetList.add(sea.ParentId);

}
List<PermissionSet> PermissionSetWithProfileIdList =

[SELECT id, Name, IsOwnedByProfile, Profile.Name,
ProfileId FROM PermissionSet WHERE IsOwnedByProfile = true
AND Id IN :PermissionSetList];

//Get the list of profiles associated with those permission sets
Set<ID> ProfileList = new Set<ID> ();
for (PermissionSet per : PermissionSetWithProfileIdList) {

ProfileList.add(per.ProfileId);
}

//Get the list of users who have those profiles assigned
List<User> UserList = [SELECT id FROM User where ProfileId IN :ProfileList];

//Assign the permission set in the new package to those users
List<PermissionSet> PermissionSetToAssignList = [SELECT id, Name

FROM PermissionSet WHERE Name='TestPermSet' AND
NamespacePrefix = 'TestPackage'];

PermissionSet PermissionSetToAssign = PermissionSetToAssignList[0];
List<PermissionSetAssignment> PermissionSetAssignmentList = new

List<PermissionSetAssignment>();
for (User us : UserList) {

PermissionSetAssignment psa = new PermissionSetAssignment();
psa.PermissionSetId = PermissionSetToAssign.id;
psa.AssigneeId = us.id;
PermissionSetAssignmentList.add(psa);

}
insert PermissionSetAssignmentList;

}
}

// Test for the post install class
@isTest
private class PostInstallClassTest {

@isTest
public static void test() {
PostInstallClass myClass = new PostInstallClass();
Test.testInstall(myClass, null);

}
}

87

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

Scheduling Push Upgrades

USER PERMISSIONS

To push an upgrade:
• Upload AppExchange

Packages

After you’ve created an updated version of your package, you can automatically deploy it to
customers using a push upgrade.

1. Push the upgrade to your own orgs so you can run tests and fix any bugs before upgrading
subscribers.

2. When you’re ready and have coordinated with your customers on their change management
process, push to a small number of customer organizations. Try sandbox organizations first, if
possible.

3. After you’re comfortable with the initial results, push to your wider customer base, based on your agreements with each customer.

4. Deprecate the previous version of your package in your main development organization. Replace the version on AppExchange if
necessary, and update your Trialforce setup.

5. If your upgrade was a patch, after you’ve successfully distributed the upgrade to subscriber organizations, reintegrate those changes
into your main development organization. For more information about combining patches in the main development organization,
see Working with Patch Versions on page 74.

Schedule a Push Upgrade Using the UI

Note: Only first-generation managed packages can schedule a push upgrade using the UI. To schedule a push upgrade for
unlocked and second-generation managed packages, use the PackagePushRequest in the Salesforce Object Reference.

1. Log in to your main development org (not the patch org you used to upload the new version).

2. From Setup, enter Packages in the Quick Find box, then select Packages.

3. Click the name of the managed package whose upgrade you want to push.

4. On the package detail page, click the Versions tab, and then click Push Upgrades.

5. Click Schedule Push Upgrades.

6. Select a package version to push from the Patch Version dropdown list.

Note: Beta versions aren’t eligible for push.

7. For the scheduled start date, enter when you want the push upgrade to begin.

8. In the Select Target Organizations section, select the orgs to receive your push upgrade. If an org already received a push upgrade
for the selected package version, it doesn’t appear in this list. You can select orgs by:

• Entering a term that filters based on an org’s name or ID. Names can match by partial string, but IDs must match exactly.

• Choosing between production and sandbox orgs from the Organizations dropdown list.

• Choosing orgs that have already installed a particular version.

• Clicking individual orgs or the Select All and Deselect All checkboxes.

This section lists the following information about the org (in alphabetical order):

DescriptionField

The current package version an organization has installed.Current Version

The ID of the org.Organization ID

The name of the org. To view the upgrade history for the org,
click the org name.

Organization Name

88

Push Package Upgrades to SubscribersFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_packagepushrequest.htm

DescriptionField

The name of the user who installed the package.Primary Contact

9. Click Schedule. While a push upgrade is in progress, you can click Abort to stop it.

Schedule a Push Upgrade Using the Enterprise API

1. Authenticate to your main development org (not the patch org you used to upload the new version) according to the tool you’re
using.

Note: For unlocked and second-generation managed packages, authenticate to your Dev Hub.

2. Determine the package version you want to upgrade subscribers to by querying the MetadataPackageVersion object.

3. Gather the list of subscriber orgs that are eligible to be upgraded by querying the PackageSubscriber object.

Note: If you’re retrieving more than 2,000 subscribers, use SOAP API queryMore() call.

4. Create a PackagePushRequest object. PackagePushRequest objects take a PackageVersionId and, optionally, a ScheduledStartTime
parameter to specify when the push begins. If you omit the ScheduledStartTime, the push begins when you set the
PackagePushRequest's status to Pending.

5. Create a PackagePushJob for each eligible subscriber and associate it with the PackagePushRequest you created in the previous
step.

6. Schedule the push upgrade by changing the status of the PackagePushRequest to Pending.

7. Check the status of the PackagePushRequest and PackagePushJob objects by querying the Status fields. If the status is either
Created or Pending, you can abort the push upgrade by changing the status of the PackagePushRequest to Canceled. You can’t
abort a push upgrade that has a status of Canceled, Succeeded, Failed, or In Progress.

Note: If you’re pushing the upgrade to more than 2,000 subscribers, use the Bulk_API to process the job in batches.

For sample code and more details, see SOAP API Developer Guide.

Manage Licenses for Managed Packages

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Use the License Management App (LMA) to manage leads and licenses for your AppExchange
solutions. By integrating the LMA into your sales and marketing processes, you can better engage
with prospects, retain existing customers, and grow your ISV business. The LMA is a managed
package that is installed in all partner business orgs (PBO) and includes custom objects that track
details on packages, package versions, and licenses.

For details, see...PermissionsI need to...

Get Started with the License
Management App on page 91

System Admin profileConfigure the LMA

Lead and License Records in
the LMA on page 94

Object Permissions: ReadBill subscribers or monitor
license expiration

89

Manage Licenses for Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.api.meta/api/sforce_api_calls_querymore.htm
https://developer.salesforce.com/page/Bulk_API

For details, see...PermissionsI need to...

Modify a License Record on page 94Object Permissions: EditConvert trial subscriptions into paying
customers

Extend the LMA on page 95Object Permissions: EditCustomize the LMO

Modify a License Record on page 94Object Permissions: EditProvision licenses to a subscriber

Troubleshoot Subscriber IssuesVarious permissions (see Assign Permissions
to the Subscriber Support Console on page
93 for details)

Support subscribers with technical issues

Note: The LMA is available only in English.

The LMA is available to eligible Salesforce partners. For more information on the Partner Program, including eligibility requirements, visit
https://partners.salesforce.com.

Get Started with the License Management App

To start managing leads and licenses with the License Management App (LMA), complete these installation and configuration steps.

Lead and License Records in the License Management App

Each time a customer installs your managed package, the License Management App (LMA) creates lead and license records.

Modify a License Record

You can change a customer’s access to your offering by modifying a license record using the License Management App (LMA). For
example, you can increase or decrease the number of seats included with a license or change the expiration date.

Refresh Licenses for a Managed Package

To sync all license records for a package across all subscriber installations, you refresh the license. Refreshing the license can also
resolve discrepancies between the number of licenses in a subscriber’s org and the number displayed in the License Management
App (LMA). Refreshing is required when you move the LMA to a different org.

Extending the License Management App

The License Management App (LMA) is a managed package that you can customize and extend. In addition to using the LMA to
manage leads and licenses, many partners also integrate it into their existing business processes.

Move the License Management App to Another Salesforce Org

You can move an LMA to a different org, but your package and license records don’t automatically move with it. You must manually
relink your packages and refresh the licenses.

Troubleshoot the License Management App

If you’re experiencing issues with the License Management App, review these troubleshooting tips.

