
Salesforce DX Developer Guide
Version 60.0, Spring ’24

 @salesforcedocs
Last updated: January 12, 2024

https://twitter.com/salesforcedocs

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: How Salesforce Developer Experience Changes the Way You Work 1

Use a Sample Repo to Get Started . 2
Create an Application . 3
Migrate or Import Existing Source . 4
Release Notes . 4

Chapter 2: Enable Dev Hub Features in Your Org . 5

Free Limited Access License . 7
Enable Unlocked and Second-Generation Managed Packaging . 8
Enable Source Tracking in Sandboxes . 8
Enable Einstein Features . 8
Enable Language Extension Packages (Beta) . 9
Add Salesforce DX Users . 9

Add a Developer User to Your Dev Hub Org . 9
Add a System Administrator or Standard User to Your Dev Hub Org 10
Permission Set for Salesforce DX Users . 10

Chapter 3: Project Setup . 12

Sample Repository on GitHub . 13
Create a Salesforce DX Project . 13
Salesforce DX Project Structure and Source Format . 14
How to Exclude Source When Syncing . 19
Create a Salesforce DX Project from Existing Source . 23
Convert Files in Metadata Format to Source Format . 24
Salesforce DX Usernames and Orgs . 25
Link a Namespace to a Dev Hub Org . 27
Salesforce DX Project Configuration . 28
Multiple Package Directories . 31
Replace Strings in Code Before Deploying . 33

Chapter 4: Authorization . 38

Authorize an Org Using a Browser . 39
Authorize an Org Using the JWT Flow . 40

Authorize a Scratch Org Using the JWT Flow . 41
Create a Private Key and Self-Signed Digital Certificate . 42
Create a Connected App in Your Org . 43
Use the Default Connected App Securely . 44
Use an Existing Access Token . 45
Authorization Information for an Org . 46

Log Out of an Org . 47

Chapter 5: Metadata Coverage . 49

Chapter 6: Scratch Orgs . 50

Supported Scratch Org Editions and Allocations . 53
Build Your Own Scratch Org Definition File . 54

Scratch Org Features . 58
Scratch Org Settings . 125

Create a Scratch Org Based on an Org Shape . 126
Enable Org Shape for Scratch Orgs . 127
Org Shape Permissions . 128
Create and Manage Org Shapes . 128
Scratch Org Definition for Org Shape . 129
Troubleshoot Org Shape . 131

Create Scratch Orgs . 133
Scratch Org Snapshots (Beta) . 135

Get Started with Scratch Org Snapshots (Beta) . 136
Salesforce CLI Snapshot Commands (Beta) . 137
Create a Scratch Org Snapshot (Beta) . 138
Create a Snapshot for Use with Namespaced Scratch Orgs (Beta) 139
Create a Scratch Org Based on a Snapshot (Beta) . 139
Manage and Maintain Your Snapshots (Beta) . 140

Select the Salesforce Release for a Scratch Org . 141
Deploy Source From Your Project to the Scratch Org . 142
Retrieve Source from the Scratch Org to Your Project . 145
Scratch Org Users . 147

Create a Scratch Org User . 148
User Definition File for Customizing a Scratch Org User . 149
Generate or Change a Password for a Scratch Org User . 150

Manage Scratch Orgs from the Dev Hub Org . 152
Scratch Org Error Codes . 152

Chapter 7: Sandboxes . 154

Authorize Your Production Org . 155
Create a Sandbox Definition File . 155
Create, Clone, or Delete a Sandbox . 157

Chapter 8: Track Changes Between Your Project and Org . 160

Manage Source Tracking for Your org . 161
Preview Changes Identified by Source Tracking . 162
Deploy and Retrieve Changes Identified by Source Tracking . 163

Retrieve Changes to Profiles with Source Tracking . 166
Resolve Conflicts Between Your Local Project and Org . 167
Get Change Information by Querying the SourceMember Object . 168

Contents

Best Practices . 168
Performance Considerations of Source Tracking . 169

Chapter 9: Development . 170

Develop Against Any Org . 172
Assign a Permission Set . 175
Ways to Add Data to Your Org . 176

Example: Export and Import Data Between Orgs . 177
Create Lightning Apps and Aura Components . 178
Create Lightning Web Components . 179
Create an Apex Class . 179
Create an Apex Trigger . 180
Create a Custom Object . 181
Execute Anonymous Apex . 181
Run Apex Tests . 183

Debug Apex . 184
Generate and View Apex Debug Logs . 185

Chapter 10: Build and Release Your App . 186

Build and Release Your App with Metadata API . 188
Develop and Test Changes Locally . 190
Build and Test the Release Artifact . 190
Test the Release Artifact in a Staging Environment . 191
Release Your App to Production . 191
Cancel a Metadata Deployment . 192

Chapter 11: Unlocked Packages . 193

What’s an Unlocked Package? . 194
Package-Based Development Model . 194
Before You Create Unlocked Packages . 194
Know Your Orgs . 195
Create Org-Dependent Unlocked Packages . 196
Workflow for Unlocked Packages . 197
Configure Unlocked Packages . 198

Project Configuration File for Unlocked Packages . 199
Unlocked Packaging Keywords . 204
Package Installation Key . 205
Extract Dependency Information from Unlocked Packages . 206
Understanding Namespaces . 207
Share Release Notes and Post-Install Instructions . 211
Specify Unpackaged Metadata or Apex Access for Apex Tests (Unlocked Packages) 211
Best Practices for Unlocked Packages . 212
Package IDs and Aliases for Unlocked Packages . 213
Frequently Used Unlocked Packaging Operations . 214

Contents

How We Handle Profile Settings in Unlocked Packages . 214
Develop Unlocked Packages . 216

Create and Update an Unlocked Package . 216
Create New Versions of an Unlocked Package . 217
Code Coverage for Unlocked Packages . 222
Release an Unlocked Package . 222
Update an Unlocked Package Version . 223
Hard-Deleted Components in Unlocked Packages . 223
Delete an Unlocked Package or Package Version . 228
View Package Details . 228

Push a Package Upgrade for Unlocked Packages . 229
Install an Unlocked Package . 230

Install Packages with the CLI . 230
Install Unlocked Packages from a URL . 231
Upgrade a Version of an Unlocked Package . 232
Sample Script for Installing Unlocked Packages with Dependencies 232

Migrate Deprecated Metadata from Unlocked Packages . 235
Uninstall an Unlocked Package . 235
Transfer an Unlocked Package to a Different Dev Hub . 236

Take Ownership of an Unlocked Package Transferred from a Different Dev Hub 238

Chapter 12: Continuous Integration . 241

Continuous Integration Using CircleCI . 242
Configure Your Environment for CircleCI . 242
Connect CircleCI to Your DevHub . 243

Continuous Integration Using Jenkins . 244
Configure Your Environment for Jenkins . 245
Jenkinsfile Walkthrough . 246
Sample Jenkinsfile . 252

Continuous Integration with Travis CI . 257
Sample CI Repos for Org Development Model . 257
Sample CI Repos for Package Development Model . 257

Chapter 13: Troubleshoot Salesforce DX . 259

CLI Version Information . 260
Error: No default dev hub found . 260
Unable to Work After Failed Org Authorization . 260
Error: The consumer key is already taken . 261

Chapter 14: Limitations for Salesforce DX . 263

Contents

CHAPTER 1 How Salesforce Developer Experience Changes the
Way You Work

Salesforce Developer Experience (DX) is a new way to manage and develop apps on the Lightning
Platform across their entire lifecycle. It brings together the best of the Lightning Platform to enable
source-driven development, team collaboration with governance, and new levels of agility for custom
app development on Salesforce.

In this chapter ...

• Use a Sample Repo
to Get Started

• Create an
Application

Highlights of Salesforce DX include:

• Your tools, your way. With Salesforce DX, you use the developer tools you already know.• Migrate or Import
Existing Source • The ability to apply best practices to software development. Source code and metadata exist outside

of the org and provide more agility to develop Salesforce apps in a team environment. Instead of
the org, your version control system is the source of truth.

• Salesforce DX
Release Notes

• A powerful command-line interface (CLI) removes the complexity of working with your Salesforce
org for development, continuous integration, and delivery.

• Flexible and configurable scratch orgs that you build for development and automated environments.
This new type of org makes it easier to build your apps and packages.

• You can use any IDE or text editor you want with the CLI and externalized source.

• Salesforce Extensions for VS Code to accelerate app development. These tools provide features for
working with scratch orgs, Apex, Lightning components, and Visualforce.

Note: Salesforce DX tooling requires the API Enabled system permission, which provides
programmatic access to your org's information.

Are You Ready to Begin?

Here’s the basic order for doing your work using Salesforce DX. These workflows include the most
common CLI commands. For all commands, see the Salesforce CLI Command Reference.

• Install Salesforce CLI

• Enable Dev Hub

• Use a Sample Repo to Get Started

• Create an Application

• Migrate or Import Existing Source

SEE ALSO:

Salesforce Developer Tooling Learning Map

Salesforce CLI Command Reference

1

https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm
https://developertoolinglearningmap.herokuapp.com/
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference

Use a Sample Repo to Get Started

The quickest way to get going with Salesforce DX tooling is to clone the dreamhouse-lwc GitHub repo. Use its configuration files
and Salesforce application to try some commonly used Salesforce CLI commands. In addition to source code for the application, the
repo includes sample data and Apex tests.

1. Open a terminal or command prompt window, and clone the dreamhouse-lwc GitHub sample repo using HTTPS or SSH.
HTTPS:

git clone https://github.com/trailheadapps/dreamhouse-lwc.git

SSH:

git clone git@github.com:trailheadapps/dreamhouse-lwc.git

2. Change to the dreamhouse-lwc project directory.

cd dreamhouse-lwc

3. Authorize your Dev Hub org by logging into it, set it as your default, and assign it an alias.

sf org login web --set-default-dev-hub --alias DevHub

Enter your Dev Hub org credentials in the browser that opens. After you log in successfully, you can close the browser.

4. Create a scratch org using the config/project-scratch-def.json file, set the org as your default, and assign it an alias.

sf org create scratch --definition-file config/project-scratch-def.json --set-default
--alias my-scratch-org

The command uses the default Dev Hub you set with the sf org login web command in a previous step.

5. View the orgs that you've either created or logged into.

sf org list

The first table displays the Dev Hub you logged into and the second table displays the scratch org you created. The right-most
column in both tables indicates the default scratch org and Dev Hub org with (U) and (D), respectively. The ALIAS column
displays the aliases you assigned each org. Here’s some sample output.

Non-scratch orgs
==
| ALIAS USERNAME ORG ID CONNECTED STATUS

| ─── ────── ── ────────────── ────────────────

| (D) DevHub jules@sf.com 00DB0000000c7j Connected

Scratch orgs
==
| ALIAS USERNAME ORG ID EXPIRATION DATE
| ─── ────────────── ───────────────────────── ────────────── ───────────────
| (U) my-scratch-org test-ibnpzayw@example.com 00D9A000000EFo 2023-05-12

2

Use a Sample Repo to Get StartedHow Salesforce Developer Experience Changes the Way You
Work

https://www.sfdc.co/sfdx-sample-repo

6. Deploy the Dreamforce app, whose source is in the force-app directory, to the scratch org.

sf project deploy start --source-dir force-app

7. Assign the dreamhouse permission set to the default scratch org user (test-ibnpzayw@example.com).

sf org assign permset --name dreamhouse

8. Import sample data from three objects (Contact, Property, and Broker) into the scratch org using the specified plan definition file.

sf data import tree --plan data/sample-data-plan.json

9. Run Apex tests.

sf apex run test --result-format human --wait 1

Apex tests run asynchronously by default. If the tests finish before the --wait value, the results are displayed. Otherwise, use the
displayed command to get the results using a job ID.

10. Open the scratch org and view the deployed metadata under Most Recently Used.

sf org open

11. In App Launcher, find and open the Dreamhouse application.

Congrats! You just deployed an application to a new scratch org.

SEE ALSO:

Sample Repository on GitHub

Authorization

Create Scratch Orgs

Deploy Source From Your Project to the Scratch Org

Run Apex Tests

Create an Application

Follow the basic workflow when you are starting from scratch to create and develop an app that runs on the Lightning Platform.

1. Set up your project.

2. Authorize the Developer Hub org for the project.

3. Configure your local project.

4. Create a scratch org.

5. Push the source from your project to the scratch org.

6. Develop the app.

7. Pull the source to keep your project and scratch org in sync.

8. Run tests.

9. Add, commit, and push changes. Create a pull request.

Deploy your app using one of the following methods:

3

Create an ApplicationHow Salesforce Developer Experience Changes the Way You
Work

• Build and release your app with managed packages

• Build and release your app using the Metadata API

Migrate or Import Existing Source

Use the Metadata API to retrieve the code, and then convert your source for use in a Salesforce DX project.

Tip: If your current repo follows the directory structure that is created from a Metadata API retrieve, you can skip the retrieve step
and go directly to converting the source.

1. Set up your project.

2. Retrieve your metadata.

3. Convert the metadata formatted source you just retrieved to source format.

4. Authorize the Developer Hub org for the project.

5. Configure your local project.

6. Create a scratch org.

7. Push the source from your project to the scratch org.

8. Develop the app.

9. Pull the source to sync your project and scratch org.

10. Run tests.

11. Add, commit, and push changes. Create a pull request.

Deploy your app using one of the following methods:

• Build and release your app with managed packages.

• Build and release your app using the Metadata API.

Salesforce DX Release Notes

Use the Salesforce Release Notes to learn about the most recent updates and changes to development environments, packaging, platform
development tools, and Salesforce APIs.

For the latest changes, visit:

• Salesforce Extensions for Visual Studio Code Release Notes

• Salesforce CLI Release Notes

• Development Environments Release Notes (Includes Developer Edition orgs, sandboxes, and scratch orgs)

• Packaging Release Notes

• New and Changed Items for Developers (Includes Apex, standard objects, Metadata API, and more)

4

Migrate or Import Existing SourceHow Salesforce Developer Experience Changes the Way You
Work

https://marketplace.visualstudio.com/items/salesforce.salesforcedx-vscode/changelog
https://github.com/forcedotcom/cli/blob/main/releasenotes/README.md
https://help.salesforce.com/s/articleView?id=release-notes.rn_dev_environments.htm&language=en_US
https://help.salesforce.com/s/articleView?id=release-notes.rn_packaging.htm&language=en_US
https://help.salesforce.com/s/articleView?id=release-notes.rn_forcecom_development_nc.htm&language=en_US

CHAPTER 2 Enable Dev Hub Features in Your Org

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer, Enterprise,
Performance, and
Unlimited Editions

Scratch orgs available in:
Developer, Enterprise,
Group, and Professional
Editions

Enable Dev Hub features in your PBO so you can create and manage
scratch orgs, create and manage second-generation packages, and
use Einstein features. Scratch orgs are disposable Salesforce orgs
to support development and testing.

Enabling Dev Hub in your PBO is safe and doesn’t cause any
performance or customer issues. Dev Hub comprises objects with
permissions that allow admins to control the level of access available
to a user and an org.

In this chapter ...

• Free Limited Access
License

• Enable Unlocked and
Second-Generation
Managed Packaging

• Enable Source
Tracking in
Sandboxes Note: You can’t enable Dev Hub in a sandbox.

• Enable Einstein
Features Consider these factors if you select a trial or Developer Edition org

as your Dev Hub.
• Enable Language

Extension Packages
(Beta)

• You can create up to six scratch orgs and package versions per
day, with a maximum of three active scratch orgs.

• Trial orgs expire on their expiration date.• Add Salesforce DX
Users • Developer Edition orgs can expire due to inactivity.

• You can define a namespace in a Developer Edition org that isn’t your Dev Hub, and you can enable
Dev Hub in a Developer Edition org that doesn’t contain a namespace.

• If you plan to create package versions or run continuous integration jobs, it’s better to use your PBO
as your Dev Hub because of higher scratch org and package version limits. Package versions are
associated with your Dev Hub org. When a trial or Developer Edition org expires, you lose access to
the package versions.

Note: Partner trial orgs signed up from the partner community have different scratch org limits.
See Scratch Org Allocations for Partners. Partners can create partner edition scratch orgs: Partner
Developer, Partner Enterprise, Partner Group, and Partner Professional. This feature is available only
if creating scratch orgs from a Dev Hub in a partner business org. See Supported Scratch Org
Editions for Partners in the First-Generation Managed Packaging Developer Guide for details.

The Dev Hub org instance determines where scratch orgs are created.

• Scratch orgs created from a Dev Hub org in Government Cloud are created on a Government Cloud
instance.

• Scratch orgs created from a Dev Hub org in Public Cloud are created on a Public Cloud instance.

To enable Dev Hub in an org:

1. Log in as System Administrator to your Developer Edition, trial, or production org (for customers),
or your business org (for ISVs).

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub.

5

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_allocations.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_editions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_editions.htm

If you don't see Dev Hub in the Setup menu, make sure that your org is one of the supported editions.

3. To enable Dev Hub, click Enable.

After you enable Dev Hub, you can’t disable it.

6

Enable Dev Hub Features in Your Org

Free Limited Access License

Request a Salesforce Limited Access - Free license to provide accounts to non-admin users in your production org, when these users
require access to only a specific app, feature, or setting. Standard Salesforce objects such as Accounts, Contacts, and Opportunities aren’t
accessible with this license.

Contact your Salesforce account executive to request this license. A Salesforce admin can upgrade a Salesforce Limited Access - Free
license to a standard Salesforce license at any time.

Second-Generation Managed Packages and Unlocked Packages
To create scratch orgs and unlocked or second-generation managed packages, developers require access to the Dev Hub org, which is
often your production org. A Salesforce admin can then grant appropriate permissions to the Dev Hub objects (ScratchOrgInfo,
ActiveScratchOrg, and NamespaceRegistry).

To give developers appropriate access to the Dev Hub org, create a permission set that contains these permissions:

• Object Settings > Scratch Org Info > Read, Create, and Delete

• Object Settings > Active Scratch Org > Read and Delete

• Object Settings > Namespace Registry > Read (to use a linked namespace in a scratch org)

To provide users with the ability to create unlocked or second-generation managed packages and package versions, the permission set
must also contain:

• System Permissions > Create and Update Second-Generation Packages

If you choose to test your package in a scratch org, the Create and Update Second-Generation Packages permission is also required
when creating the scratch org if you specified an ancestor version in the sfdx-project.json file. Alternatively, use the
--noancestors flag with the sf org create command when you create the scratch org.

For more information, see Salesforce DX Developer Guide: Add Salesforce DX Users.

DevOps Center
DevOps Center is installed as a managed package. Most team members, such as builders and developers, don’t need to install and
configure DevOps Center. You can provide these team members minimum access to the org where DevOps Center is installed by
assigning them this license and the Limited Access User profile.

See Salesforce Help: Assign the DevOps Center Permission Sets

Features Not Currently Supported
• To use Org Shape for Scratch Orgs or Scratch Org Snapshots (pilot), be sure to assign the Salesforce user license. The Salesforce

Limited Access - Free license isn’t supported at this time.

• The Salesforce Limited Access - Free license doesn’t provide access to some Salesforce CLI commands, such as sf limits api
display. Contact your Salesforce admin for API limits information.

SEE ALSO:

Salesforce Help: Add Team Members as Users in the DevOps Center Org

7

Free Limited Access LicenseEnable Dev Hub Features in Your Org

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_add_users.htm
https://help.salesforce.com/s/articleView?id=sf.devops_center_assign_permsets.htm&language=en_US
https://help.salesforce.com/s/articleView?id=devops_center_add_team_members.htm&language=en_US

Enable Unlocked and Second-Generation Managed Packaging

Enable packaging in your org so you can develop unlocked packages or second-generation managed packages. You can work with the
packages in scratch orgs, sandbox orgs, and target subscriber orgs.

Enable Dev Hub in your org.

1. Log in to the org where you’ve enabled Dev Hub.

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub.

3. Select Enable Unlocked Packages and Second-Generation Managed Packages.

After you enable Second-Generation Packaging, you can’t disable it.

4. (Optional) Allow non-admin users access to the Dev Hub to create packages.

Assign non-admin users the Create and Update Second Generation Packages user permission. See Add Salesforce DX Users for
details.

Enable Source Tracking in Sandboxes

EDITIONS

Available in: Enterprise,
Performance, and Unlimited
Editions

USER PERMISSIONS

To view a sandbox:
• View Setup and

Configuration

To create, refresh, activate,
and delete a sandbox:
• Manage Sandbox

To enable Source Tracking:
• Customize Application

Turn on source tracking in the source (production) org so Developer and Developer Pro sandboxes
automatically track changes between sandboxes created from it and Salesforce DX projects. Existing
sandboxes don’t have source tracking enabled until you refresh them.

To enable Source Tracking in Sandboxes for Developer and Developer Pro sandboxes:

1. Log in to the source (production) org.

2. From Setup, in the Quick Find Box, enter Dev Hub and select Dev Hub.

If you don't see Dev Hub in the Setup menu, make sure that the source org is one of the
supported editions.

3. Select Enable Source Tracking in Developer and Developer Pro Sandboxes.

4. Refresh any existing Developer or Developer Pro sandboxes to enable this feature.

Source tracking is automatically enabled for any newly created Developer or Developer Pro
sandboxes.

