
Scoping Rules Developer Guide
Version 60.0, Spring ’24

 @salesforcedocs
Last updated: November 9, 2023

https://twitter.com/salesforcedocs


© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.



CONTENTS

Chapter 1: About This Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Scoping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Quick Start: Display Records by Branch Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Before You Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Use the SOQL Operator in Scoping Rule Record Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 4
Create a Branch Management Scoping Rule Using the Tooling API . . . . . . . . . . . . . . . . . 6
Create a Branch Management Scoping Rule Using the Metadata API . . . . . . . . . . . . . . . 9
Create a Wealth Management Scoping Rule Using the Tooling API . . . . . . . . . . . . . . . . . 11
Create a Wealth Management Scoping Rule Using the Metadata API . . . . . . . . . . . . . . 12

Considerations for Scoping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Example Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Display a Branch Location’s Records by Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Display a Department’s Records by Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Display a Division’s Tasks by Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Scope Records Using Multiple String or ID Values in Record Criteria . . . . . . . . . . . . . . . . 18

Tooling API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
RestrictionRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Metadata API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
RestrictionRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24





CHAPTER 1 About This Guide

Based on criteria that you select, you can set rules to help your users see only records that are relevant
to them. Scoping rules don’t restrict the record access that your users already have. Your users can still
open and report on all records that they have access to per your org’s sharing settings.

In this chapter ...

• Scoping Rules

• Quick Start: Display
Records by Branch
Location

• Considerations for
Scoping Rules

• Example Scenarios

• Tooling API
Reference

• Metadata API
Reference

1



Scoping Rules

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

Scoping rules let you control the records that your users see based on criteria that you select. You
can set up scoping rules for different users in your Salesforce org so that they can focus on the
records that matter to them. Scoping rules are available for custom objects and the account, case,
contact, event, lead, opportunity, and task standard objects. Create, edit, or delete scoping rules
using the Tooling or Metadata API, or in Salesforce Setup.

You can provide feedback and suggestions for scoping rules in Scoping Rules group in the Trailblazer
Community.

When Do I Use Scoping Rules?
Use scoping rules when you want to let users control the record set that they see. A scoping rule doesn’t restrict users’ access to other
records that they sometimes need. Instead, scoping rules let your users focus on one set of records, then change their focus or search
to find a record that’s not in the scoped record set when they need to.

For example, you have users who support multiple agencies in your org. Each user is assigned to a specific agency. You can set up
scoping rules so that they filter the records that your users see in list views and reports. Users don’t have to spend time looking for the
correct records, but they still have access to the other agencies’ records if they need them.

You can also use scoping rules with Flow Builder to set scope according to a choice your user makes. For example, you have users who
work on account records that belong to different divisions in your organization. You want to scope the account records that users see
by division, giving your users an easy way to switch between different divisions’ record sets. You can set up a flow that your users access
using the Lightning Utility Bar to set the scope of records that the user sees in list views, reports, and other features.

How Do Scoping Rules Affect User Access?
Scoping rules are flexible. You can enable and disable them on a query-by-query basis. Plus, they don’t restrict the access that your users
have to records. Your users can still open and report on all the records that they can access according to your org’s sharing settings.

Where Are Scoping Rules Applied?
This table shows how scoping rules work with other Salesforce features.

DescriptionFeature

Applied in Lightning Experience if Filter by scope is selectedList Views

Applied in Lightning Experience if Filter by scope is selectedReports

Applied, unless a scope other than scopingrule  is specifiedSOQL

2

Scoping RulesAbout This Guide

https://trailhead.salesforce.com/trailblazer-community/groups/0F94S000000GzylSAC?tab=discussion


How Do I Configure Scoping Rules?
Create and manage scoping rules by navigating to a supported object in the Object Manager. Or use the RestrictionRule Tooling API
object or RestrictionRule Metadata API type.

Note:  The RestrictionRule API object is also used to manage restriction rules. For information on restriction rules, see the Restriction
Rule Developer Guide.

When creating more than one scoping or restriction rule, configure the rules so that only one active rule applies to a given user. Salesforce
doesn’t validate that only one active rule applies for a given user. If you create two active rules, and both rules apply to a given user, only
one of the active rules is observed.

After creating rules, you can use a change set or unlocked package to move scoping rules from one org to another.

SEE ALSO:

Salesforce Help: Create a Scoping Rule

Restriction Rule Developer Guide

Metadata API Guide: RestrictionRule

Tooling API Guide: RestrictionRule

Quick Start: Display Records by Branch Location

EDITIONS

Available in: Lightning
Experience in Performance
and Unlimited Editions

In this Quick Start, we create a scoping rule using the SOQL operator. In the first example, a scoping
rule created via Tooling API shows a banker only the accounts that match their current branch. The
second example creates the same scoping rule via Metadata API.

Before You Start

Before you create a scoping rule, make sure you that have the needed permissions and tools.

Use the SOQL Operator in Scoping Rule Record Criteria

When a rule’s record criteria must refer to a field on an object other than the target object, such as a junction object, use the SOQL
operator in record criteria. To create or edit scoping rules with the SOQL operator in the record criteria, use the Tooling or Metadata
API.

Create a Branch Management Scoping Rule Using the Tooling API

Create a scoping rule that filters account records based on a banker’s branch location. This example uses the branch management
data model included in Financial Services Cloud and the RestrictionRule Tooling API object.

Create a Branch Management Scoping Rule Using the Metadata API

Create a scoping rule that filters account records based on a banker’s branch location. This example uses the branch management
data model included in Financial Services Cloud and the RestrictionRule Metadata API type.

Create a Wealth Management Scoping Rule Using the Tooling API

Create a scoping rule that shows a sales support associate who supports multiple financial advisors only the record set that corresponds
to the financial advisor that the associate is working with. Use the RestrictionRule Tooling API object.

Create a Wealth Management Scoping Rule Using the Metadata API

Create a scoping rule that shows a sales support associate who supports multiple financial advisors only the record set that corresponds
to the financial advisor that the associate is working with. Use the RestrictionRule Metadata API type.