Best Practices for the License Management App

Follow these best practices when you use the License Management App (LMA).

Troubleshoot Subscriber Issues

Use the Subscriber Support Console to access information about your subscribers. Subscribers can also grant you login access to
troubleshoot issues directly within your app. After you’re granted access, you can log in to the subscriber’s org and view their
configuration and data to troubleshoot and resolve issues.

90

Manage Licenses for Managed PackagesFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.workbook_lma.meta/workbook_lma/lma_subscriber_support_overview.htm
https://partners.salesforce.com

Get Started with the License Management App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

To start managing leads and licenses with the License Management App (LMA), complete these
installation and configuration steps.

Install the License Management App

The License Management App (LMA) is a managed package that is installed in all partner
business orgs. The org that the LMA is installed in is called the License Management Org (LMO).

Associate a Package with the License Management App

To receive lead and license records for your package, you connect your License Management
Org (LMO), your package, and the Salesforce Partner Console. Your LMO is the Salesforce org
where the License Management App (LMA) is installed.

Configure Permissions for the License Management App

Determine who needs access to the License Management App (LMA), and set object permissions. Consider using a permission set
to assign user permissions.

Install the License Management App

USER PERMISSIONS

To install packages:
• Download AppExchange

Packages

The License Management App (LMA) is a managed package that is installed in all partner business
orgs. The org that the LMA is installed in is called the License Management Org (LMO).

We strongly recommend that you use your partner business org (PBO) as your LMO. However, you
can choose to install the LMA in another production org. Consider installing the LMA in an org that
your company is already using to manage sales, billing, and marketing.

Commercial use of the LMA is prohibited in Developer and Partner Developer Edition orgs. Installing
the LMA in a Developer Edition org is allowed only if you’re building integrations with the LMA and need an environment only for
development and testing purposes. You can install the LMA in Enterprise, Unlimited, or Performance Edition production orgs.

It’s not possible to have Slack or the Declarative Lookup Rollup Summary (DLRS) package installed in the same org as the LMA. If the org
in which you plan to install the LMA has either Slack or the DLRS package installed, uninstall them before you install the LMA. Alternatively,
install the LMA in a different org.

Note: To confirm whether your PBO already has the LMA installed, skip to step 4.

1. To install the LMA in an org other than your PBO, log a case in the Partner Community. After we review the case, you receive an
email with an installation URL.

2. Log in to the org where you want to install the LMA, and then go to the installation URL included in the email.

3. Choose which users can access the LMA, and then click Install.

4. To confirm that the LMA is installed, open the App Launcher. If the installation was successful, the License Management App appears
in the list of available apps.

Associate a Package with the License Management App

USER PERMISSIONS

To manage licenses in the
Partner Community:
• Manage Listings

To receive lead and license records for your package, you connect your License Management Org
(LMO), your package, and the Salesforce Partner Console. Your LMO is the Salesforce org where the
License Management App (LMA) is installed.

A single LMO can manage multiple 1GP and 2GP packages, but a package can be associated with
only one LMO.

91

Get Started with the License Management AppFirst-Generation Managed Packages

https://partners.salesforce.com

1. Connect your packaging org (for 1GP) or your Dev Hub org (for 2GP) to the Partner Console.

a. Log in to the Partner Community, and select the Publishing tab.

b. Click Technologies > Orgs.

c. Click Connect Technology, and then click Org.

d. Click Connect Org.

e. Log in to the org.

For 1GP packages, enter the login credentials for the packaging org. Repeat this step for all your 1GP packages.

For 2GP packages, enter the login credentials for the Dev Hub org. When you connect the Dev Hub org, all the 2GP packages
owned by the Dev Hub org are linked to the Partner Console.

2. Select the Solutions tab.

3. Locate the package you want to register with the LMO. To register each package you own, repeat this step.

a. Click the down arrow to expand the list of versions for your package.

b. Click Register Package for the package version you want to register.

Package versions created after linking to your LMO inherit the association.

c. To register the package, log in to your LMO.

4. Set the default behavior you want for your package license, and then click Save.

After the package is registered, a license is created when customers install it. You can view which packages are registered in the LMA.

Note: Beta package versions don’t display in the LMA. Only managed-released package versions (1GP) and promoted package
versions (2GP) are visible in the LMA. Unlocked packages aren’t supported.

Configure Permissions for the License Management App
Determine who needs access to the License Management App (LMA), and set object permissions. Consider using a permission set to
assign user permissions.

Ensure that you:

• Install the LMA.

• Connect your packaging org (for 1GP) or your Dev Hub org (for 2GP) to the AppExchange Partner Console.

• Associate your package with the LMA.

1. Set object permissions for the license, package, and package version custom objects.

Object PermissionsCustom Object

To view license records:

Assign READ permissions

License

To modify license records:

Assign READ and EDIT permissions

To view package records:

Assign READ permissions

Package

92

Get Started with the License Management AppFirst-Generation Managed Packages

https://partners.salesforce.com/

Object PermissionsCustom Object

To modify package records:

Assign READ and EDIT permissions

To view package version records:

Assign READ permissions

Package Version

We recommend leaving all package version records as read-only.

2. Set field-level security in user profiles or permission sets.

Field-Level PermissionsCustom Object

Make all fields read-only.License

Make all fields read-only.Package

Make all fields read-only.Package Version

3. Add related lists to page layouts.

Add the Licenses related list to the...To enable...

Lead page layoutLicense managers to view the licenses associated with a particular
lead

Account page layoutLMA users to view the licenses associated with a particular
account

Contact page layoutLMA users to view the licenses associated with a particular
contact

Assign Permissions to the Subscriber Support Console

Create a permission set to provide users access to the Subscriber Support Console.

Assign Permissions to the Subscriber Support Console
Create a permission set to provide users access to the Subscriber Support Console.

Note: If you’ve already assigned these permissions via a profile or another permission set, you can skip this task.

1. From Setup, in the Quick Find box, enter Permission Sets, and select Permission Sets.

2. Click New and enter your permission set information.

3. On the Permission Set Overview page, locate the Apps section, and select Visualforce Page Access.

a. Click Edit.

93

Get Started with the License Management AppFirst-Generation Managed Packages

b. Add sfLma.LoginToPartnerBT and sfLma.SubscriberSupport to the list of Enabled Visualforce pages, and then click Save.

4. On the Permission Set Overview page, locate the System section, and select System Permissions. Click Edit.

a. Select Log in to Subscriber Organization, and click Save.

5. From Setup, in the Quick Find box, enter Profiles, and select Profiles.

a. Click Edit.

b. Under Custom App Settings, select License Management App.

c. Under Custom Tab Settings, locate the Subscribers tab and select Default On.

d. Click Save.

Lead and License Records in the License Management App
Each time a customer installs your managed package, the License Management App (LMA) creates lead and license records.

The key objects in the LMA are Package, Lead, and License.

• Package—The LMA includes a Package custom object and a Package Version custom object. These objects display details about
each 1GP or 2GP package and package version you’ve listed on AppExchange.

• Lead —The Lead standard object gives you details about who installed your package, such as the installer’s name, company, and
email address. Lead records created by the LMA are just like the ones you use elsewhere in Salesforce, except the lead source is
Package Installation. You can manually convert leads into accounts and contacts. When you convert a lead, the license record links
to the converted account or contact.

• License—The License custom object gives you control over how many users in the customer’s org can access your package and for
how long. Each license record links to a lead record and a package record.

To understand which actions you must take and which actions the LMA handles for you, review this table.

Who Takes This StepAction

Customer or prospectYour package is installed by a new subscriber.

LMAA lead record is created with the customer’s name, company, and email address.

LMAA license record is created according to the values you specified when you registered the package.

You (ISV partner)The lead record is converted to account and contact records. (Optional)

LMAAccount and contact records are associated with the license record.

Modify a License Record
You can change a customer’s access to your offering by modifying a license record using the License Management App (LMA). For
example, you can increase or decrease the number of seats included with a license or change the expiration date.