Enable Einstein Features

Turn on Einstein Features in your Dev Hub to eliminate the manual steps for enabling the Chatbot feature in scratch orgs. When you
accept the Terms of Service for Einstein, a separate acceptance is not required in each scratch org created from this Dev Hub org. If you
previously accepted the Terms of Service for Einstein to turn on an Einstein-related feature, this setting is already enabled.

Complete this task before attempting to create a scratch org with the Chatbot feature.

1. Log in to your Dev Hub org.

2. From Setup, enter Dev Hub in the Quick Find box and select Dev Hub.

3. On the Dev Hub Setup page, turn on Enable Einstein Features.

8

Enable Unlocked and Second-Generation Managed
Packaging

Enable Dev Hub Features in Your Org

Enable Language Extension Packages (Beta)

Enable Language Extension Packages in Dev Hub to create language extension packages that contain translations of components in
other packages. This feature is available in unlocked and first- and second-generation managed packages.

Note: This feature is a Beta Service. Customer may opt to try such Beta Service in its sole discretion. Any use of the Beta Service
is subject to the applicable Beta Services Terms provided at Agreements and Terms.

Language extension packages can only contain Translations and CustomObjectTranslations. If a base package includes components
that can’t be translated, those components aren’t included when you create a language extension package.

1. In Dev Hub, from Setup, in the Quick Find box, enter Dev Hub, and then select Dev Hub.

2. On the Dev Hub Setup page, turn on Enable Language Extension Packages.

Add Salesforce DX Users

System administrators can access the Dev Hub org by default. You can enable more users to access the Dev Hub org so that they can
create scratch orgs and use other developer-specific features.

You can use Salesforce DX with these standard user licenses: Salesforce, Salesforce Platform, and Developer.

If your org has Developer licenses, you can add users with the Developer profile and assign them the provided Developer permission
set. Alternatively, you can add users with the Standard User or System Administrator profiles. For a standard user, you must create a
permission set with the required Salesforce DX permissions. We recommend that you avoid adding users as system administrators unless
their work requires that level of authority and not just Dev Hub org access.

Add a Developer User to Your Dev Hub Org

Using a Developer license, add a user with the Developer profile and assign them the Developer permission set.

Add a System Administrator or Standard User to Your Dev Hub Org

Add system administrator users only if their work requires that level of authority. Otherwise, add standard users and create a permission
set with the required Salesforce DX permissions.

Permission Set for Salesforce DX Users

To give full access to the Dev Hub org, the Developer permission set or the custom permission set you create grants access to specific
Salesforce DX objects.

SEE ALSO:

Org Shape Permissions

Add a Developer User to Your Dev Hub Org
Using a Developer license, add a user with the Developer profile and assign them the Developer permission set.

1. Create a user in your Dev Hub org.

a. In Setup, enter Users in the Quick Find box, then select Users.

b. Click New User.

c. Fill out the form.

d. Select Developer for User License, and then Developer for Profile.

9

Enable Language Extension Packages (Beta)Enable Dev Hub Features in Your Org

https://www.salesforce.com/company/legal/agreements/

e. After filling out the remaining information, click Save.

2. Assign the built-in Developer permission set to the user.

a. On the user's detail page, in the Permission Set Assignments related list, click Edit Assignments.

b. In the Available Permission Sets, add the Developer permission set and click Save.

The Developer permission set grants access to Dev Hub features and second-generation packages. For details, see Permission Set for
Salesforce DX Users.

Add a System Administrator or Standard User to Your Dev Hub Org
Add system administrator users only if their work requires that level of authority. Otherwise, add standard users and create a permission
set with the required Salesforce DX permissions.

1. Create a user in your Dev Hub org, if necessary.

a. In Setup, enter Users in the Quick Find box, then select Users.

b. Click New User.

c. Fill out the form, and assign the System Administrator or Standard User profile.

d. Click Save.

If you’re adding a System Administrator user, you can stop here.

2. If you’re adding a Standard User, create a permission set for Salesforce DX users if you don’t have one.

a. From Setup, enter Permission Sets in the Quick Find box, then select Permission Sets.

b. Click New.

c. Enter a label, API name, and description. The API name is a unique name used by the API and managed packages.

d. Select a user license option. If you plan to assign this permission set to multiple users with different licenses, select None.

e. Click Save. The permission set overview page appears. From here, you can navigate to the permissions you want to add or
change for Salesforce DX. For the required permissions, see Permission Set for Salesforce DX Users.

3. Apply the Salesforce DX permission set to the Standard User.

a. From Setup, enter Permission Sets in the Quick Find box, then select Permission Sets.

b. Select the Salesforce DX permission set.

c. In the permission set toolbar, click Manage Assignments.

d. Click Add Assignments.

e. Select the user to assign the permission set to.

f. Click Assign.

g. Click Done.

You can limit a user’s access by modifying the permissions.

Permission Set for Salesforce DX Users
To give full access to the Dev Hub org, the Developer permission set or the custom permission set you create grants access to specific
Salesforce DX objects.

10

Add a System Administrator or Standard User to Your Dev
Hub Org

Enable Dev Hub Features in Your Org

• Object Settings > Scratch Org Infos > Read, Create, Edit, and Delete

• Object Settings > Active Scratch Orgs > Read, Edit, and Delete

• Object Settings > Namespace Registries > Read

To work with second-generation packages in the Dev Hub org, the permission set must also contain:

• System Permissions > Create and Update Second-Generation Packages

This permission provides access to:

Tooling API Object (Create and Edit)Salesforce CLI Command

Package2package create

Package2VersionCreateRequestpackage version create

Package2Versionpackage version update

11

Permission Set for Salesforce DX UsersEnable Dev Hub Features in Your Org

CHAPTER 3 Project Setup

Salesforce DX provides a project structure for your org’s metadata (code and configuration), org templates,
sample data, and all your team’s tests. To bring consistency to your team’s development processes, store
these items in a source control system (SCS). Retrieve the contents of your team’s repository when you’re
ready to develop a new feature.

In this chapter ...

• Sample Repository
on GitHub

• Create a Salesforce
DX Project

You can use your preferred SCS. Most of our examples use Git.

You have different options to create a Salesforce DX project depending on how you want to begin.• Salesforce DX Project
Structure and Source
Format Explore the features of Salesforce DX using one of

our sample repos and your own SCS and toolset.
Use the Sample Repository on GitHub

• How to Exclude
Source When Syncing Start with an existing Salesforce app to create a

Salesforce DX project.
Create a Salesforce DX Project from Existing Source

• Create a Salesforce
DX Project from
Existing Source Create an app on the Salesforce Platform using a

Salesforce DX project.
Create a Salesforce DX Project

• Convert Files in
Metadata Format to
Source Format

• Salesforce DX
Usernames and Orgs

• Link a Namespace to
a Dev Hub Org

• Salesforce DX Project
Configuration

• Multiple Package
Directories

• Replace Strings in
Code Before
Deploying

12

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_clone_repo.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_from_existing.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_create_new.htm

Sample Repository on GitHub

To get started quickly, see the dreamhouse-lwc GitHub repo. This standalone application contains an example DX project with
multiple Apex classes, Aura components, custom objects, sample data, and Apex tests.

Cloning this repo creates the directory dreamhouse-lwc. See the repo’s Readme for more information.

Assuming that you’ve already set up Git, use the git clone command to clone the main branch of the repo from the command
line.

To use HTTPS:

git clone https://github.com/trailheadapps/dreamhouse-lwc

To use SSH:

git clone git@github.com:trailheadapps/dreamhouse-lwc.git

If you don’t want to use Git, download a .zip file of the repository’s source using Clone, or download on the GitHub website. Unpack the
source anywhere on your local file system.

See Use a Sample Repo to Get Started for the next steps.

Tip: Check out more complex examples in the Sample Gallery.

The Sample Gallery contains sample apps that show what you can build on the Salesforce platform. They’re continuously updated
to incorporate the latest features and best practices.

Create a Salesforce DX Project

A Salesforce DX project has a specific structure and a configuration file that identifies the directory as a Salesforce DX project.

1. Change to the directory where you want the DX project located.

2. Create the DX project.

sf project generate --name MyProject

If you don’t specify an output directory with the --output-dir flag, the project directory is created in the current location. You
can also use the --default-package-dir flag to specify the default package directory to target when syncing source to
and from the org. If you don’t indicate a default package directory, this command creates a default package directory, force-app.

Use the --template flag to specify what your project initially looks like. Each template provides a complete directory structure
that takes the guesswork out of where to put your source. If you choose --template empty, your project contains these
sample configuration files to get you started.

• .forceignore

• config/project-scratch-def.json

• sfdx-project.json

• package.json

If you choose --template standard, your project also contains these files that are especially helpful when using Salesforce
Extensions for VS Code. If you don’t specify the --template flag, the project generate command uses the standard
template.

• .gitignore: Makes it easier to start using Git for version control.

13

Sample Repository on GitHubProject Setup

https://developer.salesforce.com/code-samples-and-sdks

• .prettierrc and .prettierignore: Make it easier to start using Prettier to format your Aura components.

• .vscode/extensions.json: Causes Visual Studio Code, when launched, to prompt you to install the recommended
extensions for your project.

• .vscode/launch.json: Configures Replay Debugger, making it more discoverable and easier to use.

• .vscode/settings.json: By default, this file has one setting for excluding certain files and folders in searches and quick
open. You can change this value or add other settings.

If you choose --template analytics, you get all the helpful basic and VS Code files. But the default package directory
contains fewer directories, such as for storing Analytics template bundles. /force-app/main/default/waveTemplates)
and a few other metadata types, such as Apex classes and LWC components.

Example:

sf project generate --name mywork --template standard

sf project generate --name mywork --default-package-dir myapp-source

Next steps:

• (Optional) Register the namespace with the Dev Hub org.

• Configure the project (sfdx-project.json). If you use a namespace, update this file to include it.

• Create a scratch org definition that produces scratch orgs with the features you need for your project. The config directory of
your new project contains a sample scratch org definition file (project-scratch-def.json).

SEE ALSO:

Create a Salesforce DX Project from Existing Source

Salesforce DX Project Configuration

Link a Namespace to a Dev Hub Org

Build Your Own Scratch Org Definition File

How to Exclude Source When Syncing

Salesforce DX Project Structure and Source Format

A Salesforce DX project has a specific project structure and source format. Source format uses a different set of files and file extensions
from what the Metadata API uses. When you retrieve metadata from the org with the project retrieve start command,
Salesforce CLI stores it in source format in your project. When you deploy metadata, Salesforce CLI converts it into the format that the
Metadata API requires.

Source Transformation
It’s not uncommon for metadata formatted source to be very large, making it difficult to find what you want. If you work on a team with
other developers who update the same metadata at the same time, you have to deal with merging multiple updates to the file. If you’re
thinking that there has to be a better way, you’re right.

Before, all custom objects and object translations were stored in one large metadata file.

14

Salesforce DX Project Structure and Source FormatProject Setup

We solve this problem by providing a new source shape that breaks down these large source files to make them more digestible and
easier to manage with a version control system. It’s called source format.

A Salesforce DX project stores custom objects and custom object translations in intuitive subdirectories. Source format makes it much
easier to find what you want to change or update. And you can say goodbye to messy merges.

Static Resources
Static resources must reside in the /main/default/staticresources directory. The project deploy and project
retrieve commands support auto-expanding or compressing archive MIME types within your project. These behaviors support
both the .zip and .jar MIME types. This way, the source files are more easily integrated in your Salesforce DX project and version
control system.

For example, if you upload a static resource archive through the scratch org’s Setup UI, the project retrieve start command
expands it into its directory structure within the project. To mimic this process from the file system, add the directory structure to compress
directly into the static resources directory root, then create the associated .resource-meta.xml file. If an archive exists as a single
file in your project, it’s always treated as a single file and not expanded.

This example illustrates how different types of static resources are stored in your local project. You can see an expanded .zip archive
called expandedzippedresource and its related .resource-meta.xml file. You also see a couple .jpg files being stored
with their MIME type, and a single file being stored with the legacy .resource extension

15

Salesforce DX Project Structure and Source FormatProject Setup

See Salefsorce Help: Static Resources for more information.

File Extensions
When you convert existing metadata format to source format, we create an XML file for each bit. All files that contain XML markup now
have an .xml extension so that your XML editor recognizes them as XML files and you can look at them. To sync your local projects
and scratch orgs, Salesforce DX projects use a particular directory structure for custom objects, custom object translations, Lightning
web components, Aura components, and documents.

For example, if you had an object called Case, source format provides an XML version called Case.object-meta.xml. If you have
an app called DreamHouse, we create a file called DreamHouse.app-meta.xml. You get the idea.

Traditionally, static resources are stored on the file system as binary objects with a .resource extension. Source format handles static
resources differently by supporting content MIME types. For example, .gif files are stored as a .gif instead of .resource. By
storing files with their MIME extensions, you can manage and edit your files using the associated editor on your system.

You can have a combination of existing static resources with their .resource extension, and newly created static resources with
their MIME content extensions. Existing static resources with .resource extensions keep that extension, but any new static resources
show up in your project with their MIME type extensions. We allow .resource files to support the transition for existing customers.
Although you get this additional flexibility, we recommend storing your files with their MIME extensions.

Custom Objects
When you convert from metadata format to source format, your custom objects are placed in the <package
directory>/main/default/objects directory. Each object has its own subdirectory that reflects the type of custom object.

Some parts of the custom objects are extracted into in these subdirectories:

16

Salesforce DX Project Structure and Source FormatProject Setup

https://help.salesforce.com/s/articleView?id=sf.pages_static_resources.htm&language=en_US

• businessProcesses

• compactLayouts

• fields

• fieldSets

• listViews

• recordTypes

• sharingReasons

• validationRules

• webLinks

The parts of the custom object that aren’t extracted are placed in a <object>.object-meta.xml file.

Custom Object Translations
Custom object translations reside in the <package directory>/main/default/objectTranslations directory,
each in their own subdirectory named after the custom object translation. Custom object translations and field translations are extracted
into their own files within the custom object translation’s directory.

• For field names, <field_name>.fieldTranslation-meta.xml

• For object names, <object_name>.objectTranslation-meta.xml

The remaining pieces of the custom object translation that aren’t field translations are placed in a file called
<objectTranslation>.objectTranslation-meta.xml.

See Salesforce Help: Translation Workbench for more information.

Aura Components
Aura bundles and components must reside in a directory named aura under the <package directory> directory.

17

Salesforce DX Project Structure and Source FormatProject Setup

https://help.salesforce.com/s/articleView?id=sf.workbench.htm&language=en_US

Lightning Web Components
Lightning web components must reside in a directory named lwc under the <package directory> directory.

ExperienceBundle for Lightning Communities
The ExperienceBundle metadata type must reside in a directory named experiences under the <package directory>
directory. The experiences directory contains a folder for each Lightning community in your org. See the Experience Cloud Developer
Guide for details.

Documents
Documents must be inside the directories of their parent document folder. The parent document folder must be in a directory called
documents. Each document has a corresponding metadata XML file that you can view with an XML editor.

18

Salesforce DX Project Structure and Source FormatProject Setup

https://developer.salesforce.com/docs/atlas.en-us.248.0.communities_dev.meta/communities_dev/communities_dev_migrate_expbundle.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.communities_dev.meta/communities_dev/communities_dev_migrate_expbundle.htm

Custom Labels
All custom labels are contained in a single file called CustomLabels.labels-meta.xml that resides in a directory named
labels under the <package directory> directory. Each package directory can have its own
CustomLabels.labels-meta.xml file.

How to Exclude Source When Syncing

When syncing metadata between your local file system and a target org, you often have source files you want to exclude. Similarly, you
often want to exclude certain files when converting source to Salesforce DX source format. In both cases, you can exclude individual
files or all files in a specific directory with a .forceignore file.

The .forceignore file excludes files when running most of the project commands, such as project deploy start,
project retrieve start, project convert source, and project delete source.

Structure of the .forceignore File
The .forceignore file structure mimics the .gitignore structure. Each line in .forceignore specifies a pattern that
corresponds to one or more files. The files typically represent metadata components, but can be any files you want to exclude, such as
LWC configuration JSON files or tests.

19

How to Exclude Source When SyncingProject Setup

The project commands, when parsing the .forceignore file, use the same rules and patterns as the .gitignore file. A
few common examples of these rules and patterns include:

• Always use the forward slash (/) as a directory separator, even on operating systems that use back slashes, such as Microsoft Windows.

• An asterisk (*) matches anything except a forward slash (/).

• Two consecutive asterisks (**) in patterns have special meaning, depending on where they’re located in the pathname. See for
examples.

• For readability, use blank lines as separators in the .forceignore file.

There are many more rules and patterns. See the git documentation for details.

Determine the Exact Filename for a Metadata Component
As you build your .forceignore file, you sometimes need the exact name of the metadata components that you want to exclude.
The easiest way to determine the name of a particular component is to look at the package directory that contains the source files, such
as the default force-app directory.

For example, profile metadata components live in the main/default/profiles directory. Let’s say that the directory contains
the source file NotUsedProfile.profile-meta.xml. To specify that the project commands exclude this component,
add this entry to your .forceignore:

**/NotUsedProfile.profile-meta.xml

Another way to determine the exact name of a metadata component is to look at the output of the project commands if you’re
also using source tracking. For example, if you have either local or remote changes, run the project deploy preview or
project retrieve preview command to display the full pathname of the changed components. This output displays the
filename of the Dreamhouse permission set and the Settings custom tab in the Path column of the Will Deploy section:

sf project deploy preview

Will Deploy [2] files.
Type Fullname Path

───────────── ──────────
───
PermissionSet dreamhouse
force-app/main/default/permissionsets/dreamhouse.permissionset-meta.xml
CustomTab Settings force-app/main/default/tabs/Settings.tab-meta.xml

Other Files That the Source Commands Ignore
The source commands ignore these files even if they aren’t included in your .forceignore file:

• Any source file or directory that begins with a “dot”, such as .DS_Store or .sf

• Any file that ends in .dup

• package2-descriptor.json

• package2-manifest.json

20

How to Exclude Source When SyncingProject Setup

https://git-scm.com/docs/gitignore

Exclude Remote Changes Not Yet Synced with Your Local Source
Sometimes, you make a change directly in an org but you don’t want to pull that change into your local DX project. To exclude remote
metadata changes, add an entry to .forceignore that represents the metadata source file that would be created if you did retrieve
it.

For example, if you have a permission set named Dreamhouse, add this entry to .forceignore:

**/Dreamhouse.permissionset-meta.xml

Exclude MetadataWithContent Types
Metadata components that include content, such as ApexClass or EmailTemplate, extend the MetadataWithContent type. These
components have two source files: one for the content itself, such as the Apex code or email template, and the accompanying metadata
file. For example, the source files for the HelloWorld Apex class are HelloWorld.cls and HelloWorld.cls-meta.xml.

To exclude a MetadataWithContent component, such as an ApexClass, either list both source files in the .forceignore file, or use
an asterisk. For example:

Explicilty list the HelloWorld source files to be excluded
helloWorld/main/default/classes/HelloWorld.cls
helloWorld/main/default/classes/HelloWorld.cls-meta.xml

Exclude the HelloWorld Apex class using an asterisk
helloWorld/main/default/classes/HelloWorld.cls*

Exclude Bundles and File Groups
Use two consecutive asterisks (**) to ignore files spread across multiple directories with just one .forceignore entry.

For example, to exclude all resource files related to a Lightning web component named myLwcComponent, add this entry to exclude
the entire component bundle:

**/lwc/myLwcComponent

To exclude all Apex classes:

**/classes

Metadata with Special Characters
If a metadata name has special characters (such as forward slashes, backslashes, or quotation marks), we encode the file name on the
local file system for all operating systems. For example, if you retrieve a custom profile called Custom: Marketing Profile, the colon is
encoded in the resulting file name.

Custom%3A Marketing Profile.profile-meta.xml

If you reference a file name with special characters in .forceignore, use the encoded file name.

Where to Put .forceignore
Be sure the paths that you specify in .forceignore are relative to the directory containing the .forceignore file. For the
.forceignore file to work its magic, you must put it in the proper location, depending on which command you’re running.

21

How to Exclude Source When SyncingProject Setup

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_metadatawithcontent.htm

• Add the .forceignore file to the root of your project for the project source tracking commands.

• Add the file to the metadata retrieve directory (with package.xml) for project convert mdapi.

Sample Syntax
Here are some options for indicating which source to exclude. In this example, all paths are relative to the project root directory.

Specify a relative path to a directory from the project root
helloWorld/main/default/classes

Specify a wildcard directory - any directory named “classes” is excluded
**classes

Specify file extensions
**.cls*
**.pdf

Specify a specific file
helloWorld/main/default/HelloWorld.cls*

List the Files and Directories Currently Being Ignored
Use the project list ignored command to list the files and directories in your project that the project commands are
currently ignoring. The project list ignored command refers to the .forceignore file to determine the list of ignored
files.

To list all the files in all package directories that are ignored, run the command without any flags. Use the --source-dir flag to
limit the check to a specific file or directory. If you specify a directory, the command checks all subdirectories recursively.