3

Quick Start: Display Records by Branch LocationAbout This Guide

https://help.salesforce.com/s/articleView?id=sf.security_scoping_rule_create.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.restriction_rules.meta/restriction_rules/restriction_rules_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.restriction_rules.meta/restriction_rules/meta_restrictionrule.htm
https://developer.salesforce.com/docs/atlas.en-us.restriction_rules.meta/restriction_rules/tooling_api_objects_restrictionrule.htm


Before You Start

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

USER PERMISSIONS

To create and manage
scoping rules:
• Manage Sharing

To view scoping rules:
• View Setup &

Configuration AND View
Restriction and Scoping
Rules

Before you create a scoping rule, make sure you that have the needed permissions and tools.

Creating scoping rules requires you to be comfortable using an API development application, such
as Postman. You can use either the Tooling or Metadata API to create, retrieve, update, and delete
scoping rules. In this Quick Start, we show you how to use both.

For help with creating scoping rules in Setup, see Create a Scoping Rule.

Use the SOQL Operator in Scoping Rule Record Criteria

EDITIONS

Available in: Lightning
Experience in Performance
and Unlimited Editions

USER PERMISSIONS

To create and manage
scoping rules:
• Manage Sharing

To view scoping rules:
• View Setup &

Configuration AND View
Restriction and Scoping
Rules

When a rule’s record criteria must refer to a field on an object other than the target object, such as
a junction object, use the SOQL operator in record criteria. To create or edit scoping rules with the
SOQL operator in the record criteria, use the Tooling or Metadata API.

This scoping rule scopes the account records that a banker sees by filtering according to the branch
where the banker is working.

The operator that tells Salesforce to run a SELECT statement on the
junction object.

SOQL Operator1

The record criteria in this expression is used to filter records when the
users specified by the user criteria use a list view, report, or SOQL query.

Record Filter2

4

Before You StartAbout This Guide

https://www.postman.com
https://developer.salesforce.com/docs/atlas.en-us.api_tooling.meta/api_tooling/intro_api_tooling.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_intro.htm
https://help.salesforce.com/s/articleView?id=sf.security_scoping_rule_create.htm&type=5&language=en_US


The standard or custom object whose records are scoped by the scoping
rule. Scoping rules support custom objects and the account, case, contact,
event, lead, opportunity, and task standard objects only.

Target Entity3

Detail of Record Filter:

<recordFilter>SOQL(Id, SELECT AccountId FROM BranchUnitCustomer USING SCOPE EVERYTHING
WHERE BranchUnitId IN(SELECT CurrentBranchId From Banker WHERE UserOrContactId =
$User.Id))</recordFilter>

1. In your rule’s recordFilter, start a query between double quotes: "SOQL()".

2. In the query, specify a left operand that is an ID or reference field from the target entity object that you want to retrieve. The left
operand must query a single ID (primary key) or reference (foreign key) field.

3. Write a SELECT  statement that specifies the field and the object that stores the field.

Important:  The SELECT  statement, including nested SELECT  statements, must include USING SCOPE EVERYTHING.
USING SCOPE EVERYTHING  is the only valid scope clause syntax for scoping rules.

Performance Considerations

Before you activate a scoping rule that includes the SOQL operator, test the record filter’s performance impact by running the SELECT
statement separately in your API client of choice.

• Take the SELECT  statement and run it.

• Evaluate whether the results that are returned make sense. Does the SELECT  statement return the expected results rapidly? If it’s
fast for a given user, the rule is likely to run efficiently.

• If the SELECT  statement isn’t performant, isolate the field that is slowing performance. Work with Salesforce customer support to
find out if the field can be indexed.

Other Considerations

• In a SOQL operator’s SELECT  statement, the query’s junction object and the scoping rule’s targetEntity  can’t be the same
object.

• The SOQL operator doesn't support $User  syntax except for $User.Id. Dynamic queries within the SOQL operator aren't
supported, including on other user object fields.

• Don’t use objects that aren’t supported in subqueries in your record filter’s SELECT  statement. See Comparison Operators for a
list of valid operators that you can use in the field expression of a WHERE  clause, which you use in a SELECT  statement.

SEE ALSO:

Knowledge Article: Improve Performance of SOQL Queries using a Custom Index

5

Use the SOQL Operator in Scoping Rule Record CriteriaAbout This Guide

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_comparisonoperators.htm
https://help.salesforce.com/apex/HTViewSolution?urlname=Custom-indexes-for-an-organization-to-help-improve-performance&language=en_US


Create a Branch Management Scoping Rule Using the Tooling API

EDITIONS

Available in: Lightning
Experience in Performance
and Unlimited Editions

USER PERMISSIONS

To create and manage
scoping rules:
• Manage Sharing

To view scoping rules:
• View Setup &

Configuration AND View
Restriction and Scoping
Rules

Create a scoping rule that filters account records based on a banker’s branch location. This example
uses the branch management data model included in Financial Services Cloud and the
RestrictionRule Tooling API object.

This example uses the SOQL operator in its recordFilter. Check out the Branch Management
data model to understand the objects used in this example and how they relate to each other.

1. Use the RestrictionRule object to create and manage both restriction rules and scoping rules.
Include the FullName  value and all required fields. For more information, see the reference
topic RestrictionRule.

In this example, we used these values.

Note:  The userCriteria  in this example applies this rule to any active user in your
org. Adjust the userCriteria if the rule must apply to a different subset of your
users.

{
"FullName": "BranchRuleOnAccount",
"Metadata": {

"active": true,
"description": "Scoping rule where users can scope account records by the user’s

current
branch",

"enforcementType": "Scoping",
"masterLabel": "BranchRuleOnAccount",
"recordFilter": "SOQL(Id, SELECT AccountId FROM BranchUnitCustomer USING SCOPE

EVERYTHING WHERE BranchUnitId IN(SELECT CurrentBranchId From Banker WHERE
UserOrContactId = $User.Id))",

"targetEntity": "Account",
"userCriteria": "$User.IsActive = true",
"version": 1

}
}

This example also uses objects from the Branch Management data model and sets a scoping rule that shows users lead records
related to the user’s current branch location.

