
Platform Events (Beta)
Developer Guide

Version 39.0, Spring ’17

 @salesforcedocs
Last updated: March 10, 2017

https://twitter.com/salesforcedocs

© Copyright 2000–2017 salesforce.com, inc. All rights reserved. Salesforce is a registered trademark of salesforce.com, inc.,
as are other names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: Delivering Custom Notifications with Platform Events (Beta) 1

Event-Driven Software Architecture . 2
Enterprise Messaging Platform Events . 3
What Is the Difference Between the Salesforce Events? . 3

Chapter 2: Defining Your Platform Event . 4

Platform Event Fields . 5
Migrate Platform Event Definitions with Metadata API . 6
Platform Event Considerations . 7

Chapter 3: Publish Platform Events . 8

Publish Event Messages Using Apex . 9
Publish Event Messages Using Salesforce APIs . 9

Chapter 4: Subscribing to Platform Events . 12

Subscribe to Platform Event Notifications with Apex Triggers . 13
Refire Event Triggers with EventBus.RetryableException . 13

Subscribe to Platform Event Notifications with CometD . 14
Obtain Event Subscribers . 15

Chapter 5: Platform Event API Considerations and Testing . 16

Apex, API, and SOQL Considerations for Platform Events . 17
Test Your Platform Event in Apex . 18

Chapter 6: Reference . 19

Platform Event Limits . 20
EventBusSubscriber . 20
EventBus Class . 22

EventBus Methods . 22
TriggerContext Class . 24

TriggerContext Properties . 24
TriggerContext Methods . 25

CHAPTER 1 Delivering Custom Notifications with Platform Events
(Beta)

EDITIONS

Platform Events is available
in both Lightning Experience
and Salesforce Classic. The
definition of platform events
is available in Salesforce
Classic only.

Available in: Performance,
Unlimited, Enterprise, and
Developer Editions

Use platform events to deliver secure and scalable custom
notifications within Salesforce or from external sources. Define fields
to customize your platform event. Your custom platform event
determines the event data that the Force.com platform can produce
or consume.

In this chapter ...

• Event-Driven
Software Architecture

• Enterprise
Messaging Platform
Events Note: This release contains a beta version of Platform Events,

which means it’s a high-quality feature with known
limitations. For information on enabling this feature in your
org, contact Salesforce. Platform Events isn’t generally
available unless or until Salesforce announces its general
availability in documentation or in press releases or public
statements. We can’t guarantee general availability within
any particular time frame or at all. Make your purchase

• What Is the
Difference Between
the Salesforce
Events?

decisions only on the basis of generally available products
and features. You can provide feedback and suggestions for
Platform Events in the Success Community.

Platform events are part of Salesforce’s enterprise messaging platform. This platform provides an
event-driven messaging architecture to enable apps to communicate inside and outside of Salesforce.
Before diving into platform events, first take a look at what an event-based software system is.

1

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A0000004gjg

Event-Driven Software Architecture

An event-driven (or message-driven) software architecture consists of event producers, event consumers, and channels.The architecture
is suitable for large distributed systems because it decouples event producers from event consumers, thereby simplifying the
communication model in connected systems.

Event
A change in state that is meaningful in a business process. For example, a placement of a purchase order is a meaningful event
because the order fulfillment center requires notification to process the order. Or a change in a refrigerator’s temperature can indicate
that it needs service.

Event message
A message that contains data about the event. Also known as an event notification.

Event producer
The publisher of an event message over a channel.

Channel
A conduit in which an event producer transmits a message. Event consumers subscribe to the channel to receive messages. Also
referred to as event bus in Salesforce.

Event consumer
A subscriber to a channel that receives messages from the channel.

Systems in request-response communication models make a request to a web service or database to obtain information about a certain
state. The sender of the request establishes a connection to the service and depends on the availability of the service.

In comparison, systems in an event-based model obtain information and can react to it in near real time when the event occurs. Also,
producers and consumers don’t have dependencies on each other. Event producers don’t know the consumers that receive the events.
Any number of consumers can receive and react to the same events. The only dependency between producers and consumers is the
semantic of the message content.

The following diagram illustrates an event-based software architecture system.

2

Event-Driven Software ArchitectureDelivering Custom Notifications with Platform Events (Beta)

Enterprise Messaging Platform Events

The Salesforce enterprise messaging platform is event-based and offers the benefits of event-driven software architectures. Platform
events are the event messages (or notifications) that your apps send and receive to take further actions. Platform events simplify the
process of communicating changes and responding to them without writing complex logic. Publishers and subscribers communicate
with each other through events. Multiple subscribers can listen to the same event and carry out different actions.