1. In the LMA, locate the license.

2. Click Modify License.

When the LMA is installed, the Edit button doesn’t appear on the license page layout, and the Modify License button is included
instead. This setup is intentional. Only edit license records on the Modify License page.

3. Update the field values as needed.

94

Lead and License Records in the License Management AppFirst-Generation Managed Packages

DescriptionField

Enter the last day that the customer can access your package, or select Does not
expire.

Expiration

Enter the number of licensed seats, or select Site License to make your package
available to all users in the customer’s org. You can allocate up to 99,000,000 seats.

Seats

Select a value from the dropdown.Status

• Trial—Lets the customer try your offering for up to 90 days. After the trial license
converts to an active license, it can’t return to a trial state.

• Active—Lets the customer use your package according to the license agreement.

• Suspended—Prohibits the customer from accessing your offering.

Note: When your offering is uninstalled, its status is set to Uninstalled, and the
license can’t be edited.

4. Click Save.

Refresh Licenses for a Managed Package
To sync all license records for a package across all subscriber installations, you refresh the license. Refreshing the license can also resolve
discrepancies between the number of licenses in a subscriber’s org and the number displayed in the License Management App (LMA).
Refreshing is required when you move the LMA to a different org.

Note: For each package, you can refresh licenses only one time per week.

1. From the LMA, select the Packages tab.

2. Open the package record.

3. Click Refresh Licenses. In Lightning Experience, Refresh Licenses is located in the dropdown menu.

Extending the License Management App
The License Management App (LMA) is a managed package that you can customize and extend. In addition to using the LMA to manage
leads and licenses, many partners also integrate it into their existing business processes.

The LMA includes these custom objects:

• License on page 96

• Package on page 96

• Package Version on page 96

You can add custom fields to the objects as long as you don’t mark your custom fields as required.

Package and Package Version Object Fields

The License Management App (LMA) includes a Package custom object and a Package Version custom object. These objects display
details about each 1GP or 2GP package and package version you’ve listed on AppExchange.

95

Refresh Licenses for a Managed PackageFirst-Generation Managed Packages

License Object Fields

Use the License custom object to set limits on how many users in the subscriber’s org can use your app and for how long.

Adding Custom Automation to License Management App Objects

Here are some examples of how you can use the License Management App (LMA) to grow your business and retain customers.

Package and Package Version Object Fields
The License Management App (LMA) includes a Package custom object and a Package Version custom object. These objects display
details about each 1GP or 2GP package and package version you’ve listed on AppExchange.

To view details about a package record, from the LMA, select the Packages tab, and then select the package name. You can view package
versions in the Package Version related list.

Note: The LMA creates the package records, which contain critical information for tracking your licenses and packages. Treat
these fields as read-only and ensure that your object permissions protect package records.

DescriptionPackage Custom Object Fields

The name of the org that owns the package. For 1GP, the org name is the packaging org.
For 2GP, it’s the Dev Hub org.

Developer Name

The 18-character ID of the org that owns the package. For 1GP, the org ID is the packaging
org ID. For 2GP, it’s the Dev Hub org ID.

Developer Org ID

The date when the License Refresh tool was last run.Last License Refresh

The most recent package version you’ve released.Latest Version

The owner of the lead records that the LMA creates when a customer installs your package.Lead Manager

The date when the License Refresh tool can be run again.Next Available Refresh

The LMA owns all package records.Owner

The 18-character ID that identifies the package. This ID starts with 033.Package ID

The name you specified when you created the package.Package Name

DescriptionPackage Version Object Fields

The package name and links to the package record’s detail page.Package

The name you specified when you created the package version.Package Version Name

The date you created this package version.Release Date

The version number in major.minor.patch format. For example, 3.1.0.Version Number

The 18-character ID of this package version.Version ID

License Object Fields
Use the License custom object to set limits on how many users in the subscriber’s org can use your app and for how long.

96

Extending the License Management AppFirst-Generation Managed Packages

The License Management App (LMA) creates a license record every time your package is installed in an org. For example, if a subscriber
installs two of your 1GP packages and three of your 2GP packages, you have five license records for that subscriber in your LMA. If you
deliver a 2GP app that is composed of multiple packages, a unique license record is created for each package in the app. You can allocate
up to 99,000,000 seats per subscriber license.

To view details about a license record, select the Licenses tab in the LMA, and then select and open the license record.

License records are automatically created and contain critical information for tracking licenses. Do not directly edit the license record.
Instead, use the Modify License on page 94 tool to change the expiration date, license status, and the number of licensed seats.

DescriptionLicense Custom Object Fields

A lookup field to the account record for a converted lead.Account

A lookup field to the contact record for a converted lead.Contact

License records are always created by the LMA.Created By

Displays the expiration date or Does not expire (default).Expiration Date

The date the subscriber installed this package version.Install Date

The Salesforce instance where the subscriber’s org resides.Instance

The lead record that the LMA created when the package was installed. A lead represents
the user who owns the license.

If you convert the lead into an opportunity, the lead name is retained but the lead record
no longer exists.

Lead

An auto-generated number that represents an instance of a license. License names are in
the format of L-00001, and each new license is incremented by one.

License Name

Displays the number of licenses or Site License (default).Licensed Seats

The type of license: Active, Suspended, Trial, or Uninstalled.License Status

This is a legacy field and can be ignored.License Type

The edition of the subscriber’s org.Org Edition

Applies only if the subscriber installs your package in a trial org. Indicates the date when
the trial org expires. It isn’t related to the package license expiration.

Org Expiration Date

The status of the subscriber’s org: Active, Free, or Trial.Org Status

The LMA owns all license records. Don’t edit this field.Owner

A lookup field that links to the package version associated with this license.Package Version

The version number in major.minor.patch format. For example, 3.1.0.Package Version Number

Indicates whether the license is for a package installed in a sandbox org.Sandbox

The 15-character ID representing the subscriber’s org.Subscriber Org ID

Displays the number of users who have a license to the package.

This field is blank if:

Used Licenses

• A customer uninstalled the package.

97

Extending the License Management AppFirst-Generation Managed Packages

DescriptionLicense Custom Object Fields

• Licensed Seats is set to Site License.

Adding Custom Automation to License Management App Objects

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

Here are some examples of how you can use the License Management App (LMA) to grow your
business and retain customers.

Alert Sales Reps Before a License Expires
If you’re managing licenses for several packages, it can be difficult to track the various expirations.
If a license expires accidentally, you could even lose a customer. To help your customers with
renewals, set up a workflow rule to email a sales rep on your team before the license expires.

To automatically email the sales rep, follow these high-level steps.

1. Create an email template for the notification.

2. Create a workflow rule with a filter that specifies enough time before the expiration date to discuss renewal options.

3. Associate the workflow rule with a workflow alert that sends an email to the appropriate team member or sales rep.

Notify Customer-Retention Specialists When an Offering Is Uninstalled
If a customer uninstalls your offering, find out why. By speaking to the customer, you have an opportunity to restore the business
relationship or receive feedback that helps you improve your offering.

To notify a customer-retention specialist on your team, follow these high-level steps.

1. Create an email template for the notification.

2. Create a workflow rule with a filter that specifies that the License Status equals Uninstalled.

3. Associate the workflow rule with a workflow alert that sends an email to the retention specialist.

Move the License Management App to Another Salesforce Org

USER PERMISSIONS

To install packages:
• Download AppExchange

Packages

To manage licenses in the
Partner Community:
• Manage Listings

You can move an LMA to a different org, but your package and license records don’t automatically
move with it. You must manually relink your packages and refresh the licenses.

It’s not possible to have Slack or the Declarative Lookup Rollup Summary (DLRS) package installed
in the same org as the LMA. If the org in which you plan to install the LMA has either Slack or the
DLRS package installed, uninstall them before you install the LMA. Alternatively, install the LMA in
a different org.

1. To remove the association between the LMA and the org where it’s currently installed, log a
case with the Partner Community.