{
"FullName": "BranchRuleOnLead",
"Metadata": {

"active": true,
"description": "Scoping rule where users can scope lead records by the user’s

current
branch",

"enforcementType": "Scoping",
"masterLabel": "BranchRuleOnLead",
"recordFilter": "SOQL(Id, SELECT RelatedRecordId FROM BranchUnitRelatedRecord

USING SCOPE
EVERYTHING WHERE BranchUnitId IN(SELECT CurrentBranchId From Banker WHERE

6

Create a Branch Management Scoping Rule Using the Tooling
API

About This Guide

https://developer.salesforce.com/docs/atlas.en-us.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_branch.htm
https://developer.salesforce.com/docs/atlas.en-us.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_branch.htm
https://developer.salesforce.com/docs/atlas.en-us.restriction_rules.meta/restriction_rules/tooling_api_objects_restrictionrule.htm
https://developer.salesforce.com/docs/atlas.en-us.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_branch.htm


UserOrContactId = $User.Id))",
"targetEntity": "Lead",
"userCriteria": "$User.IsActive = true",
"version": 1

}
}

To create a similar scoping rule for a different object, adjust the targetEntity  field to include case, contact, or another supported
standard or custom object.

2. To create the scoping rule, use a POST request in the tooling API.

POST /services/data/v60.0/tooling/sobjects/RestrictionRule

3. Copy your scoping rule definition into the request body.

4. Execute your request. Copy the ID returned for the scoping rule for later reference.

Let’s take a closer look at the Branch Rule On Account example’s SOQL operator.

SOQL(Id, SELECT AccountId FROM BranchUnitCustomer USING SCOPE EVERYTHING WHERE
BranchUnitId IN(SELECT CurrentBranchId From Banker WHERE UserOrContactId = $User.Id))

• The SOQL statement takes the Id  from the account object, which is the target entity whose records the scoping rule filters,
and selects AccountId  from the BranchUnitCustomer  object.

• The where clause gets the BranchUnitId, which is a unique identifier of each branch, from a nested query. The nested
query finds each banker’s current branch from the Banker  object by matching the UserOrContactId  to the currently
logged-in user.

When writing scoping rules using SOQL, follow these guidelines.

• In SOQL operators, the SOQL query object and the scoping rule target entity can’t be the same object. In this example, the SOQL
query object is BranchUnitCustomer  and the scoping rule object, called the targetEntity, is account.

• In the SOQL type RecordCriteria, the left operand must query a single ID (primary key) or reference (foreign key) field. In
this example, the left operand is a field on the target entity called Id.

For more tips about writing scoping rules using a performant SOQL operator, see Scoping Rules Considerations. The SOQL operator
is supported for scoping rules only.

Retrieve and Update Information

Use the GET, PATCH, and DELETE methods to retrieve, update, and delete scoping rules.

SEE ALSO:

Considerations for Scoping Rules

Restriction Rule Developer Guide

Retrieve and Update Information

EDITIONS

Available in: Lightning
Experience in Performance
and Unlimited Editions

Use the GET, PATCH, and DELETE methods to retrieve, update, and delete scoping rules.

Retrieve
To retrieve information about a scoping rule, use the GET method.

7

Create a Branch Management Scoping Rule Using the Tooling
API

About This Guide

https://developer.salesforce.com/docs/atlas.en-us.scoping_rules.meta/scoping_rules/scoping_rules_about.htm


Example HTTP Method and URI:

GET
/services/data/v60.0/tooling/query/?q=SELECT+id,+targetEntity,+enforcementType,+recordFilter,+userCriteria+FROM+RestrictionRule+WHERE+enforcementtype='Scoping'

Update
To update a scoping rule, use the PATCH method.

We recommend that you don’t update the value of targetEntity  after a scoping rule is created. Instead, delete the scoping rule
and create another one with the correct values.

Example HTTP Method and URI:

PATCH /services/data/v60.0/tooling/sobjects/RestrictionRule/0eYxxxxxxxxxxxx2AY

Replace 0eYxxxxxxxxxxxx2AY  with the ID returned when the scoping rule was created.

Example Request Body:

Include all Metadata fields, even if you aren’t updating them. Specify the FullName  value only if you’re changing this field.

This example deactivates the scoping rule by setting active  to false.

{
"Metadata": {

"active": false,
"description": "sales support associate sees only account records of specified

advisor",
"enforcementType": "Scoping",
"masterLabel": "Advisor1 Record Set",
"recordFilter": "SOQL(id, SELECT Account__c FROM Client_Entitlement__c USING SCOPE

EVERYTHING
WHERE Team_Entitlement__c IN (
SELECT Team_Entitlement__c
FROM User_Entitlement__c
USING SCOPE EVERYTHING
WHERE User__c = $User.id)
)",

"targetEntity": "Account",
"userCriteria": "$User.ProfileId = '00exxxxxxxxxxxx'",
"version": 1

}
}

Delete
To delete a scoping rule, use the DELETE method.

Example HTTP Method and URI:

DELETE /services/data/v60.0/tooling/sobjects/RestrictionRule/0eYxxxxxxxxxxxx2AY

Replace 0eYxxxxxxxxxxxx2AY  with the ID returned when creating the scoping rule.

Note:  If the userCriteria  or recordCriteria  field contains a Salesforce org ID and you’re deploying to a different
org than the org you retrieved them from, modify the Salesforce ID first.

8

Create a Branch Management Scoping Rule Using the Tooling
API

About This Guide



Create a Branch Management Scoping Rule Using the Metadata API

EDITIONS

Available in: Lightning
Experience in Performance
and Unlimited Editions

USER PERMISSIONS

To create and manage
scoping rules:
• Manage Sharing

To view scoping rules:
• View Setup &

Configuration AND View
Restriction and Scoping
Rules

Create a scoping rule that filters account records based on a banker’s branch location. This example
uses the branch management data model included in Financial Services Cloud and the
RestrictionRule Metadata API type.

This example uses the SOQL operator in its recordFilter  to identify the accounts that match
a retail banker’s branch location. Check out the Branch Management data model to understand
the objects used in this example and how they relate to each other.