This example checks if a particular file is ignored.

sf project list ignored --source-dir package.xml

This example gets a list of all ignored files in a specific directory.

sf project list ignored --source-dir force-app/main/default

Sample output if the command finds ignored files:

Found the following ignored files:
force-app/main/default/aura/.eslintrc.json
force-app/main/default/lwc/.eslintrc.json
force-app/main/default/lwc/jsconfig.json

Sample output if the file isn’t ignored:

No ignored files found in paths:
README.md

SEE ALSO:

Retrieve Changes to Profiles with Source Tracking

22

How to Exclude Source When SyncingProject Setup

Create a Salesforce DX Project from Existing Source

If you’re a Salesforce developer, partner, or ISV, you likely have existing source in a managed package in your packaging org or application
source in your sandbox or production org. Before you begin using Salesforce DX, retrieve the existing source into a Salesforce DX project.

1. Create a Salesforce DX project.

sf project generate --name MyProject

2. Change to the project directory.

cd MyProject

3. Retrieve your source by running the project retrieve start command. The location and format of your current source
determine the command flags you must use.

Command To Retrieve Your SourceFormat and Location of Current Source

sf project retrieve start --package-name
<package-name> --target-org
<sourceOrg-username-or-alias>

You’re a partner who has your source already defined as a
managed package in your packaging org.

The --target-org flag specifies the username or alias for
the source org (such as a packaging org) from which you’re
retrieving the source. The --package-name flag specifies
the package name; if the name contains a space, enclose it in
double quotes.

By default, the command creates a package directory, with the
same name as your package, in the DX project directory. The
command then retrieves the source from your package and
organizes it in the new directory using the standard DX source
format structure. Use the --output-dir to specify a different
directory; the command creates the directory if it doesn’t exist.

sf project retrieve start --manifest
<manifest-file> --target-org
<sourceOrg-username-or-alias>

You have a manifest file, typically called package.xml, that
defines your unpackaged source in a sandbox or production org.

The --target-org flag specifies the username or alias for
the org (such as a sandbox or production) from which you’re
retrieving the source. The --manifest flag indicates the path
to the manifest file, typically called package.xml.

By default, the command retrieves the source into the existing
force-app package directory of your DX project Use the
--output-dir to specify a different directory; the command
creates the directory if it doesn’t exist.

Tip: If you already have a repo that follows the directory structure created from a Metadata API retrieve, then your source files
in the repo are in metadata format. You can convert these files into source format and include them in your Salesforce DX
project. See Convert Files in Metadata Format to Source Format for details.

23

Create a Salesforce DX Project from Existing SourceProject Setup

4. If the retrieve created a package directory in your project, add it to your sfdx-project.json file.

Do you have source in a sandbox or production org, but you don’t have a manifest file (package.xml) for retrieving it to your project?
Use the project generate manifest CLI command to create one. For example, this command generates a manifest from
the metadata components in the org with the alias prod-org.

sf project generate manifest --from-org prod-org

See the command help for more examples and information.

sf project generate manifest --help

You can also refer to Sample package.xml Manifest Files in the Metadata API Developer Guide.

SEE ALSO:

Create a Salesforce DX Project

Salesforce DX Project Structure and Source Format

Salesforce DX Project Configuration

Convert Files in Metadata Format to Source Format

Convert Files in Metadata Format to Source Format

If you already have a repo in which you’ve retrieved metadata from an org using the Metadata API directly, the files are in metadata
format. You can convert these files into source format and add them to your Salesforce DX project. You can then deploy and retrieve
them to and from your org using CLI commands and use source tracking to track changes.

The convert command ignores all files that start with a “dot,” such as .DS_Store. To exclude more files from the convert process,
add a .forceignore file.

1. Change to your Salesforce DX project directory.

2. Convert the files from metadata format to source format with the project convert mdapi command. Let’s say your
metadata-format files are in a directory called /Users/testing/mdapi_project.

sf project convert mdapi --root-dir /Users/testing/mdapi_project

The --root-dir flag is the name of the directory that contains the metadata format files.

The converted source is stored in the default package directory indicated in the sfdx-project.json file, typically named
force-app. Use the --output-dir flag to put the converted files in a different package directory; the command creates the
directory if it doesn’t exist.

3. If the convert created a package directory in your project, add it to your sfdx-project.json file.

SEE ALSO:

Salesforce DX Project Configuration

24

Convert Files in Metadata Format to Source FormatProject Setup

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/manifest_samples.htm

Salesforce DX Usernames and Orgs

Many Salesforce CLI commands connect to an org to complete their task. For example, the org create scratch command,
which creates a scratch org, connects to a Dev Hub org. The project deploy start and project retrieve start
commands synchronize source code between your project and an org. In each case, the CLI command requires a username to determine
which org to connect to. Usernames are unique within the entire Salesforce ecosystem and are associated with just one org.

When you create a scratch org, the CLI generates a username. The username looks like an email address, such as
test-wvkpnfm5z113@example.com. You don’t need a password to connect to or open a scratch org, although you can generate one
later with the org generate password command.

Salesforce recommends that you set the org that you connect to the most during development as your default org. The easiest way to
set it is when you log in to a Dev Hub org or create a scratch org; you can also use the config commands on page 25. Specify the
--set-default-dev-hub or --set-default flag, respectively. You can also create an alias to make the org’s usernames
more readable and intuitive. You can use usernames or their aliases interchangeably for all CLI commands that connect to an org.

These examples set the default org and aliases when you log in and authorize an org, in this case a Dev Hub org, and then when you
create a scratch org.

sf org login web --set-default-dev-hub --alias my-hub-org
sf org create scratch --definition-file config/project-scratch-def.json --set-default
--alias my-scratch-org

To verify whether a CLI command requires an org connection, look at its flag list with the -h flag. Commands that have the
--target-dev-hub flag connect to the Dev Hub org. Similarly, commands that have --target-org connect to scratch orgs,
sandboxes, and so on. This example displays the flag list and help information about org create scratch.

sf org create scratch -h

When you run a CLI command that requires an org connection and you don’t specify a username, the command uses the default. To
display all the orgs that you've authorized or created, run org list. The default Dev Hub and scratch orgs are marked with an emoji
on the left; see the legend at the end of the display for details.

Let's run through a few examples. This example deploys source code to the org that you've set as the default.

sf project deploy start

To specify an org other than the default, use --target-org. For example, let’s say you created a scratch org with the alias
my-other-scratch-org. It’s not the default but you still want to deploy source to it.

sf project deploy start --target-org my-other-scratch-org

This example shows how to use the --target-dev-hub flag to specify a non-default Dev Hub org when creating a scratch org.

sf org create scratch --target-dev-hub jdoe@mydevhub.com --definition-file my-org-def.json
--alias yet-another-scratch-org

More About Setting Default Orgs
If you’ve already created a scratch org, you can set it, or any other org, as your default by running the config set command from
your project directory.

sf config set target-org test-wvkpnfm5z113@example.com

25

Salesforce DX Usernames and OrgsProject Setup

The command sets the value locally, so it works only for the current project. To use the default org for all projects on your computer,
specify the --global flag. You can run this command from any directory. Local project defaults override global defaults.

sf config set target-org test-wvkpnfm5z113@example.com --global

The process is similar to set a default Dev Hub org, except you use the target-dev-hub config variable.

sf config set target-dev-hub jdoe@mydevhub.com

To unset a config variable, run the config unset command. Use the --global flag to unset it for all your Salesforce DX projects.

sf config unset target-org --global

To view all the configuration variables you’ve set, run config list; if you run it from a project directory it also lists the local ones.

sf config list

More About Aliasing
Use the alias set command to set an alias for a scratch org you’ve already created, or any org after you’ve authorized it. You can
create an alias for any org: Dev Hub, scratch org, production, sandbox, and so on. So when you issue a command that requires the org’s
username, using an easily-remembered alias speeds things up.

sf alias set my-scratch-org test-wvkpnfm5z113@example.com

An alias also makes it easy to set a default org. The previous example of using config set to set target-org now becomes
much more digestible when you use an alias rather than the actual username.

sf config set target-org my-scratch-org

Set multiple aliases with a single command by separating the name-value pairs with a space; in this case you must use the equal sign.

sf alias set org1=<username> org2=<username>

You can associate an alias with only one username at a time. If you set it multiple times, the alias points to the most recent username.
For example, if you run the following two commands, the alias my-org is set to test-wvkpnfm5z113@example.com.

sf alias set my-org test-blahdiblah@example.com
sf alias set my-org test-wvkpnfm5z113@example.com

To view all aliases that you’ve set, use one of the following commands.

sf alias list
sf org list

To remove an alias, use the alias unset command.

sf alias unset my-org

List All Your Orgs
Use the org list command to display the usernames and aliases for the orgs that you’ve authorized and the active scratch orgs
that you’ve created.

sf org list

Type Alias Username Org ID

26

Salesforce DX Usernames and OrgsProject Setup

Status Expires
── ─────── ────────────── ─── ──────────────────
───────────────────── ──────────
D DevHub JulesDevHub jules@sf.com 00DB0001234c7jiMAA
Connected
Sandbox jules@sf.com.jssandtwo 00D020012344XTiEAM

Connected
O Scratch my-scratch-org test-qjrr9q5d13o8@example.com 00DMN0012342Gez2AE
Active 2023-08-21

Legend: D=Default DevHub, O=Default Org Use --all to see expired and deleted scratch
orgs

The output lists the orgs that you’ve authorized or created, including Dev Hub orgs, production orgs, scratch orgs, and sandboxes. The
table displays the usernames that you specified when you authorized the orgs, their aliases, their IDs, and whether the CLI can connect
to it. An emoji on the left points to the default org or Dev Hub; refer to the legend at the bottom for details. Scratch orgs also display
their expiration dates.

To view more information, such as the scratch org creation date and associated DevHub org, and instance URL for all orgs, use the
--verbose flag.

sf org list --verbose

Use the --clean flag to remove non-active scratch orgs from the list. The command prompts you before it does anything.

sf org list --clean

SEE ALSO:

Authorization

Build Your Own Scratch Org Definition File

Create Scratch Orgs

Generate or Change a Password for a Scratch Org User

Deploy Source From Your Project to the Scratch Org

Link a Namespace to a Dev Hub Org

To use a namespace with a scratch org, you must link the Developer Edition org where the namespace is registered to a Dev Hub org.

Complete these tasks before you link a namespace.

• If you don’t have an org with a registered namespace, create a Developer Edition org that is separate from the Dev Hub or scratch
orgs. If you already have an org with a registered namespace, you’re good to go.

• In the Developer Edition org, create and register the namespace.

Important: Choose namespaces carefully. If you’re trying out this feature or need a namespace for testing purposes, choose
a disposable namespace. Don’t choose a namespace that you want to use in the future for a production org or some other
real use case. After you associate a namespace with an org, you can't change it or reuse it.

1. Log in to your Dev Hub org as the System Administrator or as a user with the Salesforce DX Namespace Registry permissions.

Tip: Make sure your browser allows pop-ups from your Dev Hub org.

27

Link a Namespace to a Dev Hub OrgProject Setup

a. From the App Launcher menu, select Namespace Registries.

b. Click Link Namespace.

2. In the window that pops up, log in to the Developer Edition org in which your namespace is registered using the org's System
Administrator's credentials.

You can’t link orgs without a namespace: sandboxes, scratch orgs, patch orgs, and branch orgs require a namespace to be linked to
the Namespace Registry.

To view all the namespaces linked to the Namespace Registry, select the All Namespace Registries list view.

SEE ALSO:

Get a Trial Development Environment for Free

Lightning Aura Components Developer Guide: Create a Namespace in Your Org

Add Salesforce DX Users

Salesforce Help: My Domain

Salesforce DX Project Configuration

The project configuration file sfdx-project.json indicates that the directory is a Salesforce DX project. The configuration file
contains project information and facilitates the authorization of orgs and the creation of second-generation packages. It also tells
Salesforce CLI where to put files when syncing between the project and org.

We provide sample sfdx-project.json files in the sample repos for creating a project using Salesforce CLI or Salesforce Extensions
for VS Code.

Note: Are you planning to create second-generation packages? When you’re ready, add packaging-specific configuration options
to support package creation. See Project Configuration File for a Second-Generation Managed Package.

We recommend that you check in this file with your source.

{
"packageDirectories" : [

{ "path": "force-app", "default": true},
{ "path" : "unpackaged" },
{ "path" : "utils" }

],
"namespace": "",
"sfdcLoginUrl" : "https://login.salesforce.com",
"sourceApiVersion": "58.0"
}

You can manually edit these parameters.

name (required for Salesforce Functions)

Salesforce DX or Salesforce Functions project name.

namespace (optional)

The global namespace that is used with a package. The namespace must be registered with an org that is associated with your Dev
Hub org. This namespace is assigned to scratch orgs created with the org create scratch command. If you’re creating an
unlocked package, you have the option to create a package with no namespace.

28

Salesforce DX Project ConfigurationProject Setup

https://developer.salesforce.com/free-trials
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/namespaces_creating.htm
https://help.salesforce.com/articleView?id=domain_name_overview.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

Important: Register the namespace with Salesforce and then connect the org with the registered namespace to the Dev
Hub org.

oauthLocalPort (optional)
By default, the OAuth port is 1717. Change this port if 1717 is already in use and you plan to create a connected app in your Dev
Hub org to support JWT-based authorization. Be sure you also follow the steps in Create a Connected App in Your Org to change
the callback URL.

packageAliases (optional)

Aliases for package IDs, which can often be cryptic. See Project Configuration File for a Second-Generation Managed Package for
details.

packageDirectories (required)

Package directories indicate which directories to target when syncing source to and from the org. These directories can contain
source files from your managed or unmanaged package. They can also contain unpackaged source files produced by, for example,
an ant tool or change set. For information on all packageDirectories options, see Project Configuration File for a
Second-Generation Managed Package.

Keep these things in mind when working with package directories.

• The location of the package directory is relative to the project. Don’t specify an absolute path. The following two examples are
equivalent.

"path": "helloWorld"
"path" : "./helloWorld"

• You can have only one default path (package directory). If you have only one path, we assume it’s the default, so you don’t have
to explicitly set the default parameter. If you have multiple paths, you must indicate which one is the default.

• Salesforce CLI uses the default package directory as the target directory when retrieving changes from the org to the local project.
This default path is also used when creating second-generation packages.

• If you don’t specify an output directory, the default package directory is also where files are stored during source conversions.
Source conversions are both from metadata format to source format, and from source format to metadata format.

plugins (optional)

To use the custom plugins you’ve created with your Salesforce DX project, add a plugins section to the sfdx-project.json
file. In this section, add configuration values and settings to change your plugins’ behavior.

"plugins": {
"yourPluginName": {
"timeOutValue": "2"

},
"yourOtherPluginName": {
"yourCustomProperty": true

}
}

Store configuration variables for only those values that you want to check in to source control for the project. These configuration
values affect your whole development team.

pushPackageDirectoriesSequentially (optional) (Deprecated)

Note: This property is deprecated and applies only to the deprecated force:source:push command. It doesn't affect
the behavior of the project deploy start command. To deploy packages sequentially, and in a specific order, use
separate project deploy start commands in the desired order.

29

Salesforce DX Project ConfigurationProject Setup

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm
https://github.com/salesforcecli/cli/wiki/Quick-Introduction-to-Developing-sf-Plugins

Set to true to push multiple package directories in the order they're listed in packageDirectories when using
force:source:push. The directories are pushed in separate transactions. The default value of this property is false, which
means that multiple package directories are deployed in a single transaction without regard to order. Example:

"packageDirectories": [
{
"path": "es-base-custom",
"default": true

},
{
"path": "es-base-ext"

}
],
"pushPackageDirectoriesSequentially": true,

replacements (optional)

Automatically replace strings in your metadata source files with specific values right before you deploy the files to an org.

See Replace Strings in Code Before Deploying for details.

sfdcLoginUrl (optional)

The login URL that the org login commands use. If not specified, the default is https://login.salesforce.com.
Override the default value if you want users to authorize to a specific Salesforce instance. For example, if you want to authorize into
a sandbox org, set this parameter to https://test.salesforce.com.

If you don’t specify a default login URL here, or if you run org login outside the project, specify the instance URL when authorizing
the org with the --instance-url flag.

sourceApiVersion (optional)

The API version that the source is compatible with. The default is the same version as the Salesforce CLI.

The sourceApiVersion value determines the fields retrieved for each metadata type during project deploy, project
retrieve, or project convert. This field is important if you’re using a metadata type that has changed in a recent release.
You’d want to specify the version of your metadata source. For example, let's say a new field was added to the CustomTab for API
version 58.0. If you retrieve components for version 57.0 or earlier, you see errors when running the project commands because
the components don't include that field.

Don’t confuse this project configuration parameter with the org-api-version CLI configuration variable, which has a similar name.
See How API Version and Source API Version Work in Salesforce CLI for more information.

SEE ALSO:

Link a Namespace to a Dev Hub Org

Authorization

How to Exclude Source When Syncing

Retrieve Source from the Scratch Org to Your Project

Deploy Source From Your Project to the Scratch Org

30

Salesforce DX Project ConfigurationProject Setup

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_ws_string_replace.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_dev_cli_config_values.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_apiversion.htm

Multiple Package Directories

When you create your Salesforce DX project, we recommend that you organize your metadata into logical groupings by creating multiple
package directories locally. You then define these directories in your sfdx-project.json file. You can group similar code and
source for an application or customization to better organize your team’s repository. Later, if you decide to use second-generation
packages (2GP), these directories correspond to the actual 2GP packages.

Note: For clarity, a package directory refers to the local (client-side) directory that contains decomposed metadata files, that is,
metadata in source format. This directory doesn’t always result in a 2GP package. Package refers to a 2GP package.

In your sfdx-project.json file, list each package directory separately in the packageDirectories section. Each local
package directory adheres to the standard Salesforce DX project structure.

The multiple package directory structure is client-side (local) only. When you deploy the source to the org with project deploy
start, there’s no association between its local package directory location and the package in the org. You specify that metadata
belongs to a specific 2GP package in an org by explicitly installing the 2GP package.

All of the project commands that deploy, retrieve, and convert metadata support multiple package directories.

How Do I Set It Up?
Setting up multiple package directories is easy. How you organize your local source code among these directories takes more thought
and planning, and depends on your development environment. Plan how to organize your code before you get started. Keep your
source code well organized as your project grows to make it easier and more efficient for your developers to work.

Let’s say you put the decomposed metadata files for a custom object MyObject in the default package directory. You can then put files
for a new field MyField on MyObject in a different “extension” package directory without having to also include the MyObject files.
Although this is a simple example, you can organize your code in any number of different ways. These blog posts provide some ideas.

Here’s how you set up multiple package directories. Let’s first look at a sample sfdx-project.json snippet:

"packageDirectories": [
{
"path": "es-base-custom",
"default": true

},
{
"path": "es-base-ext"

},
{
"path": "es-base-styles"

}
],

The sample sfdx-project.json snippet defines three package directories: es-base-custom (the default), es-base-ext,
and es-base-styles. Let’s say your top-level local project directory is called easy-spaces-lwc. The directory hierarchy
underneath it would look something like this:

31

Multiple Package DirectoriesProject Setup

https://developer.salesforce.com/blogs/2018/06/working-with-modular-development-and-unlocked-packages-part-1.html

Each es-base-* directory adheres to the standard Salesforce DX project structure. For example, the es-base-ext directory
would look something like:

Now add the decomposed metadata source to these multiple package directories in the way that best suits your development environment.

How Does It Work?
Let's go through a few examples to see how project deploy start and project retrieve start work with multiple
package directories.

For new orgs, the default project deploy start command deploys all the metadata in all multiple package directories
listed in your sfdx-project.json file. After that, the command deploys only metadata that's new, changed, or marked for delete.
By default, the command deploys the metadata in a single transaction, as if you had just one package directory.

sf project deploy start --target-org my-org

You can also target the metadata you want to deploy. You can deploy specific package directories, specific metadata components,
components listed in a manifest file, and more. This example deploys the metadata in the es-base-custom package directory:

sf project deploy start --source-dir es-base-custom --target-org my-org

This example deploys all Apex classes found in all your multiple package directories:

sf project deploy start --metadata ApexClass --target-org my-org

When you run project retrieve start, the command retrieves all remote changes from the org into your local project. For
each retrieved component, the command looks in all package directories for a local match. If it finds a match, the command updates it.
If it doesn't find a match, the command copies the local component into the default package directory, which in our example is
es-base-custom.

sf project retrieve start --target-org my-org

You can then move the retrieved files into the package directory that makes sense for your project. After you deploy the moved files
back to the org with project deploy start, Salesforce CLI tracks their new location.

You can also use project retrieve start to retrieve targeted metadata from your org. Existing metadata is retrieved into its
correct local package directory and new metadata into the default package directory. This example retrieves only the metadata components
contained in the local es-base-custom package directory:

sf project retrieve start --source-dir es-base-custom --target-org my-org

32

Multiple Package DirectoriesProject Setup

This example retrieves all Apex classes from your org; new classes go into the default package directory and classes that exist locally go
into their corresponding package directory.

sf project retrieve start --metadata ApexClass --target-org my-org

Push Source Sequentially
By default, project deploy start deploys metadata to your org in a single transaction, regardless of the order that you list
your multiple package directories in sfdx-project.json. But sometimes you must specify the exact order that the package
directories are pushed. Reasons include:

• The number of recomposed metadata component files in your local project exceeds the Salesforce metadata limit of 10,000 files
per retrieve or deploy. One workaround is to split up your metadata into multiple package directories that each contain less than
this limit and push each directory sequentially, and thus separately.