2. Install the LMA in the new org on page 91.

3. Associate your packages with the new org on page 91.

4. Refresh licenses for your packages on page 95.

98

Move the License Management App to Another Salesforce
Org

First-Generation Managed Packages

https://partners.salesforce.com/

Troubleshoot the License Management App

EDITIONS

Available in: both Salesforce
Classic and Lightning
Experience

Available in: Enterprise,
Performance, and
Unlimited Editions

If you’re experiencing issues with the License Management App, review these troubleshooting tips.

Leads and Licenses Aren’t Being Created in the License Management App

When a customer installs your package, leads and license records are created. If these records
aren’t being created, review these configurations in the License Management Org (LMO). If you
resolve your issue using one of these recommendations, your missing licenses appear in the
LMA within a few days.

Proxy User Has Deactivated Message in the LMA

If you’re editing a license and see a “proxy user has deactivated” message, check whether the
subscriber org is locked, deleted, or disabled.

Leads and Licenses Aren’t Being Created in the License Management App
When a customer installs your package, leads and license records are created. If these records aren’t being created, review these
configurations in the License Management Org (LMO). If you resolve your issue using one of these recommendations, your missing
licenses appear in the LMA within a few days.

Did the customer complete the package installation?
When a customer clicks Get it Now on your AppExchange listing, Salesforce counts this selection as an installation. However, the
customer can cancel the installation before it’s completed, or the installation could have failed. If the installation doesn’t finish, a
license isn’t created.

Is State and Country picklist validation enabled?
To avoid state and country picklist-related lead failures, you have two options. Use the standard picklist integration values, or add
duplicate states and countries to your picklists.

Standard picklist integration values

To implement this option, use the Salesforce standard state and country picklists in your org, and leave the integration values as-is.
We recommend this option for most partners.

With this option, AppExchange leads propagate to your org with full state and country names, and the names match integration
values in the standard picklists.

Add duplicate states and countries to your picklists.

Implement this option if you have a requirement to use the two-letter state or country abbreviations in your org. For example, you
display abbreviations in the user interface or use them to integrate with other systems. Add duplicate states and countries to your
picklists with different integration values. Set one value to the two-letter state or country abbreviation. Set the other value to the
full state or country name. Make only the two-letter abbreviation picklist entries visible.

With this option, AppExchange leads propagate to your org with full state and country names, which match the full name integration
values in your org. You also have two-letter integration values to use as needed.

Does the lead or license object have a trigger?
Don’t use before_create or before_update triggers on leads and licenses. Instead, use after_ triggers, or remove
all triggers. If a trigger fails, it can block license creation.

Does the lead or license record have a required custom field?
If yes, remove the requirement. The LMA doesn’t populate a required custom field, so it can prevent licenses or leads from being
created.

99

Troubleshoot the License Management AppFirst-Generation Managed Packages

Is the lead manager a valid, active user?
If not, the LMA can’t create leads and licenses.

Does the lead or license record have a validation rule?
Validation rules often block the creation of LMA lead or license records because the required field isn’t there.

Does the lead or license have a workflow rule?
Workflow rules sometimes prevent leads and licenses from being created. Remove the workflow rule.

Was the lead converted to an account?
When leads are converted to accounts, they’re no longer leads.

Are you using standard duplicate rules for leads?
When a customer installs your package, the LMA checks for existing leads and contacts. If an existing contact matches the customer
who installed your package, a lead record isn’t created. To complete these checks, the LMA applies standard lead duplicate rules
and matching rules. If you prefer to have the LMA associate every license with a lead regardless of whether there’s an existing contact
match, customize the standard duplicate rule for leads and remove the matching rule for contacts.

Proxy User Has Deactivated Message in the LMA
If you’re editing a license and see a “proxy user has deactivated” message, check whether the subscriber org is locked, deleted, or disabled.

• If the org has been deleted, delete the corresponding license record.

• If the org is locked or if the package has been uninstalled, license records can’t be updated.

Best Practices for the License Management App
Follow these best practices when you use the License Management App (LMA).

• To take advantage of entitlements that are unique to AppExchange partners, use your partner business org as your License
Management Org.

• Create a list view filter for leads created by installed packages. The filter helps your team separate subscriber-based leads from leads
coming from other sources.

• Use the API to find licensed users. The isCurrentUserLicensed method determines if a user has a license to a managed
package. For more information, see the Apex Reference Guide.

• Treat the LMA custom objects as read-only. Use the Modify License page to edit licenses. Don’t attempt to directly or programmatically
edit license records.

• The LMA automatically creates package, package version, and license records. Customizations, such as adding required custom fields
or creating workflow rules, triggers, or validation rules that require custom fields, can prevent the LMA from working properly.

Troubleshoot Subscriber Issues
Use the Subscriber Support Console to access information about your subscribers. Subscribers can also grant you login access to
troubleshoot issues directly within your app. After you’re granted access, you can log in to the subscriber’s org and view their configuration
and data to troubleshoot and resolve issues.

To access the Subscriber Overview page, click the organization’s name from the Subscribers tab in the LMA.

Note: This feature is available to eligible Salesforce partners. For more information on the Partner Program, including eligibility
requirements, see www.salesforce.com/partners.

100

Best Practices for the License Management AppFirst-Generation Managed Packages

https://help.salesforce.com/articleView?id=duplicate_rules_standard_lead_rule.htm&language=en_US
https://help.salesforce.com/articleView?id=matching_rules_standard_contact_rule.htm&language=en_US
https://help.salesforce.com/articleView?id=duplicate_prevention_map_of_tasks.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_methods_system_userinfo.htm
https://partners.salesforce.com

Request Login Access from Subscribers

To log in to a subscriber org, first request login access from the subscriber.

Log In to Subscriber Orgs

After your subscriber has granted you login access, you can log in to the subscriber org to troubleshoot the issue.

Debug Subscriber Orgs

After logging in to a subscriber’s org, you can view logs, obfuscated code in your package, and initiate ISV Customer Debugger
sessions.

Request Login Access from Subscribers
To log in to a subscriber org, first request login access from the subscriber.

Ask the subscriber to enable either Grant Account Login Access or Grant Login Access. If they don’t see your company listed, one
of the following applies.

• A system admin disabled the ability for non-admins to grant access.

• The user doesn’t have a license for the package.

• The package is licensed to the entire org. In this scenario, only an admin with the Manage Users permission can grant access.

• The org setting Administrators Can Log in as Any User is enabled.

Note: When the org setting Administrators Can Log in as Any User is disabled, login access is granted for a limited amount
of time, and the subscriber can revoke access at any time.

Any changes you make while logged in as a subscriber are logged in the subscriber org’s audit trail.

Log In to Subscriber Orgs

USER PERMISSIONS

To log in to subscriber orgs:
• Log in to Subscriber Org

After your subscriber has granted you login access, you can log in to the subscriber org to
troubleshoot the issue.

Available in: Enterprise, Performance, and Unlimited Editions

Note: You can only log in to orgs with a Salesforce Platform or full Salesforce license. You can’t log in to subscriber orgs on
Government Cloud instances.

Multi-Factor Authentication Required to Log In to a Subscriber Org
Starting in Spring ’22, multi-factor authentication (MFA) is required when logging into the License Management Org (LMO). MFA is
required only for LMO users who require access to the Subscriber Support Console. This requirement provides subscribers an extra layer
of security by verifying the identity of the user accessing their org. You also have more control over which users log in to a subscriber
org.

Determine which users require access to the Subscriber Support Console, and then set up multi-factor authentication (MFA) for those
users.

Log In to a Subscriber Org
After you’ve logged in to the LMO using multi-factor authentication (MFA), and your subscriber has granted you login access, you’re
ready to log in.

101

Troubleshoot Subscriber IssuesFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.mfa_direct_login_user_perm.htm&type=5&language=en_US

1. In the License Management App (LMA), click the Subscribers tab.

2. To find a subscriber org, enter a subscriber name or org ID in the search box, and click Search.

3. Click the name of the subscriber org.

4. On the Org Details page, click Login next to a user’s name. You have the same permissions as the user you logged in as.