1. Use the RestrictionRule type to create and manage both restriction rules and scoping rules. Set
up the package.xml  manifest file and your directory.

Example package.xml  file:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>*</members>
<name>RestrictionRule</name>

</types>
<version>60.0</version>

</Package>

Example directory:

myPackage/package.xml
myPackage/restrictionRules
myPackage/restrictionRules/Rule1.rule
myPackage/restrictionRules/Rule2.rule

2. Include all required fields.

In this example, we used these values.

<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">
<active>true</active>
<description>Scoping rule where users can scope account records by the user’s current

branch</description>
<enforcementType>Scoping</enforcementType>
<masterLabel>BranchRuleOnAccount</masterLabel>
<recordFilter>SOQL(Id, SELECT AccountId FROM BranchUnitCustomer USING SCOPE

EVERYTHING WHERE BranchUnitId IN(SELECT CurrentBranchId From Banker WHERE
UserOrContactId = $User.Id))</recordFilter>
<targetEntity>Account</targetEntity>
<userCriteria>$User.IsActive = true</userCriteria>
<version>1</version>

</RestrictionRule>

9

Create a Branch Management Scoping Rule Using the
Metadata API

About This Guide

https://developer.salesforce.com/docs/atlas.en-us.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_branch.htm
https://developer.salesforce.com/docs/atlas.en-us.restriction_rules.meta/restriction_rules/meta_restrictionrule.htm


This example also uses objects from the Branch Management data model and sets a scoping rule that shows users lead records
related to the user’s current branch location.

<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">
<active>true</active>
<description>Scoping rule where users can scope lead records by their current

branch</description>
<enforcementType>Scoping</enforcementType>
<masterLabel>BranchRuleOnLead</masterLabel>
<recordFilter>SOQL(Id, SELECT RelatedRecordId FROM BranchUnitRelatedRecord USING SCOPE

EVERYTHING WHERE BranchUnitId IN(SELECT CurrentBranchId From Banker WHERE
UserOrContactId = $User.Id))</recordFilter>
<targetEntity>Lead</targetEntity>
<userCriteria>$User.IsActive = true</userCriteria>
<version>1</version>

</RestrictionRule>

To create a similar scoping rule for a different object, adjust the targetEntity  field to include case, contact, or another supported
standard or custom object.

3. Zip your directory, and deploy your changes. For more information, see Deploying and Retrieving Metadata in the Metadata API
Developer Guide.

Let’s take a closer look at the Branch Rule On Account example’s SOQL operator.

SOQL(Id, SELECT AccountId FROM BranchUnitCustomer USING SCOPE EVERYTHING WHERE
BranchUnitId IN(SELECT CurrentBranchId From Banker WHERE UserOrContactId = $User.Id))

• The SOQL statement takes the Id  from the account object, which is the target entity whose records the scoping rule filters,
and selects AccountId  from the BranchUnitCustomer  object.

• The where clause gets the BranchUnitId, which is a unique identifier of each branch, from a nested query. The nested
query finds each banker’s current branch from the Banker object by matching the UserOrContactId  to the currently
logged-in user.

When writing scoping rules using SOQL, follow these guidelines.

• In SOQL operators, the SOQL query object and the scoping rule target entity can’t be the same object. In this example, the SOQL
query object is BranchUnitCustomer  and the scoping rule object, called the targetEntity, is account.

• In the SOQL type RecordCriteria, the left operand must query a single ID (primary key) or reference (foreign key) field. In
this example, the left operand is a field on the target entity called Id.

For more tips about writing scoping rules using a performant SOQL operator, see Scoping Rules Considerations. The SOQL operator
is supported for scoping rules only.

Retrieve and Update Information

Use the deploy()  and retrieve()  calls to move metadata (XML files) between Salesforce and a local file system. You can
delete scoping rules by using the same procedure used to deploy components and including a delete manifest file.

SEE ALSO:

Considerations for Scoping Rules

Restriction Rule Developer Guide

10

Create a Branch Management Scoping Rule Using the
Metadata API

About This Guide

https://developer.salesforce.com/docs/atlas.en-us.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_branch.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/file_based.htm
https://developer.salesforce.com/docs/atlas.en-us.scoping_rules.meta/scoping_rules/scoping_rules_about.htm


Retrieve and Update Information

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

Use the deploy()  and retrieve()  calls to move metadata (XML files) between Salesforce
and a local file system. You can delete scoping rules by using the same procedure used to deploy
components and including a delete manifest file.

For more information, see Deploying and Retrieving Metadata in the Metadata API Developer Guide.

If the userCriteria  or recordCriteria  field contains a Salesforce org ID and you’re
deploying to a different org than the org you retrieved them from, modify the Salesforce ID first.

Note:  We recommend that you don’t update the value of targetEntity  after a scoping
rule is created. Instead, delete the scoping rule and create another one with the correct values.

To delete components, use the same procedure as with deploying components, but include a delete manifest file that’s named
destructiveChanges.xml  and lists the components to delete. To learn more, see Deleting Components from an Organization.

SEE ALSO:

Metadata API Guide: Deleting Components from an Organization

Create a Wealth Management Scoping Rule Using the Tooling API

EDITIONS

Available in: Lightning
Experience in Performance
and Unlimited Editions

USER PERMISSIONS

To create and manage
scoping rules:
• Manage Sharing

To view scoping rules:
• View Setup &

Configuration AND View
Restriction and Scoping
Rules

Create a scoping rule that shows a sales support associate who supports multiple financial advisors
only the record set that corresponds to the financial advisor that the associate is working with. Use
the RestrictionRule Tooling API object.

Note:  You can use the RestrictionRule object to create and manage both restriction rules
and scoping rules. For information on restriction rules, see the Restriction Rule Developer
Guide.

This example uses the SOQL operator in the recordFilter field to determine which accounts to display
to the user based on the account, team, and user entitlements.

1. Set a value for the FullName  value (the full name of the associated metadata object in
Metadata API).

2. Include all other required fields. For more information, see the reference topic RestrictionRule.

In this example, we used these values.