• You have dependencies between multiple package directories, which requires that they be pushed in a specific order.

• More than one package directory contains the same metadata component, and you want to specify which one is deployed last so
it's not overwritten.

If you need multiple deployments in a specific order, run project deploy start several times with the --source-dir or
--metadata flags in the desired order.

SEE ALSO:

Developer Guide: Second-Generation Managed Packages

Developer Guide: Install and Uninstall Second-Generation Managed Packages

Salesforce DX Project Structure and Source Format

Salesforce Developers Blog: Working with Modular Development and Unlocked Packages

Replace Strings in Code Before Deploying

Automatically replace strings in your metadata source files with specific values right before you deploy the files to an org.

These sample use cases describe scenarios for using pre-deployment string replacement:

• A NamedCredential contains an endpoint that you use for testing. But when you deploy the source to your production org, you
want to specify a different endpoint.

• An ExternalDataSource contains a password that you don’t want to store in your repository, but you’re required to deploy the
password along with your metadata.

• You deploy near-identical code to multiple orgs. You want to conditionally swap out some values depending on which org you’re
deploying to.

String replacement occurs when source-formatted files are converted to a ZIP file right before being deployed to the org with the
project deploy start command. The changes that result from string replacement are never written to your project; they apply
only to the deployed files.

Configure String Replacement
Configure string replacement by adding a replacements property to your sfdx-project.json file. The property accepts
multiple entries that consist of keys that define the:

• Source file or files that contain the string to be replaced.

33

Replace Strings in Code Before DeployingProject Setup

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_install_upgrade.htm
https://developer.salesforce.com/blogs/2018/06/working-with-modular-development-and-unlocked-packages-part-1.html

• The string to be replaced.

• The replacement value.

Let’s look at an example to see how it works; see more examples later in this topic. This sample sfdx-project.json specifies that
when the file force-app/main/default/classes/myClass.cls is deployed, all occurrences of the string replaceMe
are replaced with the value of the THE_REPLACEMENT environment variable:

{
"packageDirectories": [

{
"path": "force-app",
"default": true

}
],
"name": "myproj",
"replacements": [
{
"filename": "force-app/main/default/classes/myClass.cls",
"stringToReplace": "replaceMe",
"replaceWithEnv": "THE_REPLACEMENT"

}
]

}

You can specify these keys in the replacements property.

Location of Files
One of the following properties is required:

• filename: Single file that contains the string to be replaced.

• glob: Collection of files that contain the string to be replaced. Example: **/classes/*.cls.

String to be Replaced
One of the following properties is required:

• stringToReplace: The string to be replaced.

• regexToReplace: A regular expression (regex) that specifies a string pattern to be replaced.

Replacement Value
One of the following properties is required:

• replaceWithEnv: Specifies that the string is replaced with the value of the specified environment variable.

• replaceWithFile: Specifies that the string is replaced with the contents of the specified file.

Conditional Processing
These properties are optional:

• replaceWhenEnv: Specifies that a string replacement occur only when a specific environment variable is set to a specific
value. Use the property env to specify the environment variable and the property value to specify the value that triggers
the string replacement.

• allowUnsetEnvVariable: Boolean property used with the replaceWithEnv property. When set to true, specifies
that if the replaceWithEnv environment variable isn’t set, then remove the replacement string from the file before deploying.
In other words, replace it with nothing. When set to false (the default value), you get an error when the replaceWithEnv
environment variable isn’t set.

Follow these syntax rules:

• Always use forward slashes for directories (/), even on Windows.

34

Replace Strings in Code Before DeployingProject Setup

• Both JSON and regular expressions use the backslash (\) as an escape character. As a result, when you use a regular expression to
match a dot, which requires escaping, you must use two backslashes for the regexToReplace value:

"regexToReplace" : "\\."

Similarly, to match a single backslash, you must specify three of them.

"regexToReplace" : "\\\"

Examples
This example is similar to the previous example but shows how to configure string replacement for two files:

"replacements": [
{
"filename": "force-app/main/default/classes/FirstApexClass.cls",
"stringToReplace": "replaceMe",
"replaceWithEnv": "THE_REPLACEMENT"

},
{
"filename": "force-app/main/default/classes/SecondApexClass.cls",
"stringToReplace": "replaceMe",
"replaceWithEnv": "THE_REPLACEMENT"

}
]

This example shows how to specify that the string replacement occur only if an environment variable called DEPLOY_DESTINATION
exists and it has a value of PROD.

"replacements": [
{
"filename": "force-app/main/default/classes/myClass.cls",
"stringToReplace": "replaceMe",
"replaceWithEnv": "THE_REPLACEMENT",
"replaceWhenEnv": [{
"env": "DEPLOY_DESTINATION",
"value": "PROD"

}]
}

]

In this example, if the environment variable SOME_ENV_THAT_CAN_BE_BLANK isn’t set, the string myNS__ in the myClass.cls
file is removed when the file is deployed. If the environment variable is set to a value, then that value replaces the myNS__ string.

"replacements": [
{
"filename": "/force-app/main/default/classes/myClass.cls",
"stringToReplace": "myNS__",
"replaceWithEnv": "SOME_ENV_THAT_CAN_BE_BLANK",
"allowUnsetEnvVariable": true

}
]

35

Replace Strings in Code Before DeployingProject Setup

This example specifies that when the Apex class files in the force-app/main/default directory are deployed, all occurrences
of the string replaceMe are replaced with the contents of the file replacementFiles/copyright.txt.

"replacements": [
{
"glob": "force-app/main/default/classes/*.cls",
"stringToReplace": "replaceMe",
"replaceWithFile": "replacementFiles/copyright.txt"

}
]

Use a regular expression to specify a search pattern for text rather than the literal text. For example, Apex class XML files always contain
an <apiVersion> element that specifies the Salesforce API version, as shown in this snippet.

<?xml version="1.0" encoding="UTF-8" ?>
<ApexClass xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>55.0</apiVersion>
<status>Active</status>

</ApexClass>

Let’s say you want to test your Apex classes on a more recent API version before you actually update all your classes. This example shows
how to use a regular expression to search for the <apiVersion> element. At deploy, the element is replaced with a specific string,
such as <apiVersion>58.0</apiVersion>, which is contained in the
replacementFiles/latest-api-version.txt file.

"replacements": [
{
"glob": "force-app/main/default/classes/*.xml",
"regexToReplace": "<apiVersion>\\d+\\.0</apiVersion>",
"replaceWithFile": "replacementFiles/latest-api-version.txt"

}
]

Test String Replacements
Follow these steps to test string replacement without actually deploying files to the org.

1. Set the SF_APPLY_REPLACEMENTS_ON_CONVERT environment variable to true.

2. Run the project convert source command, which converts the source files into metadata API format. For example:

sf project convert source --output-dir mdapiOut --source-dir force-app

3. Inspect the files in the output directory (mdapiOut in our example) for the string replacements and what exactly will be deployed
to the org.

Warning: Be careful when writing passwords or secrets to the file system while testing. Also, be sure to reset any environment
variables you set during testing so they aren’t accidentally applied later.

Tips and Tricks
• (macOS or Linux only) When using the replaceWithEnv or replaceWhenEnv properties, you can specify that the environment

variables apply to a single command by prepending the variables before the command execution. For example:

THE_REPLACEMENT="some text" DEPLOY_DESTINATION=PROD sf project deploy start

36

Replace Strings in Code Before DeployingProject Setup

Warning: Be careful when setting passwords or secrets this way, because they show up in your terminal history.

• If you’ve configured many string replacements, and are finding it difficult to manage, check out open-source tools that load the
contents of one or more files to your environment, such as dotenv-cli. In this example, environment variables configured in two local
.env files are loaded before the project deploy start command execution:

dotenv -e .env1 -e .env2 sf project deploy start

Warning: Don’t commit passwords or secrets in .env files.

• If you specify --json for project deploy start, the JSON output includes a replacements property that lists the
affected files and the string that was replaced. If you specify --json and --concise, the JSON output doesn’t include the
replacements property.

To view string replacement information in the project deploy start human-readable output, specify --verbose.

Considerations and Limitations
• If you configure multiple string replacements in multiple files, the performance of the deployment can degrade. Consider using the

filename key when possible, to ensure that you open only one file. If you must use glob, try to limit the number of files that
are opened by specifying a single directory or metadata type.

For example, "glob": "force-app/main/default/classes/*.cls" targets Apex class files in a specific directory,
which is better than "glob": "**/classes/**”, which searches for all Apex metadata files in all package directories.

• Be careful using string replacement in static resources. When not doing string replacement, Salesforce CLI simply zips up all static
resources when it first encounters their directory and deploys them as-is. If you configure string replacement for a large static resource
directory, the CLI must inspect a lot more files than usual, which can degrade performance.

• You can’t use string replacements when deploying in metadata format, such as with the command project deploy start
--metadata-dir.

• If your deployment times out, or you specify the --async flag of project deploy start, and then run project
deploy resume or project deploy report to see what happened, the deployed files contain string replacements
as usual. However, the output of project deploy resume and project deploy report don’t display the same
string replacement information as project deploy start --verbose would have.

37

Replace Strings in Code Before DeployingProject Setup

https://github.com/entropitor/dotenv-cli

CHAPTER 4 Authorization

EDITIONS

Available in: Salesforce
Classic and Lightning
Experience

Dev Hub available in:
Developer,Enterprise,
Performance, and
Unlimited Editions

Scratch orgs are available
in: Developer, Enterprise,
Group, and Professional
Editions

Authorization refers to logging into an org so you can run
commands that require access to the org. Creating an org with a
CLI command also automatically authorizes it. For example, you
authorize a Dev Hub org to allow you to create, delete, and manage
your Salesforce scratch orgs. After you set up your project on your
local machine, you authorize the Dev Hub org before you can create
a scratch org. When you run the command to create the scratch
org, Salesforce CLI automatically authorizes it.

You can also authorize other existing orgs, such as sandboxes or
packaging orgs, to provide more flexibility when using CLI
commands.

You authorize an org only once. To switch between orgs during
development, specify the username that you used to log into the
org with either the --target-org or --target-dev-hub
flag. You can also set a default org or use an alias.

In this chapter ...

• Authorize an Org
Using a Browser

• Authorize an Org
Using the JWT Flow

• Create a Private Key
and Self-Signed
Digital Certificate

• Create a Connected
App in Your Org

• Use the Default
Connected App
Securely

• Use an Existing
Access Token

You have some options when authorizing an org, depending on what you’re trying to accomplish.• Authorization
Information for an
Org

• The easiest option is to run org login web, which opens a browser in which you enter your
Salesforce credentials. This option is officially called the OAuth 2.0 web server flow.

• Log Out of an Org • For continuous integration (CI) or automated environments, use the org login jwt command.
This option is officially called the OAuth 2.0 JSON Web Tokens (JWT) bearer flow. This flow is ideal
for scenarios where you can’t interactively log in to a browser, such as from a CI script.

Important: If your org is configured with high assurance (stepped up) authentication,
Salesforce prompts the user to verify their identity. This verification process means that you
can’t use the JWT flow and Salesforce CLI for headless authentication.

SEE ALSO:

Authorize an Org Using a Browser

Authorize an Org Using the JWT Flow

Salesforce Help: OAuth 2.0 Web Server Flow for Web App Integration

Salesforce Help: OAuth 2.0 JWT Bearer Flow for Server-to-Server Integration

38

https://help.salesforce.com/articleView?id=remoteaccess_oauth_web_server_flow.htm&language=en_US
https://help.salesforce.com/articleView?id=remoteaccess_oauth_jwt_flow.htm&language=en_US

Authorize an Org Using a Browser

Authorize an org with a browser by running a CLI command and entering your credentials in the browser that automatically opens.
That’s it!

1. Open a terminal (macOS and Linux) or command prompt (Windows).

2. Run the org login web CLI command. We recommend using the --alias flag to make it easy to refer to the org later.

sf org login web --alias my-org

Use the --set-default flag if you want the org to be the default for commands that accept the --target-org flag. If
you’re authorizing a Dev Hub org, use the --set-default-dev-hub flag instead. See the org login web command
for examples.

3. In the browser window that opens, sign in to your org with your Salesforce login credentials. Click Allow, which allows Salesforce
CLI to access to your org.

4. Close the browser window. Your org is now authorized!

If the URL that you use to log in to your org isn’t the default (login.salesforce.com), update your project configuration file
(sfdx-project.json). Set the sfdcLoginUrl option to your enhanced My Domain login URL. For example:

"sfdcLoginUrl" : "https://MyDomainName.my.salesforce.com"

This example is for a sandbox.

"sfdcLoginUrl" : "https://MyDomainName--SandboxName.sandbox.my.salesforce.com"

Alternatively, you can use the --instance-url flag of org login web to specify the URL. This value overrides the login URL
you specified in the sfdx-project.json file. For example:

sf org login web --alias my-hub-org --instance-url https://exciting.sandbox.my.salesforce.com

Note: We recommend that you use your enhanced My Domain login URL, as it isn’t affected by org migrations that change your
org’s Salesforce instance. Be sure you use the version that ends in my.salesforce.com instead of the URL you see in Lightning
Experience (.lightning.force.com). To verify the valid My Domain URL, from Setup, enter My Domain in the Quick
Find box, then select My Domain.

Also, the orgs you authorize for Salesforce CLI are required to have a connected app. We provide a default connected app called
Salesforce CLI. If you need more security or control, such as setting the refresh token timeout or specifying IP ranges, create
your own connected app. You can also configure the default connected app to be more secure.

SEE ALSO:

Salesforce CLI Command Reference: org login web

Create a Connected App in Your Org

Use the Default Connected App Securely

Salesforce DX Project Configuration

Salesforce Help: Enhanced Domains

39

Authorize an Org Using a BrowserAuthorization

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://help.salesforce.com/s/articleView?id=sf.domain_name_enhanced.htm&language=en_US

Authorize an Org Using the JWT Flow

Continuous integration (CI) environments are fully automated and don’t support the human interactivity of logging into a browser. In
these environments, you must use the JWT flow to authorize an org.

The JWT flow requires a digital certificate, also called a digital signature, to sign the JWT request. You can use your own certificate or
create a self-signed certificate using OpenSSL.

Important: If your org is configured with high assurance (stepped up) authentication, Salesforce prompts the user to verify their
identity. This verification process means that you can’t use the JWT flow and Salesforce CLI for headless authentication.

1. If you don’t have your own private key and digital certificate, you can use OpenSSL to create the key and a self-signed certificate.

It’s assumed in this task that your private key file is named server.key and your digital certificate is named server.crt.

2. Create a connected app, and configure it for Salesforce DX.

This task includes uploading the server.crt digital certificate file. Make note of the consumer key when you save the connected
app because you need it later.

3. Open a terminal (macOS and Linux) or command prompt (Windows).

4. Run the org login jwt CLI command. We recommend using the --alias flag to make it easy to refer to the org later.
Specify the consumer key from your connected app with the --client-id flag, the path to the private JWT key file
(server.key), and the username for your org. For example:

sf org login jwt --client-id 04580y4051234051 --jwt-key-file /Users/jdoe/JWT/server.key
--username jdoe@myorg.com --alias my-hub-org

Use the --set-default flag if you want the org to be the default for commands that accept the --target-org flag. If
you’re authorizing a Dev Hub org, use the --set-default-dev-hub flag instead. See the org login jwt command
for examples.

You can authorize a scratch org using the same consumer key and private key file that you used to authorize its associated Dev Hub org.
See Authorize a Scratch Org Using the JWT Flow

If the URL that you use to log in to your org isn’t the default (login.salesforce.com), update your project configuration file
(sfdx-project.json). Set the sfdcLoginUrl option to your enhanced My Domain login URL. For example:

"sfdcLoginUrl" : "https://MyDomainName.my.salesforce.com"

This example is for a sandbox.

"sfdcLoginUrl" : "https://MyDomainName--SandboxName.sandbox.my.salesforce.com"

Alternatively, you can use the --instance-url flag of the org login jwt command to specify the URL. This value overrides
the login URL you specified in the sfdx-project.json file. For example:

sf org login jwt --client-id 04580y4051234051 --jwt-key-file /Users/jdoe/JWT/server.key
--username jdoe@myorg.com --alias my-hub-org --instance-url
https://mydomain--mysandbox.sandbox.my.salesforce.com

Note: We recommend that you use your enhanced My Domain login URL, because it isn’t affected by org migrations that change
your org’s Salesforce instance. Be sure you use the version that ends in my.salesforce.com instead of the URL you see in
Lightning Experience (.lightning.force.com). To verify the valid My Domain URL, from Setup, enter My Domain in
the Quick Find box, then select My Domain.

40

Authorize an Org Using the JWT FlowAuthorization

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_jwt_unified

Authorize a Scratch Org Using the JWT Flow

If you authorized your Dev Hub org using the org login jwt command, you can use the same digital certificate and private
key to authorize an associated scratch org. This method is useful for continuous integration (CI) systems that must authorize scratch
orgs after creating them, but don’t have access to the scratch org’s access token.

SEE ALSO:

Salesforce CLI Command Reference: org login jwt

Create a Private Key and Self-Signed Digital Certificate

Create a Connected App in Your Org

Salesforce DX Project Configuration

Salesforce Help: Enhanced Domains

Salesforce Help: Set Up Multi-Factor Authentication

Authorize a Scratch Org Using the JWT Flow
If you authorized your Dev Hub org using the org login jwt command, you can use the same digital certificate and private key
to authorize an associated scratch org. This method is useful for continuous integration (CI) systems that must authorize scratch orgs
after creating them, but don’t have access to the scratch org’s access token.

Before you begin, we assume that:

• You previously authorized your Dev Hub org with the org login jwt command.

• The private key file you used when authorizing your Dev Hub org is accessible and in /Users/jdoe/JWT/server.key.

• You’ve created a scratch org and have its administration user’s username, such as test-wvkpnfm5z113@example.com.

• You know the scratch org’s instance URL. If you don’t know it, you can query your Dev Hub org. For example:

sf data query --target-org my-dev-hub --query "SELECT SignupUsername,LoginUrl FROM
ScratchOrgInfo WHERE SignupUsername='test-wvkpnfm5z113@example.com'"

1. Copy the consumer key from the connected app that you created in your Dev Hub org.

a. Log in to your Dev Hub org.

b. From Setup, enter App Manager in the Quick Find box to get to the Lightning Experience App Manager.

c. Locate the connected app in the apps list, then click the dropdown menu on the right side, and select View.

d. In the API (Enable OAuth Settings) section, click Manage Consumer Details

If prompted, verify your identity by entering the verification code that was automatically sent to your email address.

e. Copy the Consumer Key to your clipboard. The consumer key is a long string of numbers, letters, and characters, such as
3MVG9szVa2Rx_sqBb444p50Yj (example shortened for clarity.)

2. Open a terminal (macOS and Linux) or command prompt (Windows).

3. Run the org login jwt CLI command. The --client-id and --jwt-key-file flag values are the same as when
you ran the command to authorize a Dev Hub org. Set --username to the scratch org’s admin username and set

41

Authorize a Scratch Org Using the JWT FlowAuthorization

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_jwt_unified
https://help.salesforce.com/s/articleView?id=sf.domain_name_enhanced.htm&language=en_US
https://help.salesforce.com/articleView?id=security_2fa_config.htm&language=en_US

--instance-url to the scratch org’s instance URL, such as
https://energy-enterprise-2539-dev-ed.scratch.my.salesforce.com. For example:

sf org login jwt --client-id 3MVG9szVa2Rx_sqBb444p50Yj \
--jwt-key-file /Users/jdoe/JWT/server.key --username test-wvkpnfm5z113@example.com \
--instance-url https://energy-enterprise-2539-dev-ed.scratch.my.salesforce.com

If you get an error that the user isn’t approved, it means that the scratch org information hasn’t yet been replicated. Wait a short
time and try again.

Note: If your scratch org is running on Hyperforce and the --username value of org login jwt is a non-admin scratch
org user, you can’t use your Dev Hub’s digital certificate and private key. To authorize the scratch org in this scenario, follow the
standard JWT flow steps.

SEE ALSO:

Authorize an Org Using the JWT Flow

Salesforce Help: Connected Apps

Create Scratch Orgs

Create a Private Key and Self-Signed Digital Certificate

Authorizing an org with the org login jwt command requires a digital certificate and the private key used to sign the certificate.
You can use your own private key and certificate issued by a certification authority. Alternatively, you can use OpenSSL to create a key
and a self-signed digital certificate. Using a private key and certificate is optional when you authorize an org by logging into a browser.

This process produces two files:

• server.key—The private key. You specify this file when you authorize an org with the org login jwt command.

• server.crt—The digital certificate. You upload this file when you create the required connected app.