You can customize the schema of platform events to define which data types to send in a message.

You can publish and consume platform events by using Apex or an API. Platform events integrate with the Salesforce platform through
Apex triggers. Triggers are the event consumers on the Salesforce platform that listen to event messages. Whether an external app
through the API or a native Force.com app through Apex published the event message, a trigger on that event gets fired. Triggers run
the actions in response to the event notifications.

For example, a software system monitoring a printer makes an API call to publish a custom event when the ink is low. The printer event
message contains custom fields for the printer model, serial number, and ink level. After the printer sends the event message, an Apex
trigger is fired in Salesforce. The trigger creates a Case record to place an order for a new cartridge.

As an alternative to using Apex triggers, external apps can listen to event notifications by subscribing to a channel through CometD.

What Is the Difference Between the Salesforce Events?

Salesforce offers various features that use events. Except for Platform Events and Streaming API generic events, most of these events are
notifications within Salesforce or calendar items.

The following is a partial list of the types of events provided.

Platform Events
Platform events enable you to deliver secure, scalable, and customizable event notifications within Salesforce or from external sources.
Platform event fields are defined in Salesforce and determine the data that you send and receive. Apps can publish and subscribe
to platform events on the Force.com Platform using Apex or in external systems using CometD.

Streaming API Events
Streaming API provides two types of events that you can publish and subscribe to: PushTopic and generic. PushTopic events track
field changes in Salesforce records and are tied to Salesforce records. Generic events contain arbitrary payloads. Both event types
don’t provide the level of granular customization that platform events offer. You can send a custom payload with a generic event,
but you can’t define the data as fields. You can’t define those types of events in Salesforce, and you can’t use them in Apex triggers.

Event Monitoring
Event monitoring enables admins to track user activity and the org’s performance. In this context, events are actions that users
perform, such as logins and exporting reports. The events are internal and logged by Salesforce. You can query the events, but you
can’t publish the events or subscribe to them in real time.

Transaction Security Policies
Transaction security policies evaluate user activity, such as logins and data exports, and trigger actions in real time. When a policy is
triggered, notifications are sent through email or in-app notifications. Actions can be standard actions, such as blocking an operation,
or a custom action defined in Apex.

Calendar Events
Calendar events in Salesforce are appointments and meetings you can create and view in the user interface. In the SOAP API, the
Event object represents a calendar event. Those events are calendar items and not notifications that software systems send.

This guide focuses on Platform Events only.

3

Enterprise Messaging Platform EventsDelivering Custom Notifications with Platform Events (Beta)

CHAPTER 2 Defining Your Platform Event

USER PERMISSIONS

To create and edit platform
event definitions:
• “Customize Application”

Platform events are sObjects, similar to custom objects but with
some limitations. Event notifications are instances of platform
events. Unlike sObjects, you can’t update event records. You also
can’t view the event records in the user interface. When you delete
a platform event definition, it’s permanently deleted.

In this chapter ...

• Platform Event Fields

• Migrate Platform
Event Definitions with
Metadata API

• Platform Event
Considerations

4

Platform Event Fields

To customize a platform event, create an event and add fields.

To define a platform event in the Salesforce user interface, from Setup, enter Platform Events in the Quick Find box, then
select Platform Events.

Standard Fields
Platform events include standard fields. These fields appear on the New Platform Event page.

DescriptionField

Name used to refer to your platform event in a user interface page.Label

Plural name of the platform event.Plural Label

If it’s appropriate for your org’s default language, indicate whether
the label is preceded by “an” instead of “a.”

Starts with a vowel sound

Unique name used to refer to the platform event when using the
API. In managed packages, this name prevents naming conflicts

Object Name

with package installations. Use only alphanumeric characters and
underscores. The name must begin with a letter and have no
spaces. It cannot end with an underscore nor have two consecutive
underscores.

Optional description of the object. A meaningful description helps
you remember the differences between your events when you are
viewing them in a list.

Description

Indicates whether the platform event is visible to other users.Deployment Status

Custom Fields
In addition to the standard fields, add custom fields to customize your event. Platform event custom fields support only these field types.

• Checkbox

• Date

• Date/Time

• Number

• Text

• Text Area (Long)

ReplayId System Field
The ReplayId number field identifies each event record and is populated by the system. Each replay ID is guaranteed to be higher
than the ID of the previous event but not necessarily contiguous for consecutive events. The ID is unique for the org and the channel
and is used to replay past events.