{
"FullName": "SalesSupportAssociateScopingRule",
"Metadata": {

"active": true,
"description": "Sales support associate sees only account records of of Advisor1",

"enforcementType": "Scoping",
"masterLabel": "Advisor1 Record Set",
"recordFilter": "SOQL(id, SELECT Account__c FROM Client_Entitlement__c USING

SCOPE EVERYTHING

11

Create a Wealth Management Scoping Rule Using the Tooling
API

About This Guide

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/file_based.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_deploy_deleting_files.htm
https://developer.salesforce.com/docs/atlas.en-us.restriction_rules.meta/restriction_rules/tooling_api_objects_restrictionrule.htm


WHERE Team_Entitlement__c IN (
SELECT Team_Entitlement__c
FROM User_Entitlement__c
USING SCOPE EVERYTHING
WHERE User__c = $User.id)
)",

"targetEntity": "Account",
"userCriteria": "$User.ProfileId = '00exxxxxxxxxxxx'",
"version": 1

}
}

3. Use a POST request to create the scoping rule.

POST /services/data/60.0/tooling/sobjects/RestrictionRule

4. Copy your scoping rule definition into the request body.

5. Execute your request. Copy the ID returned for the scoping rule for later reference.

Create a Wealth Management Scoping Rule Using the Metadata API

EDITIONS

Available in: Lightning
Experience in Performance
and Unlimited Editions

USER PERMISSIONS

To create and manage
scoping rules:
• Manage Sharing

To view scoping rules:
• View Setup &

Configuration AND View
Restriction and Scoping
Rules

Create a scoping rule that shows a sales support associate who supports multiple financial advisors
only the record set that corresponds to the financial advisor that the associate is working with. Use
the RestrictionRule Metadata API type.

Note:  You can use the RestrictionRule object to create and manage both restriction rules
and scoping rules. For information on restriction rules, see the Restriction Rule Developer
Guide.

1. Set up the package.xml  manifest file and your directory.

Example package.xml  file:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>*</members>
<name>RestrictionRule</name>

</types>
<version>60.0</version>

</Package>

Example directory:

myPackage/package.xml
myPackage/restrictionRules

12

Create a Wealth Management Scoping Rule Using the
Metadata API

About This Guide



myPackage/restrictionRules/Rule1.rule
myPackage/restrictionRules/Rule2.rule

2. Include all required fields. For more information, see the reference topic RestrictionRule.

In this example, we used these values.

<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">
<active>true</active>
<description>Sales support associate sees only account records of specified

advisor</description>
<enforcementType>Scoping</enforcementType>
<masterLabel>Advisor1 Record Type</masterLabel>
<recordFilter>recordTypeId = '012xxxxxxxxxxxx'</recordFilter>
<targetEntity>Account</targetEntity>
<userCriteria>$User.ProfileId = '00exxxxxxxxxxxx'</userCriteria>
<version>1</version>

</RestrictionRule>

3. Zip your directory, and deploy your changes. For more information, see Deploying and Retrieving Metadata in the Metadata API
Developer Guide.

Considerations for Scoping Rules

EDITIONS

Available in: Lightning
Experience in Performance
and Unlimited Editions

Familiarize yourself with these considerations for using scoping rules.

Creating Scoping Rules
Your edition affects how many active rules you can have.

• Create up to two active scoping rules per object in Developer editions.

• Create up to five active scoping rules per object in Performance and Unlimited editions.

• Create only one scoping or restriction rule per object per user. For a given object, only one scoping or restriction rule’s
userCriteria  field can evaluate to true  for a given user.

• Creating a scoping rule for an object impacts only that object and doesn’t affect child objects.

• When you reference the Owner  field, you must specify the object type in your syntax. For example, the Owner  field on an event
object can contain a user or a queue, but queues aren’t supported in scoping rules. So it’s necessary to specify Owner:User in the
recordFilter  syntax when the filter allows only users.

• You can reference another object’s field using dot notation in the recordFilter  field. You can use only one “dot” (one lookup
level from the targetEntity). For example, Owner.UserRoleId.

• These data types are supported in the recordFilter  and userCriteria  fields.

– boolean

– date (yyyy-MM-dd)

– dateTime (yyyy-MM-dd HH:mm:ss)

– double

– int

– reference

13

Considerations for Scoping RulesAbout This Guide

https://developer.salesforce.com/docs/atlas.en-us.restriction_rules.meta/restriction_rules/meta_restrictionrule.htm
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/file_based.htm


– string

– time

– single picklist

Note:  Comma-separated ID or string values are supported in the Record Criteria field.

• Including a null or blank value in record criteria isn't supported and can result in unexpected behavior.

• Don't create rules on Event.IsGroupEvent, which indicates whether the event has invitees.

• Use the Activity Timeline instead of Open Activities or Activity History. If you use Open Activities and Activity History related lists,
create rules on task or event objects using fields that are only available on the OpenActivity and ActivityHistory objects.

• For list views and reports, you can apply the scope through Metadata API (using the filterScope  field on the ListView type
and the scope  field on the Report type “scope”).

• If you include an ID in your recordFilter  or userCriteria  field that is specific to your Salesforce org (such as a role,
record type, or profile ID), you must modify the ID in the target org if it’s different from the org where the scoping rule was originally
created. Keep this consideration in mind when deploying rules between sandboxes or to a production org.

Using SOQL
• You can use a SOQL operator in record criteria only when creating scoping rules via API.

• Unless you use SOQL, scoping rules support only the EQUALS operator. The AND and OR operators aren’t supported.

• When using the SOQL operator in the record filter, the SELECT statement, including nested SELECT statements, must include USING
SCOPE EVERYTHING. USING SCOPE EVERYTHING is the only valid scope clause syntax for scoping rules.

• The SOQL operator doesn't support $User syntax except for $User.Id. Dynamic queries within the SOQL operator aren't supported,
including on other user object fields.