1. Open a terminal (macOS and Linux) or command prompt (Windows).

2. If necessary, install OpenSSL on your computer.

To check whether OpenSSL is installed on your computer, run the which command on macOS or Linux or the where command
on Windows.

which openssl

3. Create a directory for storing the generated files, and change to the directory.

mkdir /Users/jdoe/JWT

cd /Users/jdoe/JWT

4. Generate a private key, and store it in a file called server.key.

openssl genpkey -des3 -algorithm RSA -pass pass:SomePassword -out server.pass.key -pkeyopt
rsa_keygen_bits:2048

openssl rsa -passin pass:SomePassword -in server.pass.key -out server.key

You can delete the server.pass.key file because you no longer need it.

42

Create a Private Key and Self-Signed Digital CertificateAuthorization

https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US

5. Generate a certificate signing request using the server.key file. Store the certificate signing request in a file called server.csr.
Enter information about your company when prompted.

openssl req -new -key server.key -out server.csr

6. Generate a self-signed digital certificate from the server.key and server.csr files. Store the certificate in a file called
server.crt.

openssl x509 -req -sha256 -days 365 -in server.csr -signkey server.key -out server.crt

Now create a custom connected app and upload the digital certificate to it on page 43.

SEE ALSO:

OpenSSL: Cryptography and SSL/TLS Tools

Create a Connected App in Your Org

Authorize an Org Using the JWT Flow

Create a Connected App in Your Org

Salesforce CLI requires a connected app in the org that you're authorizing. A connected app is a framework that enables an external
application, in this case Salesforce CLI, to integrate with Salesforce using APIs and standard protocols, such as OAuth. We provide a
default connected app when you authorize an org with the org login web command. For extra security, you can create your own
connected app in your org using Setup and configure it with the settings of your choice. You're required to create a connected app
when authorizing the org with the org login jwt command.

Note: The steps marked Required for JWT are required only if you’re creating a connected app to use with the org login
jwt command. In this case you also need a file that contains a digital certificate, such as server.crt. The steps are optional
if you’re creating a connected app to use with org login web.

1. Log in to your org.

2. From Setup, enter App Manager in the Quick Find box, then select App Manager.

3. In the top-right corner, click New Connected App.

4. Update the basic information as needed, such as the connected app name and your email address.

5. Select Enable OAuth Settings.

6. For the callback URL, enter http://localhost:1717/OauthRedirect.

If port 1717 (the default) is already in use on your local machine, specify an available one instead. Then update your
sfdx-project.json file by setting the oauthLocalPort property to the new port. For example, if you set the callback
URL to http://localhost:1919/OauthRedirect:

"oauthLocalPort" : "1919"

7. (Required for JWT) Select Use digital signatures.

8. (Required for JWT) Click Choose File and upload file that contains your digital certificate, such as server.crt.

9. Add these OAuth scopes:

• Manage user data via APIs (api)

• Manage user data via Web browsers (web)

43

Create a Connected App in Your OrgAuthorization

https://www.openssl.org/
https://help.salesforce.com/articleView?id=connected_app_create_basics.htm&language=en_US

• Perform requests at any time (refresh_token, offline_access)

10. If enabled, disable Require Proof Key for Code Exchange (PKCE) Extension for Supported Authorization Flows.

11. Click Save, then Continue.

12. Click Manage Consumer Details.

If prompted, verify your identity by entering the verification code that was automatically sent to your email address.

13. Click Copy next to Consumer Key because you need it later when you run an org login command.

14. Click Back to Manage Connected Apps.

15. Click Manage.

16. Click Edit Policies.

17. In the OAuth Policies section, for the Refresh Token Policy field, click Expire refresh token after: and enter 90 days or less.

Setting a maximum of 90 days for the refresh token expiration is a security best practice. To continue running CLI commands against
an org whose refresh tokens have expired, reauthorize it with the org login web or org login jwt command.

18. In the Session Policies section, set Timeout Value to 15 minutes.

Setting a timeout for access tokens is a security best practice. Salesforce CLI automatically handles an expired access token by referring
to the refresh token.

19. (Required for JWT) In the OAuth Policies section, select Admin approved users are pre-authorized for permitted users, and click
OK.

20. Click Save.

21. (Required for JWT) Click Manage Profiles, select the profiles that are pre-authorized to use this connected app, and click Save.
Similarly, click Manage Permission Sets to select the permission sets. Create permission sets if necessary.

To specify the consumer key, use the --client-id flag of the org login commands. For example, if your consumer key is
04580y4051234051 and you’re authorizing a Dev Hub org by logging into it from a browser, run this command in a terminal (macOS
and Linux) or command prompt (Windows):

sf org login web --client-id 04580y4051234051 --set-default-dev-hub --alias my-hub-org

See the reference for org login web and org login jwt for more examples.

SEE ALSO:

Create a Private Key and Self-Signed Digital Certificate

Salesforce Help: Connected Apps

Authorization

Salesforce Help: Set Up Multi-Factor Authentication

Use the Default Connected App Securely

If you authorize an org with the org login web command, but don't specify the --client-id flag, Salesforce CLI creates a
default connected app in the org called Salesforce CLI. However, its refresh tokens are set to never expire. As a security best
practice, Salesforce recommends that refresh tokens in your org expire after 90 days or fewer. Another security best practice is to set an
expiration for the access token to 15 minutes. Similar to refresh tokens, the access token in the default connected app is set to never
expire. To continue using this default connected app in a secure way, configure its policies.

44

Use the Default Connected App SecurelyAuthorization

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_web_unified
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_login_jwt_unified
https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US
https://help.salesforce.com/articleView?id=security_2fa_config.htm&language=en_US

1. Log in to your org.

2. From Setup, enter OAuth in the Quick Find box, then select Connected Apps OAuth Usage.

3. Select the Salesforce CLI app and click Install. Confirm by clicking Install again.

4. Click Edit Policies.

5. In the OAuth Policies section, for the Refresh Token Policy field, click Expire refresh token after: and enter 90 Days or less.

6. In the Session Policies section, set Timeout Value to 15 minutes.

7. Click Save.

If you run a CLI command against an org whose refresh token has expired, you get an error. For example:

ERROR running org open: Error authenticating with the refresh token due to: expired
access/refresh token

The org list command also displays expired refresh token information in the CONNECTED STATUS column. To continue using the
org, reauthorize it with the org login web or org login jwt command.

Salesforce CLI automatically handles an expired access token by referring to the refresh token.

SEE ALSO:

Salesforce Help: Connected Apps

Authorize an Org Using a Browser

Authorize an Org Using the JWT Flow

Use an Existing Access Token

When you authorize an org using the org login commands, Salesforce CLI takes care of generating and refreshing all tokens, such
as the access token. But sometimes you want to run a few CLI commands against an existing org without going through the entire
authorization process. In this case, you provide the access token and URL of the Salesforce instance that hosts the org to which you want
to connect.

Almost all CLI commands that have the --target-org | -o flag accept an access token. The only exception is org display
user.

1. Open a terminal (macOS and Linux) or command prompt (Windows).

2. To get the instance URL and access token for the org to connect to, run the org display command. See the values for the
Access Token and Instance Url keys.

sf org display --target-org myorg
=== Org Description

KEY VALUE
─────────────── ───
Access Token 00D8H0000007wpr!AQkAQAlOT5H (truncated for security)
...
Instance Url https://creative-impala-20hx3-dev-ed.my.salesforce.com
...

45

Use an Existing Access TokenAuthorization

https://help.salesforce.com/articleView?id=connected_app_overview.htm&language=en_US

3. Use config set to set the org-instance-url configuration variable. To set it locally, run the command from a Salesforce
DX project; to set it globally, use the --global flag.

sf config set org-instance-url=https://creative-impala-20hx3-dev-ed.my.salesforce.com
--global

4. When you run the CLI command, use the org’s access token as the value for the --target-org flag rather than the org’s
username.

sf project deploy start --source-dir <source-dir> --target-org 00D8H0000007wpr!AQkAQAlOT5H

Salesforce CLI doesn’t store the access token in its internal files. It uses it only for this CLI command run.

SEE ALSO:

Authorization Information for an Org

Salesforce CLI Command Reference: config set

Salesforce CLI Command Reference: project deploy start

Authorization Information for an Org

You can view information for all orgs that you’ve authorized and the scratch orgs that you’ve created.

To view authorization information about an org, run this command from a terminal (macOS and Linux) or command prompt (Windows).

sf org display --target-org <username-or-alias>

If you have set a default org, you don’t have to specify the --target-org flag. To display the usernames for all the active orgs that
you’ve authorized or created, run org list.

If you’ve set an alias for an org, you can specify it with the --target-org flag. This example uses the my-scratch-org alias.

sf org display --target-org my-scratch-org

Warning: This command will expose sensitive information that allows for subsequent activity
using your current authenticated session.
Sharing this information is equivalent to logging someone in under the current credential,
resulting in unintended access and escalation of privilege.
For additional information, please review the authorization section of the
https://developer.salesforce.com/docs/atlas.en-us.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm

=== Org Description

KEY VALUE

───────────────
──

Access Token <long-string>
Alias my-scratch-org

Api Version 58.0

Client Id PlatformCLI

46

Authorization Information for an OrgAuthorization

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_config_commands_unified.htm#cli_reference_config_set_unified
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm#cli_reference_project_deploy_start_unified

Created By jdoe@fabdevhub.org

Created Date 2023-06-09T17:59:18.000+0000

Dev Hub Id jdoe@fabdevhub.org

Edition Developer

Expiration Date 2023-06-16

Id 00D8H0000007wprU

Instance Url https://java-connect-41-dev-ed.scratch.my.salesforce.com

Org Name Your Company

Signup Username test-gm9uud@example.com

Status Active

Username test-gm9uud@example.com

To get more information, such as the Salesforce DX authentication URL, include the --verbose flag. This flag displays the Sfdx
Auth Url value only if you authorized the org using org login web and not org login jwt.

Note: To help prevent security breaches, the org display output doesn’t include the org’s client secret or refresh token.

SEE ALSO:

OAuth 2.0 Web Server Authentication Flow

Salesforce DX Usernames and Orgs

Log Out of an Org

For security purposes, you can use the Salesforce CLI to log out of any org you’ve previously authorized. This practice prevents other
users from accessing your orgs if you don’t want them to.

Important: The only way to access an org after you log out of it is with a password. By default, new scratch orgs contain one
administrator with no password. Therefore, to avoid losing access to a scratch org, set a password for at least one user of a scratch
org if you want to access it again after logging out. If you don’t want to access the scratch org again, delete it with org delete
scratch rather than log out of it.

To log out of an org, run org logout from a terminal (macOS and Linux) or command prompt (Windows). This example uses the
alias my-hub-org to log out.

sf org logout --target-org my-hub-org

To log out of all your orgs, including scratch orgs, use the --all flag.

sf org logout --all

To access an org again, other than a scratch org, reauthorize it.

47

Log Out of an OrgAuthorization

https://help.salesforce.com/articleView?id=remoteaccess_oauth_web_server_flow.htm&language=en_US

When you log out of an org, it no longer shows up in the org list output. If you log out of a Dev Hub org, the associated scratch
orgs show up only if you specify the --all flag.

SEE ALSO:

Salesforce CLI Command Reference: org logout

48

Log Out of an OrgAuthorization

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_org_commands_unified.htm#cli_reference_org_logout_unified

CHAPTER 5 Metadata Coverage

Launch the Metadata Coverage report to determine supported metadata for scratch org source tracking
purposes. The Metadata Coverage report is the ultimate source of truth for metadata coverage across
several channels. These channels include Metadata API, scratch org source tracking, unlocked packages,
second-generation managed packages, classic managed packages, and more.

View the Metadata Coverage report.

For more information, see Metadata Types in the Metadata API Developer Guide.

We've moved the information on Hard-Deleted Components in Unlocked Packages.

SEE ALSO:

Components Available in Managed Packages

49

https://mdcoverage.secure.force.com/docs/metadata-coverage
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_types_list.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/packaging_packageable_components.htm

CHAPTER 6 Scratch Orgs

The scratch org is a source-driven and disposable deployment of Salesforce code and metadata. A scratch
org is fully configurable, allowing developers to emulate different Salesforce editions with different
features and settings. You can share the scratch org configuration file with other team members, so you
all have the same basic org in which to do your development. In addition to code and metadata,
developers can install packages and deploy synthetic or dummy data for testing. Don’t add personal
data to scratch orgs.

In this chapter ...

• Supported Scratch
Org Editions and
Allocations

• Build Your Own
Scratch Org Definition
File Scratch orgs drive developer productivity and collaboration during the development process, and

facilitate automated testing and continuous integration. You can use Salesforce CLI or an IDE to open
your scratch org in a browser without logging in. Spin up a new scratch org when you want to:• Create a Scratch Org

Based on an Org
Shape • Start a new project.

• Start a new feature branch.• Create Scratch Orgs

• Test a new feature.• Scratch Org
Snapshots (Beta) • Start automated testing.

• Select the Salesforce
Release for a Scratch
Org

• Perform development tasks directly in an org.

• Start from “scratch” with a fresh new org.

Source Tracking

Source tracking refers to tracking the changes you make to your local source files and the metadata in
your org, and keeping both in sync.

• Deploy Source From
Your Project to the
Scratch Org

• Retrieve Source from
the Scratch Org to
Your Project

Scratch orgs have source tracking enabled by default. You can opt out of source tracking when you
create the scratch org by specifying the --no-track-source flag of the org create

• Scratch Org Users

• Manage Scratch
Orgs from the Dev
Hub Org

scratch command. This flag affects only your local configuration, not the scratch org itself. Salesforce
CLI sets a local configuration option trackSource: false as part of your authorization information
to the org. If you log out of the scratch org and then log back in again, source tracking is enabled again
by default.• Scratch Org Error

Codes
If you’re actively in development mode, we suggest keeping source tracking enabled in your scratch
org so you can easily sync the changes between your org and your local project. But source tracking can
slow down deployments and retrievals, so it’s sometimes better to disable it if it’s not needed. Here are
some use cases.

• Your continuous integration (CI) script simply creates a scratch org, deploys source, runs Apex and
browser tests, and then deletes the scratch org.

• You want to spin up a scratch org for a demo, user acceptance testing, or debugging.

• Your test data has changed and you want to ensure it’s correct by importing it into a scratch org.
But you haven’t changed any metadata or source code.

50

• You want to install and verify a package your CI built.

• You want to test a pull request by deploying code to a scratch org, but you don’t plan to change
the code.

Scratch Org Creation Methods

By default, scratch orgs are empty. They don’t contain much of the sample metadata that you get when
you sign up for an org, such as a Developer Edition org, the traditional way. Some of the things not
included in a scratch org are:

• Custom objects, fields, indexes, tabs, and entity definitions

• Sample data

• Sample Chatter feeds

• Dashboards and reports

• Workflows

• Picklists

• Profiles and permission sets

• Apex classes, triggers, and pages

Before creating a scratch org, you must configure it so it has the features, settings, licenses, and limits
that mirror a source org, often your production org. The combination of features, settings, edition, licenses,
and limits are what we refer to as the org’s shape.

We offer these methods for configuring scratch orgs:

• Build Your Own Scratch Org Definition File

• Create a Scratch Org Based on an Org Shape

On Which Salesforce Instances Are Scratch Orgs
Created?

Scratch orgs are created on sandbox instances. The sandbox instance depends on the country information
used when creating the Dev Hub org.

Scratch orgs for Government Cloud and Public Cloud are created in the region where the Dev Hub org
is physically located.

• Scratch orgs created from a Dev Hub org in Government Cloud are created in a Government Cloud
instance.

• Scratch orgs created from a Dev Hub org in Public Cloud are created on a Public Cloud instance.

If you notice that your scratch orgs aren’t located in the expected region, create a Salesforce Support
case.

51

Scratch Orgs

Scratch Org Expiration Policy

A scratch org is temporary and is deleted along with the associated ActiveScratchOrgs records from the
Dev Hub after their expiration. This expiration process ensures that teams frequently sync their changes
with their version control system and are working with the most recent version of their project.

Scratch orgs have a maximum 30 days lifespan. You can select a duration from 1 through 30 days at the
time of creation, with the default set at 7 days. After the scratch org has expired, you can’t restore it.

Note: Deleting a scratch org doesn’t terminate your scratch org subscription. If your subscription
is still active, you can create a new scratch org. Creating a new scratch org counts against your
daily and active scratch org limits.

SEE ALSO:

Salesforce Admins Blog: Sandboxes vs. Scratch Orgs and How to Use Them

52

Scratch Orgs

https://admin.salesforce.com/blog/2023/sandboxes-vs-scratch-orgs-and-how-to-use-them

Supported Scratch Org Editions and Allocations

Your Dev Hub org is often your production org, and you can enable Dev Hub in these editions: Developer, Enterprise, Unlimited, or
Performance. Your Dev Hub edition determines how many scratch orgs you can create. You choose one of the supported scratch org
editions each time you create a scratch org.

Supported Scratch Org Editions
Possible values for the Salesforce edition of the scratch org are:

• Developer

• Enterprise

• Group

• Professional

Note: Partners can create partner edition scratch orgs: Partner Developer, Partner Enterprise, Partner Group, and Partner Professional.
This feature is available only if creating scratch orgs from a Dev Hub in a partner business org. See Supported Scratch Org Editions
for Partners in the First-Generation Managed Packaging Developer Guide for details.

Scratch orgs have these storage limits:

• 200 MB for data

• 50 MB for files

Supported Dev Hub Editions and Associated Scratch Org Allocations
To ensure optimal performance, your Dev Hub org edition determines your scratch org allocations. These allocations determine how
many scratch orgs you can create daily, and how many can be active at a given point.

To try out scratch orgs, sign up for a Developer Edition org on Salesforce Developers, then enable Dev Hub on page 5.

Note: If you’re a partner or ISV, your scratch org allocations are likely different. See the First-Generation Managed Packaging
Developer Guide for details.

The active scratch org allocation is the maximum number of scratch orgs you can have at any given time based on the edition type. The
allocation becomes available if you delete a scratch org or if a scratch org expires. The daily scratch org allocation is the maximum number
of successful scratch org creations you can initiate in a rolling (sliding) 24-hour window. Allocations are determined based on the number
of scratch orgs created in the preceding 24 hours.

Daily Scratch Org AllocationActive Scratch Org AllocationEdition

63Developer Edition or trial

8040Enterprise Edition

200100Unlimited Edition

200100Performance Edition

53

Supported Scratch Org Editions and AllocationsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_editions.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_partner_scratch_org_editions.htm
https://developer.salesforce.com/signup?d=70130000000td6N

List Active and Daily Scratch Orgs
Note: If your Salesforce admin provided access to the Dev Hub org using the Free Limited Access license, you don’t have permission
to run this command. Contact your admin to provide this information.

To view your scratch org allocations and how many are remaining, run this command in a terminal or command window against your
Dev Hub org. Only relevant limits (ActiveScratchOrgs and DailyScratchOrgs) are shown.

sf limits api display --target-org <Dev Hub username or alias>

Name Remaining Max
─── ───────── ─────────
ActiveScratchOrgs 198 200
...
DailyScratchOrgs 400 400
...

Build Your Own Scratch Org Definition File

The scratch org definition file is a blueprint for a scratch org. It mimics the shape of an org that you use in the development lifecycle,
such as sandbox, packaging, or production.

The settings and configuration options associated with a scratch org determine its shape, including:

• Edition—The Salesforce edition of the scratch org, such as Developer, Enterprise, Group, or Professional.

• Add-on features—Functionality that isn’t included by default in an edition.

• Settings—Org and feature settings used to configure Salesforce products, such as Field Service and Communities.

Setting up different scratch org definition files allows you to easily create scratch orgs with different shapes for testing. For example, you
can turn Field Service on or off in a scratch org by setting the FieldService org preference in the definition file. If you want a scratch org
with sample data and metadata like you’re used to, add this option: hasSampleData.

We recommend that you keep this file in your project and check it in to your version control system. For example, create a team version
that you check in for all team members to use. Individual developers could also create their own local version that includes the scratch
org definition parameters. Examples of these parameters include email and last name, which identify who is creating the scratch org.

Scratch Org Definition File Name
You indicate the path to the scratch org configuration file when you create a scratch org with the org create scratch CLI
command.

• If you’re using Salesforce CLI on the command line, you can name this file whatever you like and locate it anywhere the CLI can
access.

• If you’re using Salesforce Extensions for VS Code, make sure that the scratch org definition file is located in the config folder of
your Salesforce DX project. Its name must also end in scratch-def.json.

If you’re using a sample repo or creating a Salesforce DX project, the sample scratch org definition files are located in the config
directory. You can create different configuration files for different org shapes or testing scenarios. For easy identification, name the file
something descriptive, such as devEdition-scratch-def.json or packaging-org-scratch-def.json.

54

Build Your Own Scratch Org Definition FileScratch Orgs

Scratch Org Definition File Options
Here are the options you can specify in the scratch org definition file:

Default If Not SpecifiedRequired?Name

CompanyNoorgName

Dev Hub's country. If you want to override this value, enter the
two-character, upper-case ISO-3166 country code (Alpha-2 code).