5. When you’re finished troubleshooting, log out of the subscriber org.

Note: Some subscribers require MFA in addition to the MFA required for the LMO. Ask your subscriber if their org requires MFA
to log in. If so, your login attempt sends an MFA notification to your subscriber, and your login is blocked until your subscriber
responds to the notification. To ensure that your subscriber is available to respond to the MFA notification, consider coordinating
a specific login time.

Best Practices for Logging In

• Create an audit trial that indicates when and why a subscriber org login has occurred. You can create an audit trail by logging a case
in your LMO before each subscriber org login.

• When you access a subscriber org, you’re logged out of your LMO. You can set up a My Domain to not be automatically logged out
of your LMO when you log in to a subscriber org. To set up a My Domain subdomain, from Setup, in the Quick Find box, enter My
Domain, then select My Domain.

• Allow only trusted support and engineering personnel to log in to a subscriber’s org. Because this feature can include full read/write
access to customer data and configurations, it’s vital to your reputation to preserve their security.

• Control who has login access by giving the Log in to Subscriber Org user permission to specific support personnel via a profile or
permission set. See Assign Permissions to the Subscriber Org Console on page 93.

Debug Subscriber Orgs
After logging in to a subscriber’s org, you can view logs, obfuscated code in your package, and initiate ISV Customer Debugger sessions.

Troubleshoot with Debug Logs
You can debug your code by generating Apex debug logs that contain the output from your managed package. Using this log information,
you can troubleshoot issues that are specific to that subscriber.

1. If the user has access, set up a debug log: From Setup, in the Quick Find box, enter Debug Logs, and then select Debug Logs.

2. Launch the Developer Console.

3. Perform the operation, and view the debug log with your output.

Subscribers are unable to see the logs you set up or generate because they contain your unobfuscated Apex code.

You can also view and edit data contained in protected custom settings from your managed packages when logged in as a user.

Troubleshoot with the ISV Debugger
Each License Management Org can use one free ISV Customer Debugger session at a time. The ISV Customer Debugger is part of the
Salesforce Extensions for Visual Studio Code. You can use the ISV Customer Debugger only in sandbox orgs, so you can initiate debugging
sessions only from a customer’s sandbox.

For details, see the ISV Customer Debugger documentation.

102

Troubleshoot Subscriber IssuesFirst-Generation Managed Packages

https://developer.salesforce.com/tools/vscode
https://developer.salesforce.com/tools/vscode/en/apex/isv-debugger

Manage Features in First-Generation Managed Packages

Control how you release features to customers with the Feature Management App (FMA). The FMA extends the functionality of the
License Management App (LMA). Use the FMA to manage features as easily as you manage licenses with the LMA.

Here at Salesforce, we sometimes run pilot programs, like the one we ran when we introduced Feature Management. Sometimes we
dark-launch features to see how they work in production before sharing them with you. Sometimes we make features available to select
orgs for limited-time trials. And sometimes we want to track activation metrics for those features.

With feature parameters, we’re extending this functionality to you. Install the FMA in your License Management Org (LMO). The FMA
extends the License Management App, and like the LMA, it’s a managed package.

Feature Parameter Metadata Types and Custom Objects

Feature parameters are represented as Metadata API types in your packaging org, as records of custom objects in your License
Management Org, and as hidden records in your subscriber’s org.

Set Up Feature Parameters

Set up the Feature Management App in your License Management Org, define feature parameters, and add them to your package.

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features

Feature parameters with a data flow direction value of LMO to Subscriber are writable at your end and read-only in your
subscriber’s org. These feature parameters serve as permissions or limits. Use LMO-to-subscriber feature parameters to enable or
disable new features or to control how many of a given resource your subscriber can use. Or, enable features for a limited trial period.
Assign values to LMO-to-subscriber feature parameters by updating junction object records in your LMO, and then check those
values in your code.

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters

Use subscriber-to-LMO feature parameters to track feature activation in your subscriber’s org. Parameter values are assigned on the
subscriber’s end and then sent to your LMO. To collect the values, update the feature parameters in your subscriber’s org using Apex
code. Check with your legal team before obtaining activation metrics from your customers. Use activation metrics to collect only
aggregated data regarding feature activation.

Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs

Occasionally, you want to include custom permissions or custom objects in a package but not show them to your subscribers. For
example, if you're piloting a feature for a few select orgs, and want to hide custom permissions and custom objects related to the
pilot feature.

Best Practices for Feature Management

Here are some best practices when working with feature parameters.

Considerations for Feature Management

Keep these considerations in mind when working with feature parameters.

Feature Parameter Metadata Types and Custom Objects
Feature parameters are represented as Metadata API types in your packaging org, as records of custom objects in your License Management
Org, and as hidden records in your subscriber’s org.

Feature Parameter Fields
Feature parameters are represented as Metadata API types and store boolean, integer, or date values.

103

Manage Features in First-Generation Managed PackagesFirst-Generation Managed Packages

The first time a subscriber installs your package, a FeatureParameter__c record is created in your License Management Org
(LMO) for each feature parameter. The feature parameter records include these fields:

• FullName__c

• DataType__c (Boolean, Integer, or Date)

• DataFlowDirection__c

• Package__c

• IntroducedInPackageVersion__c

• Namespace_Prefix__c

Lifecycle of a Feature Parameter
Set Up the Feature Parameter

Start by defining your feature parameter in the packaging org using the Feature Parameters tab on the Package detail page.

Depending on how you’re using the feature parameter, you’ll also write code that enables you to check access rights or collect usage
information after the parameter is set up.

Subscriber Installs Your Managed Package
When a subscriber installs or upgrades your package in their org, a FeatureParameter__c record for each feature parameter
is created in the LMO. If these records were created during a previous installation or upgrade, this step is skipped.

During package installation, junction object records are created in both the subscriber org and your LMO. A junction object is a
custom object with two master-detail relationships. In this case, the relationships are between FeatureParameter__c and
License__c in the LMO. These records store the value of their associated feature parameter for that subscriber org.

Utilize Your Feature Parameters
Use the junction objects to override the feature parameters’ default values or to collect data. Depending on the value of each feature
parameter’s DataFlowDirection__c field, data flows to the subscriber org (from the LMO) or to the LMO (from the subscriber
org). That data is stored in the junction object records.

Set Up Feature Parameters
Set up the Feature Management App in your License Management Org, define feature parameters, and add them to your package.

Install and Set Up the Feature Management App in Your License Management Org

Install the FMA in your LMO. Then add the Feature Parameters tab to your default view, and adjust your page layout for licenses to
display related lists for your feature parameters.

Create Feature Parameters in Your Packaging Org

Create a feature parameter in your packaging org, and set its type, default value, and data flow direction.

Add Feature Parameters to Your Managed Package

After you’ve created some feature parameters, you can add them to a managed package as components and reference them in your
code. Feature parameters aren’t available in unmanaged packages.

Install and Set Up the Feature Management App in Your License Management Org
Install the FMA in your LMO. Then add the Feature Parameters tab to your default view, and adjust your page layout for licenses to display
related lists for your feature parameters.

104

Set Up Feature ParametersFirst-Generation Managed Packages

1. To request access to the FMA, log a support case in the Salesforce Partner Community. For product, specify Partner Programs &
Benefits. For topic, specify ISV Technology Request. The FMA extends the License Management App, so be sure to install the
LMA before requesting access to the FMA.

2. To install the FMA, follow the instructions in your welcome email.

3. Add the Feature Parameters tab to your default view. For details, see Customize My Tabs in Salesforce Help.

4. Update your page layout for licenses.

a. Navigate to a license record’s detail page.

b. Click Edit Layout.

c. In the Related Lists section of the License Page Layout Editor, add these lists.

• Feature Parameter Booleans

• Feature Parameter Dates

• Feature Parameter Integers

d. For each related list, add these columns.