Example: Supported SOQL Syntax

SOQL(Id, SELECT Account.id FROM AccountAdvisors USING SCOPE EVERYTHING WHERE userid

= $User.Id)

Unsupported SOQL Syntax

SOQL(Id, SELECT Account.id FROM AccountAdvisors USING SCOPE EVERYTHING WHERE userid
= $User.Current_Advisor__c)

• Using the same object as the SOQL Query object and the Scoping Rule object isn’t supported.

• The left operand in the SOQL type RecordCriteria must query a single ID (primary key) or reference (foreign key) field. See Comparison
Operators for a list of valid operators that you can use in the field expression of a WHERE  clause, which you use in a SELECT
statement.

Example: "recordFilter":"SOQL(OwnerId, Select Id from User USING SCOPE Everything
LIMIT 2)"

The left operand is OwnerId in this example.

Modifying Scoping Rules
• We recommend not editing the targetEntity  field after a scoping rule is created. Instead, delete the rule and create another

one with the correct values.

14

Considerations for Scoping RulesAbout This Guide



• To disable a scoping rule, first delete the list views and reports that have Filter by scope selected. After a scoping rule is disabled,
the list views and reports aren't functional nor modifiable.

• The scoping rule userCriteria  field supports custom permissions. If you delete the custom permission, the scoping rules that
use the custom permissions don’t work.

• Scoping rules support custom picklist values in record filter and user criteria. If you delete a custom picklist value used in a scoping
rule, the rule no longer works as intended.

Accounts, Contacts, and Person Accounts
• Scoping rules don't support IsPersonAccount fields on the account object. When setting a scoping rule, don't use IsPersonAccount

fields such as PersonDepartment or PersonLeadSource in record filter criteria. Find a list of IsPersonAccount fields on the Account
page.

• An error can result if you navigate to a person account detail page from a Contacts list view. To navigate to a person account detail
page when there's a scoping rule on the account object, use an Accounts list view such as All Accounts.

• In related lists, all associated records that a user can access are visible, regardless of scope, except in the contact role related list.
When a scoping rule is applied on the contact object, scope is applied to the contact role related list that appears on account,
opportunity, case, and contract records. So it’s possible that users, such as members of a sales team, see a filtered set of contact roles
without knowing that the list is filtered.

• When an org uses duplicate rules to prevent creating duplicate records, scoping rules limit the potential duplicates that are shown,
even when Bypass sharing rules is turned on. Duplicate records are limited by the scope set in the scoping rule.

Performance Considerations
Scoping rules were built to support sharing needs in a performant way. Your data volume and architecture are factors in rule performance.
Salesforce reserves the right to disable a scoping rule if a rule you create is inefficient or if your data model has so much data that scoping
rules cause slowness when applied. To prevent throttling or deactivation, test the scoping rules that you plan to apply in a sandbox
environment before enabling them in production.

• To test the performance impact of a rule that uses a SOQL operator, take the SOQL statement and run it in your API client of choice.
If it’s fast for a given user, the rule is likely to run efficiently.

• If a rule isn’t performant, isolate the field that is slowing performance. Work with Salesforce customer support to find out if the field
can be indexed.

SEE ALSO:

Knowledge Article: Improve Performance of SOQL Queries using a Custom Index

SOQL and SOSL Reference: Comparison Operators

Example Scenarios

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

These sample scoping rules provide relevant records to users.

Display a Branch Location’s Records by Default

This scoping rule displays task records associated with a particular bank branch location by
default. A custom field called Branch__c stores the bank’s branch locations.

15

Example ScenariosAbout This Guide

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_account.htm
https://help.salesforce.com/s/articleView?id=sf.sales_core_contact_roles.htm&type=5&language=en_US
https://help.salesforce.com/apex/HTViewSolution?urlname=Custom-indexes-for-an-organization-to-help-improve-performance&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_comparisonoperators.htm


Display a Department’s Records by Default

This scoping rule displays contact records associated with a particular department by default for a user who works on them. The
rule dynamically matches the contact owner's department with the current user's department.

Display a Division’s Tasks by Default

This scoping rule displays records associated with a particular division by default for a user.

Scope Records Using Multiple String or ID Values in Record Criteria

This scoping rule allows active users to scope the records they see to records whose Name__c field matches the rule’s record criteria
value. The record criteria contains strings separated by a comma. ID values are also supported. Double-quotes specify that the value
inside the quotes isn’t considered a delimiter.

Display a Branch Location’s Records by Default

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

This scoping rule displays task records associated with a particular bank branch location by default.
A custom field called Branch__c stores the bank’s branch locations.

Tooling API

{
"FullName":"Task scoping rule on Bank Branch 1",
"Metadata": {

"active":true,
"description":"View tasks for Bank Branch 1.",
"enforcementType":"Scoping",
"masterLabel":"SR for Bank Branch 1",
"recordFilter":"Branch__c = $User.Branch__c",
"targetEntity":"Task",
"userCriteria":"$User.UserRoleId = '00Exxxxxxxxxxxx'",
"version":1

}
}

Metadata API
<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">

<active>true</active>
<description>View tasks for Bank Branch 1.</description>
<enforcementType>Scoping</enforcementType>
<masterLabel>SR for Bank Branch 1</masterLabel>
<recordFilter>Branch__c = $User.Branch__c</recordFilter>
<targetEntity>Task</targetEntity>
<userCriteria>$User.UserRoleId = '00Exxxxxxxxxxxx'</userCriteria>
<version>1</version>

</RestrictionRule>

16

Display a Branch Location’s Records by DefaultAbout This Guide



Display a Department’s Records by Default

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

This scoping rule displays contact records associated with a particular department by default for a
user who works on them. The rule dynamically matches the contact owner's department with the
current user's department.

Tooling API

{
"FullName":"Department A contact scoping rule",
"Metadata": {

"active":true,
"description":"View contacts from Department A.",
"enforcementType":"Scoping",
"masterLabel":"SR for Department A",
"recordFilter":"Department=$User.Department",
"targetEntity":"Contact",
"userCriteria":"$User.UserRoleId = '00Exxxxxxxxxxxx'",
"version":1

}
}

Metadata API
<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">

<active>true</active>
<description>View tasks contacts from Department A.</description>
<enforcementType>Scoping</enforcementType>
<masterLabel>SR for Department A contacts</masterLabel>
<recordFilter>Department=$User.Department</recordFilter>
<targetEntity>Contact</targetEntity>
<userCriteria>$User.UserRoleId = '00Exxxxxxxxxxxx'</userCriteria>
<version>1</version>

</RestrictionRule>

Display a Division’s Tasks by Default

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

This scoping rule displays records associated with a particular division by default for a user.