5

Platform Event FieldsDefining Your Platform Event

API Name Suffix for Platform Events
When you create a platform event, the system appends __e to create the API name of the event. For example, if you create an event
with the object name Low Ink, the API name is Low_Ink__e. The API name is used whenever you refer to the event programmatically,
for example, in Apex.

Migrate Platform Event Definitions with Metadata API

Deploy and retrieve platform event definitions from your sandbox and production org as part of your app’s development lifecycle.

The CustomObject metadata type represents platform events.

Platform event names are appended with __e. The file that contains the platform event definition has the suffix .object. Platform
events are stored in the objects folder.

Here is a definition of a sample platform event with one text field.

<?xml version="1.0" encoding="UTF-8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/metadata">

<deploymentStatus>Deployed</deploymentStatus>
<fields>

<fullName>DemoTextField__c</fullName>
<externalId>false</externalId>
<isFilteringDisabled>false</isFilteringDisabled>
<isNameField>false</isNameField>
<isSortingDisabled>false</isSortingDisabled>
<label>DemoTextField</label>
<length>16</length>
<required>false</required>
<type>Text</type>
<unique>false</unique>

</fields>
<label>DemoPlatformEvent</label>
<pluralLabel>DemoPlatformEvents</pluralLabel>

</CustomObject>

This package.xml manifest file references the previous event definition. The name of the referenced event is DemoPlatformEvent__e.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>DemoPlatformEvent__e</members>
<name>CustomObject</name>

</types>
<version>39.0</version>

</Package>

SEE ALSO:

Metadata API Developer Guide

6

Migrate Platform Event Definitions with Metadata APIDefining Your Platform Event

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_meta.meta/api_meta/

Platform Event Considerations

Take note of the considerations when defining platform events.

Permanent Deletion of Event Definitions
When you delete an event definition, it’s permanently removed and can’t be restored. Before you delete the event definition, delete
the associated triggers. Published events that use the definition are also deleted.

Renaming Event Objects
Before you rename an event, delete the associated triggers. If the event name is modified after clients have subscribed to notifications
for this event, the subscribed clients must resubscribe to the updated topic. To resubscribe to the new event, add your trigger for
the renamed event object.

No Associated Tab
Platform events don’t have an associated tab because you can’t view event records in the Salesforce user interface.

No Record Page Support in Lightning App Builder
When creating a record page in Lightning App Builder, platform events that you defined show up in the list of objects for the page.
However, you can’t create a Lightning record page for platform events because event records aren’t available in the user interface.

7

Platform Event ConsiderationsDefining Your Platform Event

CHAPTER 3 Publish Platform Events

After a platform event has been defined in your Salesforce org, you can publish event messages from a
Force.com app or an external app using Apex or Salesforce APIs.

In this chapter ...

• Publish Event
Messages Using
Apex

• Publish Event
Messages Using
Salesforce APIs

8

Publish Event Messages Using Apex

Use Apex to publish event messages from a Force.com app.

To publish event messages, call the EventBus.publish method. For example, if you’ve defined a custom platform event called
Low Ink, reference this event type as Low_Ink__e. Next create instances of this event and pass them to the Apex method.

This example creates two events of type Low_Ink__e, publishes them, and then checks whether the publishing was successful or
errors were encountered. The example assumes that the Low Ink platform event is defined in your org.

List<Low_Ink__e> inkEvents = new List<Low_Ink__e>();
inkEvents.add(new Low_Ink__e(Printer_Model__c='XZO-5', Serial_Number__c='12345',

Ink_Percentage__c=0.2));
inkEvents.add(new Low_Ink__e(Printer_Model__c='MN-123', Serial_Number__c='10013',

Ink_Percentage__c=0.15));

// Call method to publish events
List<Database.SaveResult> results = EventBus.publish(inkEvents);

// Inspect publishing result for each event
for (Database.SaveResult sr : results) {

if (sr.isSuccess()) {
System.debug('Successfully published event.');

} else {
for(Database.Error err : sr.getErrors()) {

System.debug('Error returned: ' +
err.getStatusCode() +
err.getMessage());

}
}

}

When you publish events from Apex, they’re inserted synchronously. Because event publishing is equivalent to a DML insert operation,
DML limits apply.

Publish Event Messages Using Salesforce APIs

External apps use an API to publish platform event messages.