• Data Flow Direction

• Feature Parameter Name

• Full Name

• Master Label

• Value

Create Feature Parameters in Your Packaging Org
Create a feature parameter in your packaging org, and set its type, default value, and data flow direction.

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. In the Packages section, in the Package Name column, select your managed package.

3. On the Feature Parameters tab, click New Boolean, New Integer, or New Date.

If the Feature Parameters tab isn’t visible, log a case with Salesforce Partner Support.

4. Give your feature parameter a developer name that meets the standard criteria for developer names. The name must be unique in
your org. It can contain only alphanumeric characters and underscores, and must begin with a letter. It can’t include spaces, end
with an underscore, nor contain two consecutive underscores.

5. Give the feature parameter a label.

6. Set a default value for the feature parameter. If you’re creating a Feature Parameter Boolean, you see only a checkbox for Default
Value. If you want your default value to be true, select this checkbox. Integer values can’t exceed nine digits.

7. Set a data flow direction. To use this feature parameter to control behavior in your subscriber’s org, select LMO to Subscriber. To
collect activation metrics from your subscriber, select Subscriber to LMO. Note: After the feature parameter is included in a promoted
and released package version, the data flow direction can't be changed.

8. Click Save.

105

Set Up Feature ParametersFirst-Generation Managed Packages

https://partners.salesforce.com
https://help.salesforce.com/articleView?id=user_userdisplay_tabs.htm&language=en_US

Add Feature Parameters to Your Managed Package
After you’ve created some feature parameters, you can add them to a managed package as components and reference them in your
code. Feature parameters aren’t available in unmanaged packages.

A package can include up to 200 feature parameters.

Complete these steps in your packaging org.

1. From Setup, enter Packages in the Quick Find box, then select Packages.

2. In the Packages section, in the Package Name column, select your managed package.

3. On the Components tab, click Add.

4. From the Component Type dropdown, select Feature Parameter Boolean, Feature Parameter Date, or Feature Parameter
Integer.

5. Select your feature parameter, and then click Add to Package.

Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features
Feature parameters with a data flow direction value of LMO to Subscriber are writable at your end and read-only in your
subscriber’s org. These feature parameters serve as permissions or limits. Use LMO-to-subscriber feature parameters to enable or disable
new features or to control how many of a given resource your subscriber can use. Or, enable features for a limited trial period. Assign
values to LMO-to-subscriber feature parameters by updating junction object records in your LMO, and then check those values in your
code.

Assign Override Values in Your LMO

To override the default value of a feature parameter in a subscriber’s org, update the appropriate junction object record in your LMO.

Check LMO-to-Subscriber Values in Your Code

You can reference feature parameters in your code, just like you’d reference any other custom object.

Assign Override Values in Your LMO
To override the default value of a feature parameter in a subscriber’s org, update the appropriate junction object record in your LMO.

1. Open the license record for a subscriber’s installation of your package.

2. In the related list for Feature Parameter Booleans, Feature Parameter Integers, or Feature Parameter Dates, select the feature parameter
whose value you want to update.

3. Click Edit.

4. Set a value.

5. Click Save.

Check LMO-to-Subscriber Values in Your Code
You can reference feature parameters in your code, just like you’d reference any other custom object.

Use these Apex methods with LMO-to-subscriber feature parameters to check values in your subscriber’s org.

• System.FeatureManagement.checkPackageBooleanValue('YourBooleanFeatureParameter');

• System.FeatureManagement.checkPackageDateValue('YourDateFeatureParameter');

106

Use LMO-to-Subscriber Feature Parameters to Enable and
Disable Features

First-Generation Managed Packages

• System.FeatureManagement.checkPackageIntegerValue('YourIntegerFeatureParameter');

SEE ALSO:

Apex Developer Guide: FeatureManagement Class

Track Preferences and Activation Metrics with Subscriber-to-LMO Feature
Parameters
Use subscriber-to-LMO feature parameters to track feature activation in your subscriber’s org. Parameter values are assigned on the
subscriber’s end and then sent to your LMO. To collect the values, update the feature parameters in your subscriber’s org using Apex
code. Check with your legal team before obtaining activation metrics from your customers. Use activation metrics to collect only
aggregated data regarding feature activation.

• System.FeatureManagement.setPackageBooleanValue('YourBooleanFeatureParameter',
booleanValue);

• System.FeatureManagement.setPackageDateValue('YourDateFeatureParameter',
datetimeValue);

• System.FeatureManagement.setPackageIntegerValue('YourIntegerFeatureParameter',
integerValue);

Warning: The Value__c field on subscriber-to-LMO feature parameters is editable in your LMO. But don’t change it. The
changes don’t propagate to your subscriber’s org, so your values will be out of sync.

SEE ALSO:

Apex Developer Guide: FeatureManagement Class

Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs
Occasionally, you want to include custom permissions or custom objects in a package but not show them to your subscribers. For
example, if you're piloting a feature for a few select orgs, and want to hide custom permissions and custom objects related to the pilot
feature.

Note: Check with your company’s legal team before releasing hidden functionality.

To hide custom objects when creating your package, set the value of their Visibility field to Protected.

To hide custom permissions when creating your package, from Setup, enter Custom Permissions in the Quick Find box. Select
Custom Permissions > Your Custom Permission > Edit. Enable Protected Component, and then click Save. After your
package is installed, use the System.FeatureManagement.changeProtection() Apex method to hide and unhide
custom objects and permissions.

Warning: After you’ve released unprotected objects to subscribers, you can’t change the visibility to Protected.

To hide custom permissions in released packages:

• System.FeatureManagement.changeProtection('YourCustomPermissionName',
'CustomPermission', 'Protected');

To unhide custom permissions and custom objects in released packages:

107

Track Preferences and Activation Metrics with
Subscriber-to-LMO Feature Parameters

First-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm

• System.FeatureManagement.changeProtection('YourCustomPermissionName',
'CustomPermission', 'Unprotected');

• System.FeatureManagement.changeProtection('YourCustomObjectName__c', 'CustomObject',
'Unprotected');

SEE ALSO:

Apex Developer Guide: FeatureManagement Class

Best Practices for Feature Management
Here are some best practices when working with feature parameters.

• We recommend that you use this feature set in a test package and a test LMO before using it with your production package. Apply
changes to your production package only after fully understanding the product’s behavior.

• Create LMO-to-subscriber feature parameters to enable features from your LMO for individual subscriber orgs. Don’t use the Apex
code in your managed package to modify LMO-to-subscriber feature parameters’ values in subscriber orgs. You can’t send the
modified values back to your LMO, and your records will be out of sync.

Use LMO-to-subscriber feature parameters as read-only fields to manage app behavior. For example, use LMO-to-subscriber feature
parameters to track the maximum number of permitted e-signatures or to make enhanced reporting available.

• Create subscriber-to-LMO feature parameters to manage activation metrics. Set these feature parameters’ values in subscriber orgs
using the Apex code in your managed package. For example, use subscriber-to-LMO feature parameters to track the number of
e-signatures consumed or to check whether a customer has activated enhanced reporting.

Considerations for Feature Management
Keep these considerations in mind when working with feature parameters.

• After a feature parameter is included in a promoted and released package version, we recommend that you only edit the value field
located in LMO-to-subscriber junction objects.

Modifying or deleting other fields or records related to feature parameters, including the data flow direction, may cause the FMA to
stop operating correctly.

• Don’t use the LMO to create or delete feature parameters.

• When you update LMO-to-subscriber values in your LMO, the values in your subscribers’ orgs are updated asynchronously. This
process can take several minutes.

• When you publish a push upgrade to your managed package, feature parameters in your LMO and your subscribers’ orgs are updated
asynchronously. Creating and updating the junction object records can take several minutes.

• When the Apex code in your package updates subscriber-to-LMO values in your subscriber’s org, the changes can take up to 24
hours to reach your LMO.

AppExchange App Analytics for First-Generation Managed Packages

AppExchange App Analytics provides usage data about how subscribers interact with your first-generation (1GP) managed packages
and packaged components. You can use these details to identify attrition risks, inform feature development decisions, and improve user
experience.