Nocountry

You can find a full list of these codes at several sites, such as:
https://www.iso.org/obp/ui/#search. This value sets the locale of
the scratch org.

test-unique_identifier@example.comNousername

Email address of the Dev Hub user making the scratch org creation
request

NoadminEmail

None. Valid entries are Developer, Enterprise, Group, or ProfessionalYesedition

None. 2000-character free-form text field.

The description is a good way to document the scratch org’s
purpose. You can view or edit the description in the Dev Hub. From

Nodescription

App Launcher, select Scratch Org Info or Active Scratch Orgs,
then click the scratch org number.

Valid values are true and false. False is the default, which
creates an org without sample data.

NohasSampleData

Default language for the country. To override the language set by
the Dev Hub locale, see Supported Languages for the codes to use
in this field.

Nolanguage

None. See Scratch Org Features.Nofeatures

Same Salesforce release as the Dev Hub org. Options are
preview or previous. You can use this option only during
Salesforce release transition periods.

Norelease

None. See Scratch Org Settings for more information.Nosettings

None. Use objectSettings to specify object-level sharing settings
and default record types. To successfully install in a scratch org,

NoobjectSettings

some packages require that you define object-level sharing settings
and default record types. The objectSettings option is a map. Each
key is the lowercase name of an object, such as opportunity or
account. The definition for each key is also a map with two possible
values:

• sharingModel—Sets a sharing model. Different objects
support different sharing models. Possible values of sharing
models are:

– private

55

Build Your Own Scratch Org Definition FileScratch Orgs

https://www.iso.org/obp/ui/#search
https://help.salesforce.com/articleView?id=faq_getstart_what_languages_does.htm&type=5&language=en_US

Default If Not SpecifiedRequired?Name

– read

– readWrite

– readWriteTransfer

– fullAccess

– controlledByParent

– controlledByCampaign

– controlledByLeadOrContent

• defaultRecordType—Creates a record type. This setting
is required before installing a package that creates record types.
Specify an alphanumeric string that starts with a lowercase
letter.

None. Useful for Dev Ops use cases where you want to track extra
information on the ScratchOrgInfo object. First, create the custom

No<custom field API name>

field, and then reference it in the scratch org definition by its API
name.

None. 15-character source org ID. Use only if you’re using Org
Shape for Scratch Orgs to create your scratch org. See Create a
Scratch Org Based on an Org Shape.

NosourceOrg

Sample Scratch Org Definition File
Here’s what the scratch org definition JSON file looks like. For more information on features and settings, see Scratch Org Features.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

},
"mobileSettings": {

"enableS1EncryptedStoragePref2": true
},
"omniChannelSettings": {

"enableOmniChannel": true
},
"caseSettings": {

"systemUserEmail": "support@acme.com"
}

}
}

56

Build Your Own Scratch Org Definition FileScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_scratchorginfo.htm

Some features, such as Communities, can require a combination of a feature and a setting to work correctly for scratch orgs. This code
snippet sets both the feature and associated setting.

"features": ["Communities"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

},
...

Create a Custom Field for ScratchOrgInfo
You can add more options to the scratch org definition to manage your Dev Ops process. To do so, create a custom field on the
ScratchOrgInfo object. (ScratchOrgInfo tracks scratch org creation and deletion.)

Important: If you’re making these changes directly in your production org, proceed with the appropriate level of caution. The
ScratchOrgInfo object isn’t available in sandboxes or scratch orgs.

In the Dev Hub org, create the custom field.

• From Setup, enter Object Manager in the Quick Find box, then select Object Manager.

• Click Scratch Org Info.

• In Fields & Relationships, click New.

• Define the custom field, then click Save.

After you create the custom field, you can pass it a value in the scratch org definition file by referencing it with its API name. Let’s say
you create two custom fields called workitem and release. Add the custom fields and associated values to the scratch org
definition, then create the scratch org:

{
"orgName": "MyCompany",
"edition": "Developer",
"workitem__c": "W-12345678",
"release__c": "June 2024 pilot",

"settings": {
"omniChannelSettings": {

"enableOmniChannel": true
}

}
}

Set Object-Level Sharing Settings and Default Record Types
To install successfully, some packages require that you define object-level sharing settings and default record types before installation.
Set the sharing settings and default record types with objectSettings. In this sample scratch org definition file, we set a sharing
model and a default record type for opportunity, and a default record type for account.

{
"orgName": "MyCompany",
"edition": "Developer",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

57

Build Your Own Scratch Org Definition FileScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_scratchorginfo.htm

"communitiesSettings": {
"enableNetworksEnabled": true

}
}
"objectSettings": {

"opportunity": {
"sharingModel": "private",
"defaultRecordType": "default"

},
"account": {

"defaultRecordType": "default"
}

}
}

Scratch Org Features

The scratch org definition file contains the configuration values that determine the shape of the scratch org. You can enable these
supported add-on features in a scratch org.

Scratch Org Settings

Scratch org settings are the format for defining org preferences in the scratch org definition. Because you can use all Metadata API
settings, they’re the most comprehensive way to configure a scratch org. If a setting is supported in Metadata API, it’s supported in
scratch orgs. Settings provide you with fine-grained control because you can define values for all fields for a setting, rather than just
enabling or disabling it.

Scratch Org Features
The scratch org definition file contains the configuration values that determine the shape of the scratch org. You can enable these
supported add-on features in a scratch org.

Note: Some scratch org features require a license or permissions in the Dev Hub org. If you can’t create the scratch org by just
specifying the feature name in the scratch org definition file, see your Salesforce admin for assistance.

Supported Features
Features aren’t case-sensitive. You can indicate them as all-caps, or as we define them here for readability. If a feature is followed by
<value>, you must specify a value as an incremental allocation or limit.

You can specify multiple feature values in a comma-delimited list in the scratch org definition file.

"features": ["ServiceCloud", "API", "AuthorApex"],

AccountInspection

Enables the Account Intelligence view. The Account Intelligence view is a consolidated dashboard showing account metrics, activities,
and related opportunities and cases.

AccountingSubledgerGrowthEdition

Provides three permission sets that enable access to Accounting Subledger Growth features.

AccountingSubledgerStarterEdition

Provides three permission sets that enable access to Accounting Subledger Starter features.

58

Scratch Org FeaturesScratch Orgs

AccountingSubledgerUser

Enables organization-wide access to Accounting Subledger Growth features when the package is installed.

AddCustomApps:<value>

Increases the maximum number of custom apps allowed in an org. Indicate a value from 1–30.

AddCustomObjects:<value>

Increases the maximum number of custom objects allowed in the org. Indicate a value from 1–30.

AddCustomRelationships:<value>

Increases the maximum number of custom relationships allowed on an object. Indicate a value from 1–10.

AddCustomTabs:<value>

Increases the maximum number of custom tabs allowed in an org. Indicate a value from 1–30.

AddDataComCRMRecordCredit:<value>

Increases record import credits assigned to a user in your scratch org. Indicate a value from 1–30.

AddInsightsQueryLimit:<value>

Increases the size of your CRM Analytics query results. Indicate a value from 1–30 (multiplier is 10). Setting the quantity to 6 increases
the query results to 60.

AdditionalFieldHistory:<value>

Increases the number of fields you can track history for beyond the default, which is 20 fields. Indicate a value between 1–40.

AdmissionsConnectUser

Enables the Admissions Connect components. Without this scratch org feature parameter, the custom Admissions Connect
components render as blank.

AdvisorLinkFeature

Enables the Student Success Hub components. Without this scratch org feature parameter, the custom Student Success Hub
components render as blank.

AdvisorLinkPathwaysFeature

Enables the Pathways components. Without this scratch org feature parameter, the custom Pathways components render as blank.

AIAttribution

Provides access to Einstein Attribution for Marketing Cloud Account Engagement. Einstein Attribution uses AI modeling to dynamically
assign attribution percentages to multiple campaign touchpoints.

AnalyticsAdminPerms

Enables all permissions required to administer the CRM Analytics platform, including permissions to enable creating CRM Analytics
templated apps and CRM Analytics Apps.

AnalyticsAppEmbedded

Provides one CRM Analytics Embedded App license for the CRM Analytics platform.

API

Even in the editions (Professional, Group) that don’t provide API access, REST API is enabled by default. Use this scratch org feature
to access additional APIs (SOAP, Streaming, Bulk, Bulk 2.0).

ArcGraphCommunity

Lets you add Actionable Relationship Center (ARC) components to Experience Cloud pages so your users can view ARC Relationship
Graphs.

Assessments

Enables dynamic Assessments features, which enables both Assessment Questions and Assessment Question Sets.

59

Scratch Org FeaturesScratch Orgs

AssetScheduling:<value>

Enables Asset Scheduling license. Asset Scheduling makes it easier to book rooms and equipments. Indicate a value between 1–10.

AssociationEngine

Enables the Association Engine, which automatically associates new accounts with the user’s current branch by creating branch unit
customer records.

AuthorApex

Enables you to access and modify Apex code in a scratch org. Enabled by default in Enterprise and Developer Editions.

B2BCommerce

Provides the B2B License. B2BCommerce enables business-to-business (B2B) commerce in your org. Create and update B2B stores.
Create and manage buyer accounts. Sell products to other businesses.

B2BLoyaltyManagement

Enables the B2B Loyalty Management license. Create loyalty programs and set up loyalty program-specific processes that allow you
to recognize, rewards, and retain customers.

B2CCommerceGMV

Provides the B2B2C Commerce License. B2B2C Commerce allows you to quickly stand up an ecommerce site to promote brands
and sell products into multiple digital channels. You can create and update retail storefronts in your org, and create and manage
person accounts.

B2CLoyaltyManagement

Enables the Loyalty Management - Growth license. Create loyalty programs and set up loyalty program-specific processes that allow
you to recognize, rewards, and retain customers.

B2CLoyaltyManagementPlus

Enables the Loyalty Management - Advanced license. Create loyalty programs and set up loyalty program-specific processes that
allow you to recognize, rewards, and retain customers.

BatchManagement

Enables the Batch Management license. Batch Management allows you to process a high volume of records in manageable batches.

BigObjectsBulkAPI

Enables the scratch org to use BigObjects in the Bulk API.

Briefcase

Enables the use of Briefcase Builder in a scratch org, which allows you to create offline briefcases that make selected records available
for viewing offline.

BudgetManagement

Gives users access to budget management features and objects. To enable budget management, add this feature to your scratch
org definition file.

BusinessRulesEngine

Enables Business Rules Engine, which enables both expression sets and lookup tables.

CacheOnlyKeys

Enables the cache-only keys service. This feature allows you to store your key material outside of Salesforce, and have the Cache-Only
Key Service fetch your key on demand from a key service that you control.

CalloutSizeMB:<value>

Increases the maximum size of an Apex callout. Indicate a value between 3–12.

60

Scratch Org FeaturesScratch Orgs

CampaignInfluence2

Provides access to Customizable Campaign Influence for Sales Cloud and Marketing Cloud Account Engagement. Customizable
Campaign Influence can auto-associate or allow manual creation of relationships among campaigns and opportunities to track
attribution.

CascadeDelete

Provides lookup relationships with the same cascading delete functionality previously only available to master-detail relationships.
To prevent records from being accidentally deleted, cascade-delete is disabled by default.

CaseClassification

Enables Einstein Case Classification. Case Classification offers recommendations to your agents so they can select the best value.
You can also automatically save the best recommendation and route the case to the right agent.

CaseWrapUp

Enables Einstein Case Wrap-Up. To help agents complete cases quickly, Einstein Case Wrap-Up recommends case field values based
on past chat transcripts.

ChangeDataCapture

Enables Change Data Capture, if the scratch org edition doesn't automatically enable it.

Chatbot

Enables deployment of Bot metadata into a scratch org, and allows you to create and edit bots.

ChatterEmailFooterLogo

ChatterEmailFooterLogo allows you to use the Document ID of a logo image, which you can use to customize chatter emails.

ChatterEmailFooterText

ChatterEmailFooterText allows you to use footer text in customized Chatter emails.

ChatterEmailSenderName

ChatterEmailSenderName allows you to customize the name that appears as the sender’s name in the email notification. For example,
your company’s name.

CloneApplication

CloneApplication allows you to clone an existing custom Lightning app and make required customizations to the new app. This
way, you don’t have to start from scratch, especially when you want to create apps with simple variations.

CMSMaxContType

Limits the number of distinct content types you can create within Salesforce CMS to 21.

CMSMaxNodesPerContType

Limits the maximum number of child nodes (fields) you can create for a particular content type to 15.

CMSUnlimitedUse

Enables unlimited content records, content types, and bandwidth usage in Salesforce CMS.

Communities

Allows the org to create a customer community. To use Communities, you must also include communitiesSettings >
enableNetworksEnabled in the settings section of your scratch org definition file.

ConAppPluginExecuteAsUser

Enables the pluginExecutionUser field in the ConnectedApp Metadata API object.

ConcStreamingClients:<value>

Increases the maximum number of concurrent clients (subscribers) across all channels and for all event types for API version 36.0
and earlier. Indicate a value between 20–4,000.

61

Scratch Org FeaturesScratch Orgs

ConnectedAppCustomNotifSubscription

Enables connected apps to subscribe to custom notification types, which are used to send custom desktop and mobile notifications.

ConnectedAppToolingAPI

Enables the use of connected apps with the Tooling API.

ConsentEventStream

Enables the Consent Event Stream permission for the org.

ConsolePersistenceInterval:<value>

Increases how often console data is saved, in minutes. Indicate a value between 0–500. To disable auto save, set the value to 0.

ContactsToMultipleAccounts

Enables the contacts to multiple accounts feature. This feature lets you relate a contact to two or more accounts.

ContractApprovals

Enables contract approvals, which allow you to track contracts through an approval process.

ContractManagement

Enables the Contract Lifecycle (CLM) Management features in the org.

ContractMgmtInd

Enables the Contract Lifecycle Management (CLM) features for Industries.

CPQ

Enables the licensed features required to install the Salesforce CPQ managed package but doesn't install the package automatically.

CustomFieldDataTranslation

Enables translation of custom field data for Work Type Group, Service Territory, and Service Resource objects. You can enable data
translation for custom fields with Text, Text Area, Text Area (Long), Text Area (Rich), and URL types.

CustomNotificationType

Allows the org to create custom notification types, which are used to send custom desktop and mobile notifications.

DataComDnbAccounts

Provides a license to Data.com account features.

DataComFullClean

Provides a license to Data.com cleaning features, and allows users to turn on auto fill clean settings for jobs.

DataMaskUser

Provides 30 Data Mask permission set licenses. This permission set enables access to an installed Salesforce Data Mask package.

DataProcessingEngine

Enables the Data Processing Engine license. Data Processing Engine helps transform data that's available in your Salesforce org and
write back the transformation results as new or updated records.

DebugApex

Enables Apex Interactive Debugger. You can use it to debug Apex code by setting breakpoints and checkpoints, and inspecting your
code to find bugs.

DecisionTable

Enables Decision Table license. Decision tables read business rules and decide the outcome for records in your Salesforce org or for
the values that you specify.

DefaultWorkflowUser

Sets the scratch org admin as the default workflow user.

62

Scratch Org FeaturesScratch Orgs

DeferSharingCalc

Allows admins to suspend group membership and sharing rule calculations and to resume them later.

DevelopmentWave

Enables CRM Analytics development in a scratch org. It assigns five platform licenses and five CRM Analytics platform licenses to the
org, along with assigning the permission set license to the admin user. It also enables the CRM Analytics Templates and Einstein
Discovery features.

DeviceTrackingEnabled

Enables Device Tracking.

DevOpsCenter

Enables DevOps Center in scratch orgs so that partners can create second-generation managed packages that extend or enhance
the functionality in the DevOps Center application (base) package.

DisableManageIdConfAPI

Limits access to the LoginIP and ClientBrowser API objects to allow view or delete only.

DisclosureFramework

Provides the permission set licenses and permission sets required to configure Disclosure and Compliance Hub.

Division

Turns on the Manage Divisions feature under Company Settings. Divisions let you segment your organization's data into logical
sections, making searches, reports, and list views more meaningful to users. Divisions are useful for organizations with extremely
large amounts of data.

DocGen

Enables the Document Generation Feature in the Org.

DocGenDesigner

Enables the designers to create and configure document templates.

DocGenInd

Enables the Industry Document Generation features in the org.

DocumentChecklist

Enables Document Tracking and Approval features, and adds the Document Checklist permission set. Document tracking features
let you define documents to upload and approve, which supports processes like loan applications or action plans.

DocumentReaderPageLimit

Limits the number of pages sent for data extraction to 5.

DSARPortability

Enables an org to access the DSARPortability feature in Privacy Center. Also, provides one seat each of the PrivacyCenter and
PrivacyCenterAddOn licenses.

DurableClassicStreamingAPI

Enables Durable PushTopic Streaming API for API version 37.0 and later.

DurableGenericStreamingAPI

Enables Durable Generic Streaming API for API version 37.0 and later.

DynamicClientCreationLimit

Allows the org to register up to 100 OAuth 2.0 connected apps through the dynamic client registration endpoint.

EAndUDigitalSales

Enables the Energy and Utilities Digital Sales feature in the org.

63

Scratch Org FeaturesScratch Orgs

EAndUSelfServicePortal

Enables the Self Service Portal features for Digital Experience users in the org.

EAOutputConnectors

Enable CRM Analytics Output Connectors.

EASyncOut

Enable CRM Analytics SyncOut.

EdPredictionM3Threshold

Sets the number of records in the payload to 10, after which the Einstein Discovery prediction service uses M3.

EdPredictionTimeout

Sets the maximum duration of a single Einstein Discovery prediction to 100 milliseconds.

EdPredictionTimeoutBulk

Sets the maximum duration of a single Einstein Discovery prediction when it runs in bulk to 10 milliseconds.

EdPredictionTimeoutByomBulk

Sets the maximum duration of a single Bring Your Own Model (BYOM) Einstein Discovery prediction to 100 milliseconds.

EducationCloud: <value>

Enables use of Education Cloud.

EinsteinAnalyticsPlus

Provides one CRM Analytics Plus license for the CRM Analytics platform.

EinsteinArticleRecommendations

Provides licenses for Einstein Article Recommendations. Einstein Article Recommendations uses data from past cases to identify
Knowledge articles that are most likely to help your customer service agents address customer inquiries.

EinsteinBuilderFree

Provides a license that allows admins to create one enabled prediction with Einstein Prediction Builder. Einstein Prediction Builder
is custom AI for admins

EinsteinDocReader

Provides the license required to enable and use Intelligent Form Reader in a scratch org. Intelligent Form Reader uses optical character
recognition to automatically extract data with Amazon Textract.

EinsteinRecommendationBuilder

Provides a license to create recommendations with Einstein Recommendation Builder. Einstein Recommendation Builder lets you
build custom AI recommendations.

EinsteinRecommendationBuilderMetadata

Enables Einstein Recommendation Builder to use the required metadata APIs. Enabling this feature lets you build custom AI
recommendations.

EinsteinSearch

Provides the license required to use and enable Einstein Search features in a scratch org.

EinsteinVisits

Enables Consumer Goods Cloud. With Consumer Goods cloud, transform the way you collaborate with your retail channel partners.
Empower your sales managers to plan visits and analyze your business’s health across stores. Also, allow your field reps to track
inventory, take orders, and capture visit details using the Retail Execution mobile app.

EinsteinVisitsED

Enables Einstein Discovery, which can be used to get store visit recommendations. With Einstein Visits ED, you can create a visit
frequency strategy that allows Einstein to provide optimal store visit recommendations.

64

Scratch Org FeaturesScratch Orgs

EmbeddedLoginForIE

Provides JavaScript files that support Embedded Login in IE11.

EmpPublishRateLimit:<value>

Increases the maximum number of standard-volume platform event notifications published per hour. Indicate a value between
1,000–10,000.

EnablePRM

Enables the partner relationship management permissions for the org.

EnableManageIdConfUI

Enables access to the LoginIP and ClientBrowser API objects to verify a user's identity in the UI.

EnableSetPasswordInApi

Enables you to use sf org generate password to change a password without providing the old password.

EncryptionStatisticsInterval:<value>

Defines the interval (in seconds) between encryption statistics gathering processes. The maximum value is 604,800 seconds (7 days).
The default is once per 86,400 seconds (24 hours).

EncryptionSyncInterval:<value>

Defines how frequently (in seconds) the org can synchronize data with the active key material. The default and maximum value is
604,800 seconds (7 days). To synchronize data more frequently, indicate a value, in seconds, equal to or larger than 0.

EnergyAndUtilitiesCloud

Enables the Energy and Utilities Cloud features in the org.

Entitlements

Enables entitlements. Entitlements are units of customer support in Salesforce, such as phone support or web support that represent
terms in service agreements.

EventLogFile

Enables API access to your org's event log files. The event log files contain information about your org’s operational events that you
can use to analyze usage trends and user behavior.

EntityTranslation

Enables translation of field data for Work Type Group, Service Territory, and Service Resource objects.

ExpressionSetMaxExecPerHour

Enables an org to run a maximum of 500,000 expression sets per hour by using Connect REST API.

ExternalIdentityLogin

Allows the scratch org to use Salesforce Customer Identity features associated with your External Identity license.

FieldAuditTrail

Enables Field Audit Trail for the org and allows a total 60 tracked fields. By default, 20 fields are tracked for all orgs, and 40 more are
tracked with Field Audit Trail.