Publish events by creating records of your event in the same way that you insert sObjects. You can use any Salesforce API to create
platform events, such as SOAP API, REST API, or Bulk API.

For example, if you’ve defined a platform event named Low Ink, publish event notifications by inserting Low_Ink__e records.
This example creates one event of type Low_Ink__e in REST API.

REST endpoint:

/services/data/v37.0/sobjects/Low_Ink__e/

Request body:

{
"Printer_Model__c" : "XZO-5"

}

9

Publish Event Messages Using ApexPublish Platform Events

After the platform event record is created, the REST response looks like this output. Headers are deleted for brevity.

HTTP/1.1 201 Created

{
"id" : "e00xx000000000B",
"success" : true,
"errors" : []

}

For more information, see the Force.com REST API Developer Guide.

This example shows the SOAP message (using Partner API) of a request to create three platform events in one call. Each event has one
custom field named Printer_Model__c.

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="urn:sobject.partner.soap.sforce.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ns2="urn:partner.soap.sforce.com">
<SOAP-ENV:Header>

<ns2:SessionHeader>
<ns2:sessionId>00DR00000001fWV!AQMAQOshATCQ4fBaYFOTrHVixfEO6l...</ns2:sessionId>

</ns2:SessionHeader>
<ns2:CallOptions>

<ns2:client>Workbench/34.0.12i</ns2:client>
<ns2:defaultNamespace xsi:nil="true"/>
<ns2:returnFieldDataTypes xsi:nil="true"/>

</ns2:CallOptions>
</SOAP-ENV:Header>
<SOAP-ENV:Body>

<ns2:create>
<ns2:sObjects>

<ns1:type>Low_Ink__e</ns1:type>
<ns1:fieldsToNull xsi:nil="true"/>
<ns1:Id xsi:nil="true"/>
<Printer_Model__c>XZO-600</Printer_Model__c>

</ns2:sObjects>
<ns2:sObjects>

<ns1:type>Low_Ink__e</ns1:type>
<ns1:fieldsToNull xsi:nil="true"/>
<ns1:Id xsi:nil="true"/>
<Printer_Model__c>XYZ-100</Printer_Model__c>

</ns2:sObjects>
<ns2:sObjects>

<ns1:type>Low_Ink__e</ns1:type>
<ns1:fieldsToNull xsi:nil="true"/>
<ns1:Id xsi:nil="true"/>
<Printer_Model__c>XYZ-9000</Printer_Model__c>

</ns2:sObjects>
</ns2:create>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

10

Publish Event Messages Using Salesforce APIsPublish Platform Events

https://developer.salesforce.com/docs/atlas.en-us.202.0.api_rest.meta/api_rest/

The response of the Partner SOAP API request looks something like the following. Headers are deleted for brevity.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns="urn:partner.soap.sforce.com">
<soapenv:Header>
...
</soapenv:Header>
<soapenv:Body>

<createResponse>
<result>

<id>e00xx000000000F</id>
<success>true</success>

</result>
<result>

<id>e00xx000000000G</id>
<success>true</success>

</result>
<result>

<id>e00xx000000000H</id>
<success>true</success>

</result>
</createResponse>

</soapenv:Body>
</soapenv:Envelope>

For more information about creating records, see the create() call in the SOAP API Developer Guide.

11

Publish Event Messages Using Salesforce APIsPublish Platform Events

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_calls_create.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/

CHAPTER 4 Subscribing to Platform Events

Receive platform events in Apex triggers or in CometD clients.In this chapter ...

• Subscribe to Platform
Event Notifications
with Apex Triggers

• Subscribe to Platform
Event Notifications
with CometD

• Obtain Event
Subscribers

12

Subscribe to Platform Event Notifications with Apex Triggers

Use Apex triggers to subscribe to events. You can receive event notifications in triggers regardless of how they were published—through
Apex or APIs. Triggers provide an autosubscription mechanism. No need to explicitly create and listen to a channel in Apex.

An Apex trigger processes platform event notifications sequentially in the order they’re received. The order of events is based on the
event replay ID. An Apex trigger can receive a batch of events at once. In this case, the order of events is preserved within each batch.

To subscribe to event notifications, write an after insert trigger on the event object type. The after insert trigger event
corresponds to the time after a platform event is published. After an event message is published, the after insert trigger is fired.

This example shows a trigger for the Low Ink event. It iterates through each event and checks a field value. The trigger inspects each
received notification and gets the printer model from the notification. If the printer model matches a certain value, other business logic
is executed. For example, the trigger creates a case to order a new cartridge for this printer model.