108

Best Practices for Feature ManagementFirst-Generation Managed Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_class_System_FeatureManagement.htm

Note: AppExchange App Analytics is subject to certain usage restrictions as described in the AppExchange Program Policies.
Usage data from Government Cloud and Government Cloud Plus orgs isn’t available in App Analytics.

App Analytics is available for managed 1GP packages that passed security review and are registered to a License Management App.
Usage data is provided as package usage logs, monthly package usage summaries, or subscriber snapshots. All usage data is available
as downloadable comma-separated value (.csv) files. To view the data in dashboard or visualization format, use CRM Analytics or a
third-party analytics tool.

In a 24-hour period, you can download a maximum 20 GB of AppExchange App Analytics data.

Enable App Analytics on Your First-Generation Managed Package

Activate AppExchange App Analytics on your first-generation (1GP) managed package to access AppExchange App Analytics package
usage logs and subscriber snapshots. Package usage summaries are available by default.

SEE ALSO:

Get Started with AppExchange App Analytics

Enable App Analytics on Your First-Generation Managed Package

EDITIONS

Available in: Enterprise,
Performance, Unlimited,
and Developer Editions.

USER PERMISSIONS

To access packages and
package versions:
• Read on Packages,

Package Versions

To request and retrieve
AppExchange App Analytics
data:
• Create, Read, Edit,

Delete, View All, and
Modify All on the
AppAnalyticsQueryRequest
object

Activate AppExchange App Analytics on your first-generation (1GP) managed package to access
AppExchange App Analytics package usage logs and subscriber snapshots. Package usage summaries
are available by default.

1. Log in to your packaging org.

2. Click the gear icon , and select Setup.

3. In the Quick Find box, enter package, and select Package Manager.

4. Find your package, and click Edit.

5. Check Enable AppExchange App Analytics.

6. Save your work.

For full documentation on available App Analytics data and query best practices, read Get Started
with AppExchange App Analytics in the Second-Generation Managed Packaging Developer Guide.

Developing and Distributing Unmanaged Packages

Unmanaged packages can be used for distributing open-source projects to developers, or as a
one-time drop of applications that require customization after installation.

After the components are installed from an unmanaged package, they can be edited in the org
they’re installed in. The developer who creates and uploads an unmanaged package has no control
over the installed components, and can't change or upgrade them.

As a best practice, install an unmanaged package only if the org used to upload the package still exists. If that org is deleted, you may
not be able to install the unmanaged package.

Don’t use unmanaged packages for sandbox to production migration. Instead, use the Salesforce Extensions for Visual Studio Code or
the Ant Migration Tool. If you’re using Enterprise, Unlimited, or Performance Edition, see Change Sets.

109

Enable App Analytics on Your First-Generation Managed
Package

First-Generation Managed Packages

https://www.salesforce.com/content/dam/web/en_us/www/documents/legal/Agreements/alliance-agreements-and-terms/salesforce-partner-program-policies.pdf
https://www.salesforce.com/solutions/industries/government1/products/government-cloud/
https://help.salesforce.com/articleView?id=bi_explorer.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_intro_2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_intro_2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/app_analytics_intro_2gp.htm
https://help.salesforce.com/s/articleView?id=sf.changesets.htm&language=en_US

Create and Upload an Unmanaged Package

Use the following procedure to upload an unmanaged package through the UI. You can also upload a package using the Tooling
API. For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.

Components Available in Unmanaged Packages

Not all components can be packaged for distribution.

Convert Unmanaged Packages to Managed

Create and Upload an Unmanaged Package
Use the following procedure to upload an unmanaged package through the UI. You can also upload a package using the Tooling API.
For sample code and more details, see the PackageUploadRequest object in the Tooling API Developer Guide.

1. Create the package:

a. From Setup, enter Package Manager in the Quick Find box, then select Package Manager.

b. Click New.

c. Fill in the details of the package.

d. Click Save.

2. On the Components tab, click Add.

3. From the Component Type dropdown list, choose a component.

4. Select the component you want to add.

5. Click Add To Package.

6. Repeat these steps until you’ve added all the components you want in your package.

7. Click Upload.

You will receive an email that includes an installation link when your package has been uploaded successfully. Wait a few moments
before clicking the installation link or distributing it to others, as it might take a few minutes for it to become active.

Considerations for Uninstalling Unmanaged Packages
If your unmanaged package has dependencies on metadata in another package, remove any dependencies before attempting to uninstall
either package.

If you’re working in a sandbox org, you must first remove the package dependencies in your production org.

1. Locate the unmanaged package in your production org and remove the dependencies to the package you plan to uninstall.

2. Create or refresh your sandbox org.

3. In your sandbox org, you can now uninstall the package that your unmanaged package previously depended on.

Components Available in Unmanaged Packages
Not all components can be packaged for distribution.

Packaged Explicitly or Implicitly
Components can be added either explicitly or implicitly. Explicit components must be included directly in the package, while implicit
components are automatically added. For example, if you create a custom field on a standard object, you must explicitly add the

110

Create and Upload an Unmanaged PackageFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.data_sandbox_create_parent.htm&language=en_US

custom field to your package. However, if you create a custom object and add a custom field to it, the field is implicitly added to the
package when you add the custom object.

• Explicitly: The component must be manually added to the package.

• Implicitly: The component is automatically added to the package when another dependent component, usually a custom
object, is added.

Automatic Renaming
Salesforce can resolve naming conflicts automatically on install.

• No: If a naming conflict occurs the install is blocked.

• Yes: If a naming conflict occurs Salesforce can optionally change the name of the component being installed.

Automatic RenamingPackaged Explicitly or ImplicitlyComponent

NoExplicitlyApex Class

NoImplicitly

On an extension: Explicitly

Apex Sharing Reason

NoImplicitlyApex Sharing Recalculation

NoOn a standard or extension object: Explicitly

On an object in the package: Implicitly

Apex Trigger

NoExplicitlyApplication

NoOn a standard object: Explicitly

On a custom object: Implicitly

Custom Button or Link

NoOn a standard object: Explicitly

On a custom object: Implicitly

Custom Field

NoImplicitlyCustom Label

NoExplicitlyCustom Object

NoImplicitly

With required custom permissions: Explicitly

Custom Permission

NoExplicitlyCustom Report Type

NoExplicitlyCustom Setting

YesExplicitly

In a folder: Implicitly

Dashboard

YesExplicitly

In a folder: Implicitly

Document*

(10 MB limit)

YesExplicitly

In a folder: Implicitly

Email Template (Classic)

111

Components Available in Unmanaged PackagesFirst-Generation Managed Packages

Automatic RenamingPackaged Explicitly or ImplicitlyComponent

NoExplicitly

Referenced by an external object: Implicitly

External Data Source

Assigned by a permission set: Implicitly

NoImplicitlyFlow Definition

YesExplicitlyFolder

NoExplicitlyHome Page Component

NoExplicitlyHome Page Layout

NoExplicitlyInbound Network Connection

YesExplicitlyLetterhead

NoExplicitlyLightning Application

NoExplicitlyLightning Component

NoExplicitlyLightning Event

NoExplicitlyLightning Interface

NoExplicitlyLightning Page

YesOn a standard object: Explicitly

On a custom object: Implicitly

List View

NoExplicitlyNamed Credential

NoExplicitlyOutbound Network Connection

NoOn a standard object: Explicitly

On a custom object: Implicitly

Page Layout

NoOn a standard object: Explicitly

On a custom object: Implicitly

Record Type

YesExplicitly

In a folder: Implicitly

Report

YesExplicitlyReporting Snapshot

NoExplicitlyS-Control*

(10 MB limit)

NoExplicitlyStatic Resource

NoExplicitlyTab

NoExplicitlyTranslation

112

Components Available in Unmanaged PackagesFirst-Generation Managed Packages

Automatic RenamingPackaged Explicitly or ImplicitlyComponent

NoOn a standard object: Explicitly

On a custom object: Implicitly

Validation Rule

NoExplicitlyVisualforce Component

NoExplicitlyVisualforce Page

NoExplicitlyWorkflow Email Alert

NoExplicitlyWorkflow Field Update

NoExplicitlyWorkflow Outbound Message

NoExplicitlyWorkflow Rule

NoExplicitlyWorkflow Task

*The combined size of S-Controls and documents must be less than 10 MB.