FieldService:<value>

Provides the Field Service license. Indicate a value between 1–25.

FieldServiceAppointmentAssistantUser:<value>

Adds the Field Service Appointment Assistant permission set license. Indicate a value between 1–25.

FieldServiceDispatcherUser:<value>

Adds the Field Service Dispatcher permission set license. Indicate a value between 1–25.

65

Scratch Org FeaturesScratch Orgs

FieldServiceLastMileUser:<value>

Adds the Field Service Last Mile permission set license. Indicate a value between 1–25.

FieldServiceMobileExtension

Adds the Field Service Mobile Extension permission set license.

FieldServiceMobileUser:<value>

Adds the Field Service Mobile permission set license. Indicate a value between 1–25.

FieldServiceSchedulingUser:<value>

Adds the Field Service Scheduling permission set license. Indicate a value between 1–25.

FinanceLogging

Adds Finance Logging objects to a scratch org. This feature is required for Finance Logging.

FinancialServicesCommunityUser:<value>

Adds the Financial Services Insurance Community permission set license, and enables access to Financial Services insurance community
components and objects. Indicate a value between 1–10.

FinancialServicesInsuranceUser:<value>

Adds the Financial Services Insurance permission set license, and enables access to Financial Services insurance components and
objects. Indicate a value between 1–10.

FinancialServicesUser:<value>

Adds the Financial Services Cloud Standard permission set license. This permission set enables access to Lightning components and
the standard version of Financial Services Cloud. Also provides access to the standard Salesforce objects and custom Financial Services
Cloud objects. Indicate a value between 1–10.

FlowSites

Enables the use of flows in Salesforce Sites and customer portals.

ForceComPlatform

Adds one Salesforce Platform user license.

ForecastEnableCustomField

Enables custom currency and customer number fields for use as measures in forecasts based on opportunities.

FSCAlertFramework

Makes Financial Services Cloud Record Alert entities accessible in the scratch org.

FSCServiceProcess

Enables the Service Process Studio feature of Financial Service Cloud. Provides 10 seats each of the IndustriesServiceExcellenceAddOn
and FinancialServicesCloudStardardAddOn licenses. To enable the feature, you must also turn on the StandardServiceProcess setting
in Setup and grant users the AccessToServiceProcess permission.

Fundraising

Gives users access to Nonprofit Cloud for Fundraising features and objects in Salesforce.

GenericStreaming

Enables Generic Streaming API for API version 36.0 and earlier.

GenStreamingEventsPerDay:<value>

Increases the maximum number of delivered event notifications within a 24-hour period, shared by all CometD clients, with generic
streaming for API version 36.0 and earlier. Indicate a value between 10,000–50,000.

Grantmaking

Gives users access to Grantmaking features and objects in Salesforce and Experience Cloud.

66

Scratch Org FeaturesScratch Orgs

HealthCloudAddOn

Enables use of Health Cloud.

HealthCloudEOLOverride

Salesforce retired the Health Cloud CandidatePatient object in Spring ‘22 to focus on the more robust Lead object. This scratch org
feature allows you to override that retirement and access the object.

HealthCloudForCmty

Enables use of Health Cloud for Experience Cloud Sites.

HealthCloudMedicationReconciliation

Allows Medication Management to support Medication Reconciliation.

HealthCloudPNMAddOn

Enables use of Provider Network Management.

HealthCloudUser

This enables the scratch org to use the Health Cloud objects and features equivalent to the Health Cloud permission set license for
one user.

HighVelocitySales

Provides Sales Engagement licenses and enables Salesforce Inbox. Sales Engagement optimizes the inside sales process with a
high-productivity workspace. Sales managers can create custom sales processes that guide reps through handling different types
of prospects. And sales reps can rapidly handle prospects with a prioritized list and other productivity-boosting features. The Sales
Engagement feature can be deployed in scratch orgs, but the settings for the feature can’t be updated through the scratch org
definition file. Instead, configure settings directly in the Sales Engagement app.

HoursBetweenCoverageJob:<value>

The frequency in hours when the sharing inheritance coverage report can be run for an object. Indicate a value between 1–24.

IdentityProvisioningFeatures

Enables use of Salesforce Identity User Provisioning.

IgnoreQueryParamWhitelist

Ignores allowlisting rules for query parameter filter rules. If enabled, you can add any query parameter to the URL.

IndustriesActionPlan

Provides a license for Action Plans. Action Plans allow you to define the tasks or document checklist items for completing a business
process.

IndustriesBranchManagement

Branch Management lets branch managers and administrators track the work output of branches, employees, and customer segments
in Financial Services Cloud.

IndustriesCompliantDataSharing

Grants users access to participant management and advanced configuration for data sharing to improve compliance with regulations
and company policies.

IndustriesMfgTargets

Enables Sales Agreements. With Sales Agreements, you can negotiate purchase and sale of products over a continued period. You
can also get insights into products, prices, discounts, and quantities. And you can track your planned and actual quantities and
revenues with real-time updates from orders and contracts.

IndustriesManufacturingCmty

Provides the Manufacturing Sales Agreement for the Community permission set license, which is intended for the usage of partner
community users. It also provides access to the Manufacturing community template for admins users to create communities.

67

Scratch Org FeaturesScratch Orgs

IndustriesMfgAccountForecast

Enables Account Forecast. With Account Forecast, you can generate forecasts for your accounts based on orders, opportunities, and
sales agreements. You can also create formulas to calculate your forecasts per the requirements of your company.

InsightsPlatform

Enables the CRM Analytics Plus license for CRM Analytics.

InsuranceCalculationUser

Enables the calculation feature of Insurance. Provides 10 seats each of the BRERuntimeAddOn and OmniStudioRuntime licenses.
Also, provides one seat each of the OmniStudio and BREPlatformAccess licenses.

InsuranceClaimMgmt

Enables claim management features. Provides one seat of the InsuranceClaimMgmtAddOn license.

InsurancePolicyAdmin

Enables policy administration features. Provides one seat of the InsurancePolicyAdministrationAddOn license.

IntelligentDocumentReader

Provides the license required to enable and use Intelligent Document Reader in a scratch org. Intelligent Document Reader uses
optical character recognition to automatically extract data with Amazon Textract by using your AWS account.

Interaction

Enables flows. A flow is the part of Salesforce Flow that collects data and performs actions in your Salesforce org or an external
system. Salesforce Flow provides two types of flows: screen flows and autolaunched flows.

IoT

Enables IoT so the scratch org can consume platform events to perform business and service workflows using orchestrations and
contexts.

JigsawUser

Provides one license to Jigsaw features.

Knowledge

Enables Salesforce Knowledge and gives your website visitors, clients, partners, and service agents the ultimate support tool. Create
and manage a knowledge base with your company information, and securely share it when and where it's needed. Build a knowledge
base of articles that can include information on process, like how to reset your product to its defaults, or frequently asked questions.

LegacyLiveAgentRouting

Enables legacy Live Agent routing for Chat. Use Live Agent routing to chat in Salesforce Classic. Chats in Lightning Experience must
be routed using Omni-Channel.

LightningSalesConsole

Adds one Lighting Sales Console user license.

LightningScheduler

Enables Lightning Scheduler. Lightning Scheduler gives you tools to simplify appointment scheduling in Salesforce. Create a
personalized experience by scheduling customer appointments—in person, by phone, or by video—with the right person at the
right place and time.

LightningServiceConsole

Assigns the Lightning Service Console License to your scratch org so you can use the Lightning Service Console and access features
that help manage cases faster.

LiveAgent

Enables Chat for Service Cloud. Use web-based chat to quickly connect customers to agents for real-time support.

68

Scratch Org FeaturesScratch Orgs

LiveMessage

Enables Messaging for Service Cloud. Use Messaging to quickly support customers using apps such as SMS text messaging and
Facebook Messenger.

LongLayoutSectionTitles

Allows page layout section titles to be up to 80 characters.

LoyaltyAnalytics

Enables Analytics for Loyalty license. The Analytics for Loyalty app gives you actionable insights into your loyalty programs.

LoyaltyEngine

Enables Loyalty Management Promotion Setup license. Promotion setup allows loyalty program managers to create loyalty program
processes. Loyalty program processes help you decide how incoming and new Accrual and Redemption-type transactions are
processed.

LoyaltyManagementStarter

Enables the Loyalty Management - Starter license. Create loyalty programs and set up loyalty program-specific processes that allow
you to recognize, rewards, and retain customers.

LoyaltyMaximumPartners:<value>

Increases the number of loyalty program partners that can be associated with a loyalty program in an org where the Loyalty
Management - Starter license is enabled. The default and maximum value is 1.

LoyaltyMaximumPrograms:<value>

Increases the number of loyalty programs that can be created in an org where the Loyalty Management - Starter license is enabled.
The default and maximum value is 1.

LoyaltyMaxOrderLinePerHour:<value>

Increases the number of order lines that can be cumulatively processed per hour by loyalty program processes. Indicate a value
between 1–3,500,000.

LoyaltyMaxProcExecPerHour:<value>

Increases the number of transaction journals that can be processed by loyalty program processes per hour. Indicate a value between
1–500,000.

LoyaltyMaxTransactions:<value>

Increases the number of Transaction Journal records that can be processed. Indicate a value between 1–50,000,000.

LoyaltyMaxTrxnJournals:<value>

Increases the number of Transaction Journal records that can be stored in an org that has the Loyalty Management - Start license
enabled.

Macros

Enables macros in your scratch org. After enabling macros, add the macro browser to the Lightning Console so you can configure
predefined instructions for commonly used actions and apply them to multiple posts at the same time.

MarketingUser

Provides access to the Campaigns object. Without this setting, Campaigns are read-only.

MaxActiveDPEDefs:<value>

Increases the number of Data Processing Engine definitions that can be activated in the org. Indicate a value between 1–50.

MaxApexCodeSize:<value>

Limits the non-test, unmanaged Apex code size (in MB). To use a value greater than the default value of 10, contact Salesforce
Customer Support.

69

Scratch Org FeaturesScratch Orgs

MaxAudTypeCriterionPerAud

Limits the number of audience type criteria available per audience. The default value is 10.

MaxCustomLabels:<value>

Limits the number of custom labels (measured in thousands). Setting the limit to 10 enables the scratch org to have 10,000 custom
labels. Indicate a value between 1–15.

MaxDatasetLinksPerDT:<value>

Increases the number of dataset links that can be associated with a decision table. Indicate a value between 1–3.

MaxDataSourcesPerDPE:<value>

Increases the number of Source Object nodes a Data Processing Engine definition can contain. Indicate a value between 1–50.

MaxDecisionTableAllowed:<value>

Increases the number of decision tables rules that can be created in the org. Indicate a value between 1–30.

MaxFavoritesAllowed:<value>

Increases the number of Favorites allowed. Favorites allow users to create a shortcut to a Salesforce Page. Users can view their
Favorites by clicking the Favorites list dropdown in the header. Indicate a value between 0–200.

MaxFieldsPerNode:<value>

Increases the number of fields a node in a Data Processing Engine definition can contain. Indicate a value between 1–500.

MaxInputColumnsPerDT:<value>

Increases the number of input fields a decision table can contain. Indicate a value between 1–10.

MaxLoyaltyProcessRules:<value>

Increases the number of loyalty program process rules that can be created in the org. Indicate a value between 1–20.

MaxNodesPerDPE:<value>

Increases the number of nodes that a Data Processing Engine definition can contain. Indicate a value between 1–500.

MaxNoOfLexThemesAllowed:<value>

Increases the number of Themes allowed. Themes allow users to configure colors, fonts, images, sizes, and more. Access the list of
Themes in Setup, under Themes and Branding. Indicate a value between 0–300.

MaxOutputColumnsPerDT:<value>

Increases the number of output fields a decision table can contain. Indicate a value between 1–5.

MaxSourceObjectPerDSL:<value>

Increases the number of source objects that can be selected in a dataset link of a decision table. Indicate a value between 1–5.

MaxStreamingTopics:<value>

Increases the maximum number of delivered PushTopic event notifications within a 24-hour period, shared by all CometD clients.
Indicate a value between 40–100.

MaxUserNavItemsAllowed:<value>

Increases the number of navigation items a user can add to the navigation bar. Indicate a value between 0–500.

MaxUserStreamingChannels:<value>

Increases the maximum number of user-defined channels for generic streaming. Indicate a value between 20–1,000.

MaxWritebacksPerDPE:<value>

Increases the number of Writeback Object nodes a Data Processing Engine definition can contain. Indicate a value between 1–50.

MedVisDescriptorLimit:<value>

Increases the number of sharing definitions allowed per record for sharing inheritance to be applied to an object. Indicate a value
between 150–1,600.

70

Scratch Org FeaturesScratch Orgs

MinKeyRotationInterval

Sets the encryption key material rotation interval at once per 60 seconds. If this feature isn't specified, the rotation interval defaults
to once per 604,800 seconds (7 days) for Search Index key material, and once per 86,400 seconds (24 hours) for all other key material.

MobileExtMaxFileSizeMB:<value>

Increases the file size (in megabytes) for Field Service Mobile extensions. Indicate a value between 1–2,000.

MobileSecurity

Enables Enhanced Mobile Security. With Enhanced Mobile Security, you can control a range of policies to create a security solution
tailored to your org’s needs. You can limit user access based on operating system versions, app versions, and device and network
security. You can also specify the severity of a violation.

MultiLevelMasterDetail

Allows the creation a special type of parent-child relationship between one object, the child, or detail, and another object, the parent,
or master.

MutualAuthentication

Requires client certificates to verify inbound requests for mutual authentication.

MyTrailhead

Enables access to a myTrailhead enablement site in a scratch org.

NonprofitCloudCaseManagementUser

Provides the permission set license required to use and configure the Salesforce.org Nonprofit Cloud Case Management managed
package. You can then install the package in the scratch org.

NumPlatformEvents:<value>

Increases the maximum number of platform event definitions that can be created. Indicate a value between 5–20.

ObjectLinking

Create rules to quickly link channel interactions to objects such as contacts, leads, or person accounts for customers (Beta).

OrderManagement

Provides the Salesforce Order Management license. Order Management is your central hub for handling all aspects of the order
lifecycle, including order capture, fulfillment, shipping, payment processing, and servicing.

OrderSaveLogicEnabled

Enables scratch org support for New Order Save Behavior. OrderSaveLogicEnabled supports only New Order Save Behavior. If your
scratch org needs both Old and New Order Save Behavior, use OrderSaveBehaviorBoth.

OrderSaveBehaviorBoth

Enables scratch org support for both New Order Save Behavior and Old Order Save Behavior.

OutboundMessageHTTPSession

Enables using HTTP endpoint URLs in outbound message definitions that have the Send Session ID option selected.

OutcomeManagement

Gives users access to Outcome Management features and objects in Salesforce and Experience Cloud.

PardotScFeaturesCampaignInfluence

Enables additional campaign influence models, first touch, last touch, and even distribution for Pardot users.

PersonAccounts

Enables person accounts in your scratch org.

PipelineInspection

Enables Pipeline Inspection. Pipeline Inspection is a consolidated pipeline view with metrics, opportunities, and highlights of recent
changes.

71

Scratch Org FeaturesScratch Orgs

PlatformCache

Enables Platform Cache and allocates a 3 MB cache. The Lightning Platform Cache layer provides faster performance and better
reliability when caching Salesforce session and org data.

PlatformConnect:<value>

Enables Salesforce Connect and allows your users to view, search, and modify data that's stored outside your Salesforce org. Indicate
a value from 1–5.

PlatformEncryption

Shield Platform Encryption encrypts data at rest. You can manage key material and encrypt fields, files, and other data.

PlatformEventsPerDay:<value>

Increases the maximum number of delivered standard-volume platform event notifications within a 24-hour period, shared by all
CometD clients. Indicate a value between 10,000–50,000.

ProcessBuilder

Enables Process Builder, a Salesforce Flow tool that helps you automate your business processes.

ProductsAndSchedules

Enables product schedules in your scratch org. Enabling this feature lets you create default product schedules on products. Users
can also create schedules for individual products on opportunities.

ProductCatalogManagementAddOn

Enables read-write access to Product Catalog Management features and objects.

ProductCatalogManagementViewerAddOn

Enables read access to Product Catalog Management features and objects.

ProductCatalogManagementPCAddOn

Enables read access to Product Catalog Management features and objects for Partner Community Users in scratch orgs.

ProgramManagement

Enables access to all Program Management and Case Management features and objects.

ProviderFreePlatformCache

Provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This feature is made available through a
capacity type called Provider Free capacity and is automatically enabled in Developer Edition orgs. Allocate the Provider Free capacity
to a Platform Cache partition and add it to your managed package.

PublicSectorAccess

Enables access to all Public Sector features and objects.

PublicSectorApplicationUsageCreditsAddOn

Enables additional usage of Public Sector applications based on their pricing.

PublicSectorSiteTemplate

Allows Public Sector users access to build an Experience Cloud site from the templates available.

RecordTypes

Enables Record Type functionality. Record Types let you offer different business processes, picklist values, and page layouts to different
users.

RefreshOnInvalidSession

Enables automatic refreshes of Lightning pages when the user's session is invalid. If, however, the page detects a new token, it tries
to set that token and continue without a refresh.

72

Scratch Org FeaturesScratch Orgs

RevSubscriptionManagement

Enables Subscription Management. Subscription Management is an API-first, product-to-cash solution for B2B subscriptions and
one-time sales.

S1ClientComponentCacheSize

Allows the org to have up to 5 pages of caching for Lightning Components.

SalesCloudEinstein

Enables Sales Cloud Einstein features and Salesforce Inbox. Sales Cloud Einstein brings AI to every step of the sales process.

SalesforceContentUser

Enables access to Salesforce content features.

SalesforceFeedbackManagementStarter

Provides a license to use the Salesforce Feedback Management - Starter features.

SalesforceIdentityForCommunities

Adds Salesforce Identity components, including login and self-registration, to Experience Builder. This feature is required for Aura
components.

SalesUser

Provides a license for Sales Cloud features.

SAML20SingleLogout

Enables usage of SAML 2.0 single logout.

SCIMProtocol

Enables access support for the SCIM protocol base API.

SecurityEventEnabled

Enables access to security events in Event Monitoring.

SentimentInsightsFeature

Provides the license required to enable and use Sentiment Insights in a scratch org. Use Sentiment Insights to analyze the sentiment
of your customers and get actionable insights to improve it.

ServiceCatalog

Enables Employee Service Catalog so you can create a catalog of products and services for your employees. It can also turn your
employees' requests for these products and services into approved and documented orders.

ServiceCloud

Assigns the Service Cloud license to your scratch org, so you can choose how your customers can reach you, such as by email, phone,
social media, online communities, chat, and text.

ServiceCloudVoicePartnerTelephony

Assigns the Service Cloud Voice with Partner Telephony add-on license to your scratch org, so you can set up a Service Cloud Voice
contact center that integrates with supported telephony providers. Indicate a value from 1–50.

ServiceUser

Adds one Service Cloud User license, and allows access to Service Cloud features.

SessionIdInLogEnabled

Enables Apex debug logs to include session IDs. If disabled, session IDs are replaced with "SESSION_ID_REMOVED" in debug logs.

SFDOInsightsDataIntegrityUser

Provides a license to Salesforce.org Insights Platform Data Integrity managed package. You can then install the package in the scratch
org.

73

Scratch Org FeaturesScratch Orgs

SharedActivities

Allow users to relate multiple contacts to tasks and events.

Sites

Enables Salesforce Sites, which allows you to create public websites and applications that are directly integrated with your Salesforce
org. Users aren’t required to log in with a username and password.

SocialCustomerService

Enables Social Customer Service, sets post defaults, and either activates the Starter Pack or signs into your Social Studio account.

StateAndCountryPicklist

Enables state and country/territory picklists. State and country/territory picklists let users select states and countries from predefined,
standardized lists, instead of entering state, country, and territory data into text fields.

StreamingAPI

Enables Streaming API.

StreamingEventsPerDay:<value>

Increases the maximum number of delivered PushTopic event notifications within a 24-hour period, shared by all CometD clients
(API version 36.0 and earlier). Indicate a value between 10,000–50,000.

SubPerStreamingChannel:<value>

Increases the maximum number of concurrent clients (subscribers) per generic streaming channel (API version 36.0 and earlier).
Indicate a value between 20–4,000.

SubPerStreamingTopic:<value>

Increases the maximum number of concurrent clients (subscribers) per PushTopic streaming channel (API version 36.0 and earlier).
Indicate a value between 20–4,000.

SurveyAdvancedFeatures

Enables a license for the features available with the Salesforce Feedback Management - Growth license.

SustainabilityCloud

Provides the permission set licenses and permission sets required to install and configure Sustainability Cloud. To enable or use CRM
Analytics and CRM Analytics templates, include the DevelopmentWave scratch org feature.

SustainabilityApp

Provides the permission set licenses and permission sets required to configure Net Zero Cloud. To enable or use Tableau CRM and
Tableau CRM templates, include the DevelopmentWave scratch org feature.

TCRMforSustainability

Enables all permissions required to manage the Net Zero Analytics app by enabling Tableau CRM. You can create and share the
analytics app for your users to bring your environmental accounting in line with your financial accounting.