// Trigger for catching Low_Ink events.
trigger LowInkTrigger on Low_Ink__e (after insert) {

// List to hold all cases to be created.
List<Case> cases = new List<Case>();

// Get user Id for case owner
User usr = [SELECT Id FROM User WHERE Name='Admin User' LIMIT 1];

// Iterate through each notification.
for (Low_Ink__e event : Trigger.New) {

System.debug('Printer model: ' + event.Printer_Model__c);
if (event.Printer_Model__c == 'MN-123') {

// Create Case to order new printer cartridge.
Case cs = new Case();
cs.Priority = 'Medium';
cs.Subject = 'Order new ink cartridge for SN ' + event.Serial_Number__c;
cs.OwnerId = usr.Id;
cases.add(cs);

}
}

// Insert all cases corresponding to events received.
insert cases;

}

Note: If you create a Salesforce record with an ownerId field in the trigger, explicitly set the owner ID. For cases and leads, you
can alternatively use assignment rules to set the owner. See Apex, API, and SOQL Considerations for Platform Events.

Refire Event Triggers with EventBus.RetryableException

Refiring an event trigger gives you another chance to process event notifications. Refiring a trigger is helpful when a transient error
occurs or when waiting for a condition to change. Refire a trigger if the error or condition is external to the event records and is likely
to go away later.

Refire Event Triggers with EventBus.RetryableException
Refiring an event trigger gives you another chance to process event notifications. Refiring a trigger is helpful when a transient error
occurs or when waiting for a condition to change. Refire a trigger if the error or condition is external to the event records and is likely to
go away later.

13

Subscribe to Platform Event Notifications with Apex TriggersSubscribing to Platform Events

For example, a trigger adds a related record to a master record if a field on the master record equals a certain value. It is possible that in
a subsequent try, the field value changes and the trigger can perform the operation.

To refire the event trigger, throw EventBus.RetryableException. The event is resent after a small delay. The delay increases
with each subsequent retry. A resent event has the same field values as the original event, but the batch sizes of the events can differ.
For example, the initial trigger can receive events with replay ID 10 to 20. The resent batch can be larger, containing events with replay
ID 10 to 40.

This example is a skeletal trigger that gives you an idea of how to throw EventBus.RetryableException. The trigger uses an
if statement to check whether a certain condition is true. Alternatively, you can use a try-catch block and throw
EventBus.RetryableException in the catch block.

trigger ResendEventsTrigger on Low_Ink__e (after insert) {
if (condition == true) {

// Process platform events.
} else {

// Condition isn't met, so try again later.
throw new EventBus.RetryableException();

}
}

The previous example refires the trigger every time the condition isn’t met by throwing EventBus.RetryableException. But
what if you want to place a limit on how many times you want to refire the trigger? For example, refire the trigger for up to three times
only. This is when the EventBus.TriggerContext class comes in handy. The
EventBus.TriggerContext.currentContext() returns an instance of the EventBus.TriggerContext class
that contains information about the currently executing trigger. Calling the retries property on this instance gets the number of
times the trigger was refired.

trigger ResendEventsTrigger on Low_Ink__e (after insert) {
if (condition == true) {

// Process platform events.
} else {
// Ensure we don't refire the trigger more than 3 times
if (EventBus.TriggerContext.currentContext().retries < 4) {

// Condition isn't met, so try again later.
throw new EventBus.RetryableException(

'Condition is not met, so retrying the trigger again.');
} else {

// Trigger was refired enough times so give up and
// resort to alternative action.
// For example, send email to user.

}
}

Subscribe to Platform Event Notifications with CometD

Use EMP Connector to receive platform events in an external Java app. EMP Connector connects to CometD and hides the complexity
of subscribing to events.

Salesforce sends platform events to CometD clients, including EMP Connector, sequentially in the order they’re received. The order of
event notifications is based on the replay ID of events.

14

Subscribe to Platform Event Notifications with CometDSubscribing to Platform Events

The process of subscribing to platform event notifications through CometD is similar to subscribing to PushTopics or generic events.
The only difference is the channel name. Here is the format of the platform event topic (channel) name.

/event/<EventName>__e

For example, if you have a platform event named Low Ink, provide this channel name when subscribing.

/event/Low_Ink__e

Ensure that your API client uses version 37.0 or later of the CometD endpoint.

/cometd/39.0

The message of a delivered platform event looks similar to the following example for Low Ink events.