Convert Unmanaged Packages to Managed

EDITIONS

Available in: Salesforce
Classic (not available in all
orgs) and Lightning
Experience

Available in: Developer
Edition

Package uploads and
installs are available in
Group, Professional,
Enterprise, Performance,
Unlimited, and Developer
Editions

USER PERMISSIONS

To configure namespace
settings:
• Customize Application

To create packages:
• Create AppExchange

Packages

To upload packages:
• Upload AppExchange

Packages

Before you convert an existing package to managed, alert any current installers that they must save
their data:

1. Export all the data from the previous, unmanaged version of the package.

2. Uninstall the unmanaged package.

3. Install the new managed version of the package.

4. Import all the exported data into the new managed package.

Note: Note to installers: if you have made customizations to an installation of an
unmanaged package, make a list of these customizations before uninstalling since you
may want to implement them again.

To convert an unmanaged package into a managed package:

1. Register a namespace.

2. From Setup, enter Package Manager in the Quick Find box, then select Package
Manager.

3. Edit the package that you want to make managed, then select Managed.

113

Convert Unmanaged Packages to ManagedFirst-Generation Managed Packages

https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.overview_edition_lex_only.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/register_namespace_prefix.htm

	First-Generation Managed Packages
	Why Switch to Second-Generation Managed Packaging?
	Set Up Your Environments for First-Generation Managed Packages
	Developer Hub
	Scratch Org Allocations for Partners
	Enable Dev Hub Features in Your Org
	Add Salesforce DX Users
	Free Limited Access License
	Manage Scratch Orgs from the Dev Hub Org
	Link a Namespace to a Dev Hub Org
	Supported Scratch Org Editions for Partners

	Environment Hub
	Get Started with the Environment Hub
	Configure the Environment Hub

	Manage Orgs in the Environment Hub
	Connect an Org to the Environment Hub
	Create an Org from the Environment Hub

	Single Sign-on in the Environment Hub
	Enable SSO for a Member Org
	Define an SSO User Mapping
	Use a Federation ID or Formula for SSO
	Disable SSO for a Member Org

	Environment Hub Best Practices
	Environment Hub FAQ
	Can I use the Environment Hub in Lightning Experience?
	Where do I install the Environment Hub?
	Can I install the Environment Hub in more than one org?
	Can I enable the Environment Hub in a sandbox org?
	What kinds of orgs can I create in the Environment Hub?
	How is locale determined for the orgs I create in the Environment Hub?
	Are the orgs that I create in the Environment Hub the same as the ones I created in the Partner Portal?
	Can an org be a member of multiple Environment Hubs?
	Can I disable the Environment Hub?

	Considerations for the Environment Hub in Lightning Experience

	Register a Namespace for a First-Generation Managed Package
	Create a First-Generation Managed Package Using a UI
	What Are Beta Versions of Managed Packages?
	Create a Beta Package for First-Generation Managed Packages
	Create and Upload a First-Generation Managed Package
	Publish Extensions to Managed Packages
	View Package Details in First-Generation Managed Packages
	Notifications for Package Errors
	Set the Notification Email Address

	Create a First-Generation Managed Package using Salesforce DX
	Build and Release Your App with Managed Packages
	Packaging Checklist
	Deploy the Package Metadata to the Packaging Org
	Create a Beta Version of Your App
	Install the Package in a Target Org
	Create a Managed Package Version of Your App

	View Information About a Package
	View All Package Versions in the Org
	Package IDs

	Components Available in First-Generation Managed Packages
	Components Automatically Added to First-Generation Managed Packages
	Protected Components in Managed Packages
	Set Up a Platform Cache Partition with Provider Free Capacity
	Package Dependencies in First-Generation Managed Packages
	Metadata Access in Apex Code
	Permission Sets and Profile Settings in Packages
	Permission Set Groups
	Custom Profile Settings
	Protecting Your Intellectual Property
	Call Salesforce URLs Within a Package
	Develop App Documentation
	API and Dynamic Apex Access in Packages
	Manage API and Dynamic Apex Access in Packages
	Configure Default Package Versions for API Calls
	About the Partner WSDL
	Generate an Enterprise WSDL with Managed Packages
	Work with Services Outside of Salesforce

	Connected Apps

	Package and Test Your First-Generation Managed Package
	Install a Managed Package
	Install First-Generation Managed Packages Using Metadata API
	Component Availability After Deployment
	Install Notifications for Unauthorized Managed Packages
	Resolve Apex Test Failures
	Run Apex on Package Install/Upgrade
	How Does a Post Install Script Work?
	Example of a Post Install Script
	Specifying a Post Install Script

	Run Apex on Package Uninstall
	How Does an Uninstall Script Work?
	Example of an Uninstall Script
	Specifying an Uninstall Script

	Uninstall a Managed Package

	Update Your First-Generation Managed Package
	Package Versions in First-Generation Managed Packages
	Create and Upload Patches in First-Generation Managed Packages
	Work with Patch Versions
	Versioning Apex Code
	Apex Deprecation Effects for Subscribers

	Publish Upgrades to First-Generation Managed Packages
	Plan the Release of First-Generation Managed Packages
	Remove Components from First-Generation Managed Packages
	Delete Components from First-Generation Managed Packages
	Modifying Custom Fields after a Package Is Released
	Manage Versions of First-Generation Managed Packages
	View Unused Components in a Managed Package
	Push Package Upgrades to Subscribers
	Push Upgrades
	Push Upgrade Best Practices
	Assign Access to New and Changed Features in First- and Second-Generation Managed Packages
	Sample Post Install Script for a Push Upgrade for First- and Second-Generation Managed Packages
	Scheduling Push Upgrades

	Manage Licenses for Managed Packages
	Get Started with the License Management App
	Install the License Management App
	Associate a Package with the License Management App
	Configure Permissions for the License Management App
	Assign Permissions to the Subscriber Support Console

	Lead and License Records in the License Management App
	Modify a License Record
	Refresh Licenses for a Managed Package
	Extending the License Management App
	Package and Package Version Object Fields
	License Object Fields
	Adding Custom Automation to License Management App Objects

	Move the License Management App to Another Salesforce Org
	Troubleshoot the License Management App
	Leads and Licenses Aren’t Being Created in the License Management App
	Proxy User Has Deactivated Message in the LMA

	Best Practices for the License Management App
	Troubleshoot Subscriber Issues
	Request Login Access from Subscribers
	Log In to Subscriber Orgs
	Debug Subscriber Orgs

	Manage Features in First-Generation Managed Packages
	Feature Parameter Metadata Types and Custom Objects
	Set Up Feature Parameters
	Install and Set Up the Feature Management App in Your License Management Org
	Create Feature Parameters in Your Packaging Org
	Add Feature Parameters to Your Managed Package

	Use LMO-to-Subscriber Feature Parameters to Enable and Disable Features
	Assign Override Values in Your LMO
	Check LMO-to-Subscriber Values in Your Code

	Track Preferences and Activation Metrics with Subscriber-to-LMO Feature Parameters
	Hide Custom Objects and Custom Permissions in Your Subscribers’ Orgs
	Best Practices for Feature Management
	Considerations for Feature Management

	AppExchange App Analytics for First-Generation Managed Packages
	Enable App Analytics on Your First-Generation Managed Package

	Developing and Distributing Unmanaged Packages
	Create and Upload an Unmanaged Package
	Considerations for Uninstalling Unmanaged Packages

	Components Available in Unmanaged Packages
	Convert Unmanaged Packages to Managed