Tooling API

{
"FullName":"Task scoping rule on current user’s Division",
"Metadata": {

17

Display a Department’s Records by DefaultAbout This Guide



"active":true,
"description":"View tasks in the current user’s Division.",
"enforcementType":"Scoping",
"masterLabel":"SR for Divisions",
"recordFilter":"Division=$User.Division",
"targetEntity":"Task",
"userCriteria":"$User.ProfileId = '00exxxxxxxxxxxx'",
"version":1

}
}

Metadata API
<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">

<active>true</active>
<description>View tasks in the current user’s Division.</description>
<enforcementType>Scoping</enforcementType>
<masterLabel>SR for Divisions</masterLabel>
<recordFilter>Division=$User.Division</recordFilter>
<targetEntity>Task</targetEntity>
<userCriteria>$User.ProfileId = '00exxxxxxxxxxxx'</userCriteria>
<version>1</version>

</RestrictionRule>

Scope Records Using Multiple String or ID Values in Record Criteria

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

This scoping rule allows active users to scope the records they see to records whose Name__c field
matches the rule’s record criteria value. The record criteria contains strings separated by a comma.
ID values are also supported. Double-quotes specify that the value inside the quotes isn’t considered
a delimiter.

This rule uses a custom object called Agent__c with a text field called Name__c.

Tooling API
{

"FullName":"Agent records matching name field",
"Metadata": {

"active":true,
"description":"Show Records Matching Name__c field",
"enforcementType":"Scoping",
"masterLabel":"Records Matching Name__c field",
"recordFilter":"Name__c='Tom, Anita, “Torres, Jia”'",
"targetEntity":"Agent__c",
"userCriteria":"$User.IsActive=true",
"version":1

}
}

18

Scope Records Using Multiple String or ID Values in Record
Criteria

About This Guide



Metadata API
<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">

<active>true</active>
<description>Show Records Matching Name__c field</description>
<enforcementType>Scoping</enforcementType>
<masterLabel>Records Matching Name__c field</masterLabel>
<recordFilter>Name__c='Tom, Anita, “Torres, Jia”</recordFilter>
<targetEntity>Agent__c</targetEntity>
<userCriteria>$User.IsActive=true</userCriteria>
<version>1</version>

</RestrictionRule>

This scoping rule allows active users to see records owned by two different managers. In this example, the rule’s record criteria contains
IDs separated by a comma.

Tooling API
{

"FullName":"Records Owned By Managers",
"Metadata": {

"active":true,
"description":"Displays records owned by two department managers",
"enforcementType":"Scoping",
"masterLabel":"RR for manager records",
"recordFilter":"Agent__c.Owner:User.ManagerId=001xx000003HNy7, 001xx000003HNut",
"targetEntity":"Agent__c",
"userCriteria":"$User.IsActive=true",
"version":1

}
}

Metadata API
<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">

<active>true</active>
<description>Displays records owned by two department managers</description>
<enforcementType>Scoping</enforcementType>
<masterLabel>RR for manager records</masterLabel>
<recordFilter>Agent__c.Owner:User.ManagerId=001xx000003HNy7,

001xx000003HNut</recordFilter>
<targetEntity>Agent__c</targetEntity>
<userCriteria>$User.IsActive=true</userCriteria>
<version>1</version>

</RestrictionRule>

19

Scope Records Using Multiple String or ID Values in Record
Criteria

About This Guide



Tooling API Reference

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

This section provides more information on the RestrictionRule Tooling API object used to create
scoping rules.

RestrictionRule

Represents a restriction rule or a scoping rule. A restriction rule has EnforcementType  set
to Restrict  and controls the access that specified users have to designated records. A
scoping rule has EnforcementType  set to Scoping  and controls the default records
that your users see without restricting access.

RestrictionRule
Represents a restriction rule or a scoping rule. A restriction rule has EnforcementType  set to Restrict  and controls the access
that specified users have to designated records. A scoping rule has EnforcementType  set to Scoping  and controls the default
records that your users see without restricting access.

This object is available in API version 52.0 and later.

Supported SOAP API Calls
create(), delete(), describeSObjects(), query(), retrieve(), update(), upsert()

Supported REST API Methods
DELETE, GET, HEAD, PATCH, POST, Query

Special Access Rules
Only users with the View Restriction and Scoping Rules permission can view restriction rules and scoping rules via the API. Only users
with the Manage Sharing permission can view, create, update, and delete restriction rules and scoping rules.

Fields

DetailsField

Type
textarea

Description

Properties
Filter, Group, Nillable, Sort

Description
Required. The description of the rule.

Type
string

DeveloperName

20

Tooling API ReferenceAbout This Guide



DetailsField

Properties
Filter, Group, Sort

Description
The unique name for the RestrictionRule object.

This name can contain only underscores and alphanumeric characters, and must be unique
in your org. It must begin with a letter, not include spaces, not end with an underscore, and
not contain two consecutive underscores. This field is automatically generated, but you can
supply your own value if you create the record using the API.

Note:  Only users with View DeveloperName OR View Setup and Configuration
permission can view, group, sort, and filter this field.

Type
picklist

EnforcementType

Properties
Defaulted on create, Filter, Group, Restricted picklist, Sort

Description
Required. The type of rule.

Possible values are:

• FieldRestrict—Don’t use.

• Restrict—Restriction rule.

• Scoping—Scoping rule.

Type
string

FullName

Properties
Create, Group, Nillable

Description
Required. The full name of the associated RestrictionRule in Metadata API. The full name can
include a namespaceprefix.

Query this field only if the query result contains no more than one record. Otherwise, an error
is returned. If more than one record exists, use multiple queries to retrieve the records. This
limit protects performance.