{
"clientId": "123qiewfarn041rn29pf37awjr",
"data": {
"payload": {
"CreatedById": "005D0000001WHiZ",
"ReplayId": null,
"CreatedDate": "2016-12-14T20:08:19Z",
"Printer_Model__c": "MN-123",
"Id": null,
"Serial_Number__c": "10013",
"Ink_Percentage__c": 0.15

},
"event": {
"schema": "_c1_d37defc8cfbf44229cbd4fe82167be19",
"replayId": 7

}
},
"channel": "/event/Low_Ink__e"

}

Use EMP Connector to receive delivered events. The connector subscribes to streaming events and platform events in the same way—only
the topic name is different. See Example: Subscribe to and Replay Events Using a Java Client in the Streaming API Developer Guide. For
the topic argument, provide /event/Low_Ink__e. The topic name value is based on the example event Low Ink.

Add custom logic to your client to perform some operations after a platform event notification is received. For example, the client can
create a request to order a new cartridge for this printer model.

Obtain Event Subscribers

View a list of all triggers that are subscribed to a platform event by using the Salesforce user interface or the API.

Note: CometD subscribers to a platform event channel aren’t currently exposed in the user interface or the API.

View all the triggers that are subscribed to a platform event on the event’s definition page.

1. From Setup, enter Platform Events in the Quick Find box, then select Platform Events.

2. Click your event’s name.

On the event’s definition page, the Subscriptions related list shows all the triggers that are subscribed to platform events. The list shows
the platform event’s last replay ID that each subscription processed and whether errors occurred.

Alternatively, you can obtain the same subscriber information by querying the EventBusSubscriber object. See EventBusSubscriber.

15

Obtain Event SubscribersSubscribing to Platform Events

https://developer.salesforce.com/docs/atlas.en-us.206.0.api_streaming.meta/api_streaming/code_sample_java_client_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_streaming.meta/api_streaming/

CHAPTER 5 Platform Event API Considerations and Testing

Learn about special behaviors of platform events in Apex and Salesforce APIs and how to test them.In this chapter ...

• Apex, API, and SOQL
Considerations for
Platform Events

• Test Your Platform
Event in Apex

16

Apex, API, and SOQL Considerations for Platform Events

Be familiar with the considerations when publishing and subscribing to platform events.

Only after insert Triggers Are Supported
Only after insert triggers are supported for platform events because event notifications can’t be updated. They’re only
inserted (published).

Infinite Trigger Loop and Limits
Be careful when publishing events from triggers because you could get into an infinite trigger loop and exceed daily event limits.
For example, if you publish an event from a trigger that’s associated with the same event object, the trigger is fired in an infinite
loop.

Apex DML Limits for Publishing Events
Each EventBus.publish method call is considered a DML statement, and DML limits apply.

Platform Event Triggers: ownerId Fields of New Records
If you create Salesforce records in platform event triggers, set the ownerId field in those records explicitly to the appropriate user.
Platform event triggers run under the Automated Process entity. If you don’t set the ownerId field on records that contain this
field, the system sets the default value of Automated Process. This example explicitly populates the ownerId field for an
opportunity with an ID obtained from another record.

Opportunity newOpp = new Opportunity(
AccountId = acc.Id,
StageName = 'Qualification',
Name = 'A ' + customerOrder.Product_Name__c + ' opportunity for ' + acc.name,
CloseDate = Date.today().addDays(7),
OwnerId = customerOrder.createdById);

For cases and leads, you can alternatively use assignment rules for setting the owner. See AssignmentRuleHeader for the SOAP API
or Setting DML Options for Apex.

Debug Logs for Platform Event Triggers
Debug logs for platform event triggers are created by a process called "Automated Process" and are separate from their corresponding
Apex code logs. The debug logs aren’t available in the Developer Console’s Log tab. One exception is Apex tests, which include
debug logging for event triggers in the same test execution log. To collect platform event trigger logs, add a trace flag entry for the
Automated Process user on the Debug Logs page in Setup. To collect logs in the Debug Logs page for your Apex code that publishes
the events, add another trace flag entry for your user.

API Request Limits for Publishing Events
Because platform events are published by inserting the event sObjects, API request limits apply. For more information, see API
Request Limits in the Salesforce Limits Quick Reference Guide.

Replaying Past Events
You can replay platform events that were sent in the past 24 hours. You can replay platform events through the API but not Apex.
The process of replaying platform events is the same as for other Streaming API events. For more information, see the following
resources.

• Example: Subscribe to and Replay Events Using a Java Client

• Example: Subscribe to and Replay Events Using a Visualforce Page

• Streaming Replay Client Extensions for Java and JavaScript on GitHub

No SOQL Support
You can’t query event notifications using SOQL.

17

Apex, API, and SOQL Considerations for Platform EventsPlatform Event API Considerations and Testing

https://developer.salesforce.com/docs/atlas.en-us.206.0.api.meta/api/sforce_api_header_assignmentruleheader.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.apexcode.meta/apexcode/langCon_apex_dml_database_dmloptions.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_api.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_api.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_streaming.meta/api_streaming/code_sample_java_client_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.206.0.api_streaming.meta/api_streaming/code_sample_generic_vfp_intro.htm
https://github.com/developerforce/StreamingReplayClientExtensions

Test Your Platform Event in Apex

Use Test.startTest() and Test.stopTest() to test your platform event in Apex.

Create test event objects, and publish them after the Test.startTest() statement. Then call the Test.stopTest()
statement to publish the test events. Include your validations after the Test.stopTest() statement.

Test.startTest();
// Create test events & publish them
Test.stopTest();
// Perform validation here

This sample test class creates one Low_Ink__e event in a test method. After Test.stopTest(), a SOQL query verifies that the
associated trigger was fired. The trigger creates a case. The case subject contains the printer serial number. This example requires the
Low_Ink__e event to be defined in the org.

@isTest
public class PlatformEventTest {

@isTest static void test1() {
Test.startTest();

// Create a test event and publish it
Low_Ink__e inkEvent = new Low_Ink__e(Printer_Model__c='MN-123',

Serial_Number__c='10013',
Ink_Percentage__c=0.15);

EventBus.publish(inkEvent);

Test.stopTest();

// Perform validation here
// Get a case whose subject contains the serial number of the test event.
// This case was created by a trigger.
List<Case> cases = [SELECT Id FROM Case WHERE

Subject LIKE '%:inkEvent.Serial_Number__c'];
// Validate that this case was found
System.assertEquals(1, cases.size());

}

}

18

Test Your Platform Event in ApexPlatform Event API Considerations and Testing

CHAPTER 6 Reference

The reference documentation for platform events covers limits, an API object, and Apex methods.In this chapter ...

• Platform Event Limits

• EventBusSubscriber

• EventBus Class

• TriggerContext Class

19

Platform Event Limits

The following limits apply to publishing platform events, event delivery in CometD clients, and platform event definitions.

All other
editions

Enterprise
Edition

Performance
and

Unlimited
Editions

Description

1,000100,000100,000Maximum number of events published per hour

(Events can be published using Apex or APIs.)

10,000100,000250,000Maximum number of events delivered to CometD clients within a 24–hour period

550100Maximum number of platform event definitions that can be created in an org

If your application exceeds these limits, or you have scenarios that require creating and publishing more events, contact Salesforce to
request a higher limit.

EventBusSubscriber

Represents a trigger that is subscribed to a platform event.

Supported Calls
query()

Special Access Rules
EventBusSubscriber is read only and can only be queried.

Fields

DetailsField

Type
string

ExternalId

Properties
Filter, Group, Nillable, Sort

Description
The ID of the subscriber. For example, the trigger ID.

Type
string

Name

20

Platform Event LimitsReference

DetailsField

Properties
Filter, Group, Nillable, Sort

Description
The name of the subscribed item, such as the trigger name.

Type
int

Position

Properties
Filter, Group, Nillable, Sort

Description
The replay ID of the last event that the subscriber processed.

Type
picklist

Status

Properties
Filter, Group, Nillable, Restricted picklist, Sort

Description
Indicates the status of the subscriber. Can be one of the following values:

• Running—The subscriber is actively listening to events.

• Suspended—The subscriber is disconnected and can’t receive events due to lack of
permissions.

• Expired—The subscriber’s connection expired. In rare cases, subscriptions can expire
if they’re inactive for an extended period of time.

• Error—The subscription encountered an error and has been disconnected.

Type
int

Tip

Properties
Filter, Group, Nillable, Sort

Description
The replay ID of the last published event.

Type
string

Topic

Properties
Filter, Group, Nillable, Sort

Description
The name of the subscription channel that corresponds to a platform event. The topic name
is the event name appended with __e, such as MyEvent__e. The topic is the channel
that the subscriber is subscribed to.

21

EventBusSubscriberReference

DetailsField

Type
string

Type

Properties
Filter, Group, Nillable, Sort

Description
The subscriber type. Can be one of the following values:

• ApexTrigger

• Process—Reserved for future use.