Type
boolean

IsActive

Properties
Defaulted on create, Filter, Group, Sort

Description
Indicates whether the rule is active (true) or not (false). The default value is false.

21

RestrictionRuleAbout This Guide



DetailsField

Type
picklist

Language

Properties
Defaulted on create, Filter, Group, Nillable, Restricted picklist, Sort

Description
The language of the rule. The value for this field is the language value of the org.

Type
string

MasterLabel

Properties
Filter, Group, Sort

Description
Label for the rule.

Type
mns:RestrictionRule

Metadata

Properties
Create, Nillable, Update

Description
The restriction rule’s metadata.

Query this field only if the query result contains no more than one record. Otherwise, an error
is returned. If more than one record exists, use multiple queries to retrieve the records. This
limit protects performance.

Type
textarea

RecordFilter

Properties
Create, Filter, Group, Sort, Update

Description
Required. The criteria that determine which records are accessible via the rule.

Type
picklist

TargetEntity

Properties
Filter, Group, Restricted picklist, Sort

Description
Required. The object for which you're creating the rule. We recommend that you don’t edit
this field after the rule is created.

If EnforcementType  is set to Restrict, custom objects, external objects, and these
objects are supported:

• Contract

22

RestrictionRuleAbout This Guide

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_restrictionrule.htm


DetailsField

• Event

• Task

• TimeSheet

• TimeSheetEntry

If EnforcementType  is set to Scoping, custom objects and these objects are
supported:

• Account

• Case

• Contact

• Event

• Lead

• Opportunity

• Task

Type
textarea

UserCriteria

Properties
Create, Filter, Group, Sort, Update

Description
Required. The users that this rule applies to, such as all active users or users with a specified
role or profile.

Type
int

Version

Properties
Filter, Group, Sort

Description
Required. The rule's version number.

Usage
For more information on restriction rules, see the Restriction Rules Developer Guide.

23

RestrictionRuleAbout This Guide



Metadata API Reference

EDITIONS

Available in: Lightning
Experience in
Performance,Unlimited,
and Developer editions.

This section provides more information on the RestrictionRule Metadata API type used to create
scoping rules.

RestrictionRule

Represents a restriction rule or a scoping rule. A restriction rule has enforcementType  set
to Restrict  and controls the access that specified users have to designated records. A
scoping rule has enforcementType  set to Scoping  and controls the default records
that your users see without restricting access. This type extends the Metadata metadata type
and inherits its fullName  field.

RestrictionRule
Represents a restriction rule or a scoping rule. A restriction rule has enforcementType  set to Restrict  and controls the access
that specified users have to designated records. A scoping rule has enforcementType  set to Scoping  and controls the default
records that your users see without restricting access. This type extends the Metadata metadata type and inherits its fullName  field.

Important:  Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

File Suffix and Directory Location
RestrictionRule components have the suffix .rule  and are stored in the restrictionRules  folder.

Version
RestrictionRule components are available in API version 52.0 and later.

Special Access Rules
Only users with the View Restriction and Scoping Rules permission can view restriction rules and scoping rules via the API. Only users
with the Manage Sharing permission can view, create, update, and delete restriction rules and scoping rules.

Fields

DescriptionField TypeField Name

Indicates whether the rule is active (true) or not (false). The default
value is false.

booleanactive

Required. The description of the rule.stringdescription

Required. The type of rule. Valid values are:EnforcementType
(enumeration of
type string)

enforcementType

• FieldRestrict—Don’t use.

• Restrict—Restriction rule.

• Scoping—Scoping rule.

24

Metadata API ReferenceAbout This Guide



DescriptionField TypeField Name

Required. The name of the rule.stringmasterLabel

Required. The criteria that determine which records are accessible via
the rule.

stringrecordFilter

Required. The object for which you're creating the rule. We recommend
that you don’t edit this field after the rule is created.

If enforcementType  is set to Restrict, custom objects, external
objects, and these objects are supported:

stringtargetEntity

• Contract

• Event

• Task

• TimeSheet

• TimeSheetEntry

If enforcementType  is set to Scoping, custom objects and these
objects are supported:

• Account

• Case

• Contact

• Event

• Lead

• Opportunity

• Task

Required. The users that this rule applies to, such as all active users or
users with a specified role or profile.

stringuserCriteria

Required. The rule's version number.intversion

Declarative Metadata Sample Definition
The following is an example of a RestrictionRule component.

<?xml version="1.0" encoding="UTF-8"?>
<RestrictionRule xmlns="http://soap.sforce.com/2006/04/metadata">

<active>true</active>
<description>Allows users with a specific profile to see only tasks that they

own.</description>
<enforcementType>Restrict</enforcementType>
<masterLabel>Tasks You Own</masterLabel>
<recordFilter>OwnerId = $User.Id</recordFilter>
<targetEntity>Task</targetEntity>
<userCriteria>$User.ProfileId = '005xxxxxxxxxxxx'</userCriteria>
<version>1</version>

</RestrictionRule>

25

RestrictionRuleAbout This Guide



The following is an example package.xml  that references the previous definition.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>RestrictionRule</name>

</types>
<version>55.0</version>

</Package>

Usage
For more information on restriction rules, see the Restriction Rules Developer Guide.

26

RestrictionRuleAbout This Guide


	About This Guide
	Scoping Rules
	Quick Start: Display Records by Branch Location
	Before You Start
	Use the SOQL Operator in Scoping Rule Record Criteria
	Create a Branch Management Scoping Rule Using the Tooling API
	Retrieve and Update Information

	Create a Branch Management Scoping Rule Using the Metadata API
	Retrieve and Update Information

	Create a Wealth Management Scoping Rule Using the Tooling API
	Create a Wealth Management Scoping Rule Using the Metadata API

	Considerations for Scoping Rules
	Example Scenarios
	Display a Branch Location’s Records by Default
	Display a Department’s Records by Default
	Display a Division’s Tasks by Default
	Scope Records Using Multiple String or ID Values in Record Criteria

	Tooling API Reference
	RestrictionRule

	Metadata API Reference
	RestrictionRule