Usage
Use EventBusSubscriber to query details about subscribers to a platform event. You can get all subscribers for a particular event by
filtering on the Topic field, as follows.

SELECT ExternalId, Name, Position, Status, Tip, Type
FROM EventBusSubscriber
WHERE Topic='Low_Ink__e'

EventBus Class

Contains methods for publishing platform events.

Namespace
System

Usage
To learn how to use platform events in Apex, see Publish Platform Events.

EventBus Methods

EventBus Methods
The following are methods for EventBus. All methods are static.

publish(event)

Publishes the given platform event. To receive published events, use triggers for the corresponding event object.

publish(events)

Publishes the given list of platform events. To receive published events, use triggers for the corresponding event object.

22

EventBus ClassReference

publish(event)

Publishes the given platform event. To receive published events, use triggers for the corresponding event object.

Signature
public static Database.SaveResult publish(SObject event)

Parameters
event

Type: SObject

An instance of a platform event. You must define your platform event object first in your org. For example, the type of the platform
event object can be MyEvent__e.

Return Value
Type: Database.SaveResult

The result of publishing the given event.

Usage

Note: This method inserts events synchronously. The insertion is part of an Apex transaction. Apex DML limits, such as number
of records processed in DML statements, apply to this method.

publish(events)

Publishes the given list of platform events. To receive published events, use triggers for the corresponding event object.

Signature
public static List<Database.SaveResult> publish(List<SObject> events)

Parameters
events

Type: List<sObject>

A list of platform event instances. You must define your platform event object first in your org. For example, the type of the platform
event object can be MyEvent__e.

Return Value
Type: List<Database.SaveResult>

A list of results, each corresponding to the result of publishing one event.

23

EventBus MethodsReference

Usage

Note: This method inserts events synchronously. The insertion is part of an Apex transaction. Apex DML limits, such as number
of records processed in DML statements, apply to this method.

TriggerContext Class

Provides information about the trigger that’s currently executing, such as how many times the trigger was refired due to the
EventBus.RetryableException.

Namespace
EventBus

TriggerContext Properties

TriggerContext Methods

TriggerContext Properties
The following are properties for TriggerContext.

lastError

Read-only. The error message that the last thrown EventBus.RetryableException contains.

retries

Read-only. The number of times the trigger was refired due to throwing the EventBus.RetryableException.

lastError

Read-only. The error message that the last thrown EventBus.RetryableException contains.

Signature
public String lastError {get;}

Property Value
Type: String

Usage
The error message that this property returns is the message that was passed in when creating the
EventBus.RetryableException exception, as follows.

throw new EventBus.RetryableException(
'Condition is not met, so retrying the trigger again.');

24

TriggerContext ClassReference

retries

Read-only. The number of times the trigger was refired due to throwing the EventBus.RetryableException.

Signature
public Integer retries {get;}

Property Value
Type: Integer

TriggerContext Methods
The following are methods for TriggerContext.

currentContext()

Returns an instance of the EventBus.TriggerContext class containing information about the currently executing trigger.

currentContext()

Returns an instance of the EventBus.TriggerContext class containing information about the currently executing trigger.

Signature
public static eventbus.TriggerContext currentContext()

Return Value
Type: EventBus.TriggerContext

Information about the currently executing trigger.

25

TriggerContext MethodsReference

	Delivering Custom Notifications with Platform Events (Beta)
	Event-Driven Software Architecture
	Enterprise Messaging Platform Events
	What Is the Difference Between the Salesforce Events?

	Defining Your Platform Event
	Platform Event Fields
	Migrate Platform Event Definitions with Metadata API
	Platform Event Considerations

	Publish Platform Events
	Publish Event Messages Using Apex
	Publish Event Messages Using Salesforce APIs

	Subscribing to Platform Events
	Subscribe to Platform Event Notifications with Apex Triggers
	Refire Event Triggers with EventBus.RetryableException

	Subscribe to Platform Event Notifications with CometD
	Obtain Event Subscribers

	Platform Event API Considerations and Testing
	Apex, API, and SOQL Considerations for Platform Events
	Test Your Platform Event in Apex

	Reference
	Platform Event Limits
	EventBusSubscriber
	EventBus Class
	EventBus Methods
	publish(event)
	publish(events)

	TriggerContext Class
	TriggerContext Properties
	lastError
	retries

	TriggerContext Methods
	currentContext()