TimelineConditionsLimit

Limits the number of timeline record display conditions per event type to 3.

TimelineEventLimit

Limits the number of event types displayed on a timeline to 5.

TimelineRecordTypeLimit

Limits the number of related object record types per event type to 3.

TimeSheetTemplateSettings

Time Sheet Templates let you configure settings to create time sheets automatically. For example, you can create a template that
sets start and end dates. Assign templates to user profiles so that time sheets are created for the right users.

74

Scratch Org FeaturesScratch Orgs

TransactionFinalizers

Enables you to implement and attach Apex Finalizers to Queueable Apex jobs.

WaveMaxCurrency

Increases the maximum number of supported currencies for CRM Analytics. Indicate a value between 1–5.

WavePlatform

Enables the Wave Platform license.

Workflow

Enables Workflow so you can automate standard internal procedures and processes.

WorkflowFlowActionFeature

Allows you to launch a flow from a workflow action.

WorkplaceCommandCenterUser

Enables access to Workplace Command Center features including access to objects such as Employee, Crisis, and
EmployeeCrisisAssessment.

WorkThanksPref

Enables the give thanks feature in Chatter.

AccountInspection
Enables the Account Intelligence view. The Account Intelligence view is a consolidated dashboard showing account metrics, activities,
and related opportunities and cases.

AccountingSubledgerGrowthEdition
Provides three permission sets that enable access to Accounting Subledger Growth features.

More Information
Requires that you also include the DataProcessingEngine scratch org feature in your scratch org definition file. Requires that you enable
Data Pipelines. Requires configuration using the Setup menu in the scratch org. See Accounting Subledger in Salesforce Help.

AccountingSubledgerStarterEdition
Provides three permission sets that enable access to Accounting Subledger Starter features.

More Information
Requires that you also include the DataProcessingEngine scratch org feature in your scratch org definition file. Requires that you enable
Data Pipelines. Requires configuration using the Setup menu in the scratch org. See Accounting Subledger in Salesforce Help.

AccountingSubledgerUser
Enables organization-wide access to Accounting Subledger Growth features when the package is installed.

75

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.Accounting_Subledger.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sfdo.Accounting_Subledger.htm&language=en_US

More Information
Requires that you install the Accounting Subledger or Accounting Subledger for Industries managed package. If you install the Accounting
Subledger package, also set up the Opportunity object. See Accounting Subledger Legacy Documentation in Salesforce Help.

AddCustomApps:<value>
Increases the maximum number of custom apps allowed in an org. Indicate a value from 1–30.

Supported Quantities
1–30, Multiplier: 1

AddCustomObjects:<value>
Increases the maximum number of custom objects allowed in the org. Indicate a value from 1–30.

Supported Quantities
1–30, Multiplier: 1

AddCustomRelationships:<value>
Increases the maximum number of custom relationships allowed on an object. Indicate a value from 1–10.

Supported Quantities
1–10, Multiplier: 5

AddCustomTabs:<value>
Increases the maximum number of custom tabs allowed in an org. Indicate a value from 1–30.

Supported Quantities
1–30, Multiplier: 1

AddDataComCRMRecordCredit:<value>
Increases record import credits assigned to a user in your scratch org. Indicate a value from 1–30.

Supported Quantities
1–30, Multiplier: 1

AddInsightsQueryLimit:<value>
Increases the size of your CRM Analytics query results. Indicate a value from 1–30 (multiplier is 10). Setting the quantity to 6 increases
the query results to 60.

76

Scratch Org FeaturesScratch Orgs

https://sfdo-docs.s3.us-west-2.amazonaws.com/Accounting_Subledger_Legacy_Documentation.pdf

Supported Quantities
1–30, Multiplier: 10

AdditionalFieldHistory:<value>
Increases the number of fields you can track history for beyond the default, which is 20 fields. Indicate a value between 1–40.

Supported Quantities
1–40, Multiplier: 1

More Information
Previous name: AddHistoryFieldsPerEntity.

AdmissionsConnectUser
Enables the Admissions Connect components. Without this scratch org feature parameter, the custom Admissions Connect components
render as blank.

Scratch Org Definition File
Add these options to your scratch org definition file:

"{
""orgName"": ""Omega - Dev Org"",
""edition"": ""Partner Developer"",
""hasSampleData"": ""true"",
""features"": [""DevelopmentWave"", ""AdmissionsConnectUser"", ""Communities"",

""OmniStudioDesigner"", ""OmniStudioRuntime""],
""settings"": {

""lightningExperienceSettings"": {
""enableS1DesktopEnabled"": true

},
""chatterSettings"": {

""enableChatter"": true
},
""languageSettings"": {

""enableTranslationWorkbench"": true
},
""enhancedNotesSettings"": {

""enableEnhancedNotes"": true
},
""pathAssistantSettings"": {

""pathAssistantEnabled"": true
},
""securitySettings"": {

""enableAdminLoginAsAnyUser"":true
},
""userEngagementSettings"": {

""enableOrchestrationInSandbox"": true,
""enableOrgUserAssistEnabled"": true,

77

Scratch Org FeaturesScratch Orgs

""enableShowSalesforceUserAssist"": false
},
""experienceBundleSettings"": {

""enableExperienceBundleMetadata"": true
},
""communitiesSettings"": {

""enableNetworksEnabled"": true,
""enableOotbProfExtUserOpsEnable"": true

},
""mobileSettings"": {

""enableS1EncryptedStoragePref2"": false
}

}
}"

More Information
Next, install the Admissions Connect package in the scratch org. For installation instructions, see Install Admissions Connect in Salesforce
Help.

AdvisorLinkFeature
Enables the Student Success Hub components. Without this scratch org feature parameter, the custom Student Success Hub components
render as blank.

Scratch Org Definition File
Add these options to your scratch org definition file:

"{
"edition": "Partner Developer",
"features": ["Communities","FeatureParameterLicensing","AdvisorLinkFeature"],
"orgName": "SAL - Dev Workspace",
"hasSampleData": "true",
"settings": {
"chatterSettings": {
"enableChatter": true

},
"communitiesSettings": {
"enableNetworksEnabled": true,
"enableOotbProfExtUserOpsEnable": true

},
"enhancedNotesSettings": {
"enableEnhancedNotes": true

},
"experienceBundleSettings": {
"enableExperienceBundleMetadata": true

},
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true

},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false

78

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.AC_Install.htm&language=en_US

},
"languageSettings": {
"enableTranslationWorkbench": true

},
"securitySettings": {

"enableAdminLoginAsAnyUser":true
}

}
}"

More Information
Next, install the Student Success Hub package in the scratch org. For setup instructions, see Install Student Success Hub in Salesforce
Help.

AdvisorLinkPathwaysFeature
Enables the Pathways components. Without this scratch org feature parameter, the custom Pathways components render as blank.

Scratch Org Definition File
Add these options to your scratch org definition file:

"{"orgName": "Pathways - Dev Org",
"edition": "Partner Developer",
"features":
["Communities","FeatureParameterLicensing","AdvisorLinkFeature","AdvisorLinkPathwaysFeature"],
"settings": {
"chatterSettings": {
"enableChatter": true
},
"enhancedNotesSettings": {
"enableEnhancedNotes": true
},
"communitiesSettings": {
"enableNetworksEnabled": true
},
"languageSettings": {
"enableTranslationWorkbench": true
},
"lightningExperienceSettings": {
"enableS1DesktopEnabled": true
},
"mobileSettings": {
"enableS1EncryptedStoragePref2": false
}
}
}"

More Information
Next, install the Pathways package in the scratch org. For setup instructions, see Set Up Pathways in Salesforce Help.

79

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.SSH_Install.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sfdo.ssh_setup_pathways.htm&language=en_US

AIAttribution
Provides access to Einstein Attribution for Marketing Cloud Account Engagement. Einstein Attribution uses AI modeling to dynamically
assign attribution percentages to multiple campaign touchpoints.

Sample Scratch Org Definition File
Before enabling Einstein Attribution, make sure that enableAIAttribution and enableCampaignInfluence2 are set
to true.

{
"orgName": "NTOutfitters",
"edition": "Enterprise",
"features": ["AIAttribution"],
"settings": {
"campaignSettings": {

"enableAIAttribution": true
"enableCampaignInfluence2": true

}
}

More Information
This feature is available in Account Engagement Advanced and Premium editions.

Optional configuration steps are accessible in Setup in the scratch org. For more information, see Salesforce Help: Einstein Attribution.

AnalyticsAdminPerms
Enables all permissions required to administer the CRM Analytics platform, including permissions to enable creating CRM Analytics
templated apps and CRM Analytics Apps.

More Information
See Set Up the CRM Analytics Platform in Salesforce Help for more information.

AnalyticsAppEmbedded
Provides one CRM Analytics Embedded App license for the CRM Analytics platform.

API
Even in the editions (Professional, Group) that don’t provide API access, REST API is enabled by default. Use this scratch org feature to
access additional APIs (SOAP, Streaming, Bulk, Bulk 2.0).

More Information
See Salesforce editions with API access for more information.

80

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.pardot_einstein_attribution_parent.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=bi_help_setup.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=000326486&type=1&mode=1&language=en_US

ArcGraphCommunity
Lets you add Actionable Relationship Center (ARC) components to Experience Cloud pages so your users can view ARC Relationship
Graphs.

More Information
Provides 1 seat of the FinancialServicesEALoginAddon add-on license.

Requires that you install Financial Services Cloud. See Customize Experience Cloud Templates using ARC Components in Financial Services
Cloud Administrator Guide.

Assessments
Enables dynamic Assessments features, which enables both Assessment Questions and Assessment Question Sets.

More Information
Add these options to your scratch org feature definition file. For "edition," you can indicate any of the supported scratch org feature
editions.

{
"orgName": "Sample Org",
"edition": "Developer",
"features": ["Assessments"],
"settings": {
"industriesSettings": {
"enableIndustriesAssessment": true,
"enableDiscoveryFrameworkMetadata": true

}
}

}

Add the Assessment to the page layout. See Page Layouts in Salesforce Help for more information.

AssetScheduling:<value>
Enables Asset Scheduling license. Asset Scheduling makes it easier to book rooms and equipments. Indicate a value between 1–10.

Supported Quantities
1–10

More Information
See Enable Asset Scheduling in Salesforce Scheduler in Salesforce Help for more information.

AssociationEngine
Enables the Association Engine, which automatically associates new accounts with the user’s current branch by creating branch unit
customer records.

81

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_arc_experience_cloud.htm
https://help.salesforce.com/s/articleView?id=sf.customize_layout.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ls_overview.htm&type=5;&language=en_US

More Information
Provides 11 seats of the FSCComprehensivePsl user license and 11 seats of the FSCComprehensiveAddOn add-on license.

Requires that you install Financial Services Cloud. See AssociationEngineSettings in Metadata API Developer Guide.

AuthorApex
Enables you to access and modify Apex code in a scratch org. Enabled by default in Enterprise and Developer Editions.

More Information
For Group and Professional Edition orgs, this feature is disabled by default. Enabling the AuthorApex feature lets you edit and test your
Apex classes.

B2BCommerce
Provides the B2B License. B2BCommerce enables business-to-business (B2B) commerce in your org. Create and update B2B stores. Create
and manage buyer accounts. Sell products to other businesses.

More Information
Requires that you also include the Communities scratch org feature in your scratch org definition file to create a store using B2B Commerce.
Not available in Professional, Partner Professional, Group, or Partner Group Edition orgs.

B2BLoyaltyManagement
Enables the B2B Loyalty Management license. Create loyalty programs and set up loyalty program-specific processes that allow you to
recognize, rewards, and retain customers.

More Information
See Loyalty Management in Salesforce Help for more information.

B2CCommerceGMV
Provides the B2B2C Commerce License. B2B2C Commerce allows you to quickly stand up an ecommerce site to promote brands and
sell products into multiple digital channels. You can create and update retail storefronts in your org, and create and manage person
accounts.

More Information
Also requires the Communities feature in your scratch org definition file.

Not available in Professional, Partner Professional, Group, or Partner Group Edition orgs.

For more information, see Salesforce Help at Salesforce B2B Commerce and B2B2C Commerce..

82

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_associationenginesettings.htm
https://help.salesforce.com/s/articleView?id=sf.loyaltyoverview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.comm_intro.htm&language=en_US

B2CLoyaltyManagement
Enables the Loyalty Management - Growth license. Create loyalty programs and set up loyalty program-specific processes that allow
you to recognize, rewards, and retain customers.

More Information
See Loyalty Management in Salesforce Help for more information.

B2CLoyaltyManagementPlus
Enables the Loyalty Management - Advanced license. Create loyalty programs and set up loyalty program-specific processes that allow
you to recognize, rewards, and retain customers.

More Information
See Loyalty Management in Salesforce Help for more information.

BatchManagement
Enables the Batch Management license. Batch Management allows you to process a high volume of records in manageable batches.

More Information
See Batch Management in Salesforce Help for more information.

BigObjectsBulkAPI
Enables the scratch org to use BigObjects in the Bulk API.

More Information
See Big Objects Implementation Guide for more information.

Briefcase
Enables the use of Briefcase Builder in a scratch org, which allows you to create offline briefcases that make selected records available
for viewing offline.

BudgetManagement
Gives users access to budget management features and objects. To enable budget management, add this feature to your scratch org
definition file.

More Information
See Budget Management in Salesforce Help for more information.

83

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.loyaltyoverview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.loyaltyoverview.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.concept_batch_management.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.bigobjects.meta/bigobjects/big_object.htm
https://help.salesforce.com/s/articleView?id=sf.grmk_budget_management_for_grantmaking.htm&language=en_US

BusinessRulesEngine
Enables Business Rules Engine, which enables both expression sets and lookup tables.

More Information
Provides 10 Business Rules Engine Designer and 10 Business Rules Engine Runtime licenses. For more information, see Business Rules
Engine in Salesforce Help.

CacheOnlyKeys
Enables the cache-only keys service. This feature allows you to store your key material outside of Salesforce, and have the Cache-Only
Key Service fetch your key on demand from a key service that you control.

More Information
Requires enabling PlatformEncryption and configuration using the Setup menu in the scratch org. See Which User Permissions Does
Shield Platform Encryption Require?, Generate a Tenant Secret with Salesforce, and Cache-Only Key Service in Salesforce Help.

CalloutSizeMB:<value>
Increases the maximum size of an Apex callout. Indicate a value between 3–12.

Supported Quantities
3–12, Multiplier: 1

CampaignInfluence2
Provides access to Customizable Campaign Influence for Sales Cloud and Marketing Cloud Account Engagement. Customizable Campaign
Influence can auto-associate or allow manual creation of relationships among campaigns and opportunities to track attribution.

Sample Scratch Org Definition File
To enable Customizable Campaign Influence, set enableCampaignInfluence2 to true.

{
"orgName": "NTOutfitters",
"edition": "Enterprise",
"features": ["CampaignInfluence2"],
"settings": {
"campaignSettings": {

"enableCampaignInfluence2": true

}
}

More Information
This feature is available in Salesforce Enterprise, Performance, Unlimited, and Developer Editions.

84

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.business_rules_engine.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.business_rules_engine.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_platformencryption
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_ui_setup.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_byok_cache.htm&type=5&language=en_US

Optional configuration steps are accessible in Setup in the scratch org. For more information, see Salesforce Help: Customizable Campaign
Influence.

CascadeDelete
Provides lookup relationships with the same cascading delete functionality previously only available to master-detail relationships. To
prevent records from being accidentally deleted, cascade-delete is disabled by default.

CaseClassification
Enables Einstein Case Classification. Case Classification offers recommendations to your agents so they can select the best value. You
can also automatically save the best recommendation and route the case to the right agent.

CaseWrapUp
Enables Einstein Case Wrap-Up. To help agents complete cases quickly, Einstein Case Wrap-Up recommends case field values based on
past chat transcripts.

More Information
Available in Enterprise Edition scratch orgs.

Requires configuration using the Setup menu in the scratch org.

See Set Up Einstein Classification Apps in Salesforce Help for more information.

ChangeDataCapture
Enables Change Data Capture, if the scratch org edition doesn't automatically enable it.

Chatbot
Enables deployment of Bot metadata into a scratch org, and allows you to create and edit bots.

More Information
To use this feature, turn on Enable Einstein Features in the Dev Hub org to accept the Terms of Service.

See Einstein Bots in Salesforce Help for more information.

ChatterEmailFooterLogo
ChatterEmailFooterLogo allows you to use the Document ID of a logo image, which you can use to customize chatter emails.

More Information
See Add Your Custom Brand to Email Notifications in Salesforce Help for more information.

ChatterEmailFooterText
ChatterEmailFooterText allows you to use footer text in customized Chatter emails.

85

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.campaigns_influence_customizable.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.campaigns_influence_customizable.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=cc_service_what_is.htm&language=en_US
https://help.salesforce.com/articleView?id=bots_service_intro.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.collab_admin_email_customize.htm&type=5&language=en_US

More Information
See Add Your Custom Brand to Email Notifications in Salesforce Help for more information.

ChatterEmailSenderName
ChatterEmailSenderName allows you to customize the name that appears as the sender’s name in the email notification. For example,
your company’s name.

More Information
See Chatter Email Settings and Branding in Salesforce Help for more information.

CloneApplication
CloneApplication allows you to clone an existing custom Lightning app and make required customizations to the new app. This way,
you don’t have to start from scratch, especially when you want to create apps with simple variations.

More Information
See Create Lightning Apps in Salesforce Help for more information.

CMSMaxContType
Limits the number of distinct content types you can create within Salesforce CMS to 21.

CMSMaxNodesPerContType
Limits the maximum number of child nodes (fields) you can create for a particular content type to 15.

CMSUnlimitedUse
Enables unlimited content records, content types, and bandwidth usage in Salesforce CMS.

Communities
Allows the org to create a customer community. To use Communities, you must also include communitiesSettings >
enableNetworksEnabled in the settings section of your scratch org definition file.

More Information
Available in Enterprise and Developer Edition scratch orgs.

ConAppPluginExecuteAsUser
Enables the pluginExecutionUser field in the ConnectedApp Metadata API object.

86

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.collab_admin_email_customize.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.collab_admin_email_settings.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.apps_lightning_create.htm.htm&language=en_US

ConcStreamingClients:<value>
Increases the maximum number of concurrent clients (subscribers) across all channels and for all event types for API version 36.0 and
earlier. Indicate a value between 20–4,000.

Supported Quantities
20–4,000, Multiplier: 1

ConnectedAppCustomNotifSubscription
Enables connected apps to subscribe to custom notification types, which are used to send custom desktop and mobile notifications.

More Information
Sending custom notifications requires both CustomNotificationType on page 88 to create notification types and
ConnectedAppCustomNotifSubscription to subscribe to notification types. See Manage Your Notifications with Notification Builder in
Salesforce Help for more information on custom notifications.

ConnectedAppToolingAPI
Enables the use of connected apps with the Tooling API.

ConsentEventStream
Enables the Consent Event Stream permission for the org.

More Information
See Use the Consent Event Stream in Salesforce Help for more information.

ConsolePersistenceInterval:<value>
Increases how often console data is saved, in minutes. Indicate a value between 0–500. To disable auto save, set the value to 0.

Supported Quantities
0–500, Multiplier: 1

ContactsToMultipleAccounts
Enables the contacts to multiple accounts feature. This feature lets you relate a contact to two or more accounts.

ContractApprovals
Enables contract approvals, which allow you to track contracts through an approval process.

87

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.notif_builder.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.consent_event_stream.htm&type=5&language=en_US

ContractManagement
Enables the Contract Lifecycle (CLM) Management features in the org.

ContractMgmtInd
Enables the Contract Lifecycle Management (CLM) features for Industries.

CPQ
Enables the licensed features required to install the Salesforce CPQ managed package but doesn't install the package automatically.

More Information
For additional information and configuration steps, see Manage Your Quotes with CPQ in Salesforce Help.

CustomFieldDataTranslation
Enables translation of custom field data for Work Type Group, Service Territory, and Service Resource objects. You can enable data
translation for custom fields with Text, Text Area, Text Area (Long), Text Area (Rich), and URL types.

More Information
Requires that you also include the EntityTranslation scratch org feature in your scratch org definition file. Not available in Professional,
Partner Professional, Group, or Partner Group Edition orgs.

CustomNotificationType
Allows the org to create custom notification types, which are used to send custom desktop and mobile notifications.

More Information
Sending custom notifications requires both CustomNotificationType to create notification types and
ConnectedAppCustomNotifSubscription on page 87 to subscribe to notification types. See Manage Your Notifications with Notification
Builder in Salesforce Help for more information on custom notifications.

DataComDnbAccounts
Provides a license to Data.com account features.

DataComFullClean
Provides a license to Data.com cleaning features, and allows users to turn on auto fill clean settings for jobs.

DataMaskUser
Provides 30 Data Mask permission set licenses. This permission set enables access to an installed Salesforce Data Mask package.

88

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=cpq_master.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.notif_builder.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.notif_builder.htm&language=en_US

More Information
For additional installation and configuration steps, see Install the Managed Package in Salesforce Help.

DataProcessingEngine
Enables the Data Processing Engine license. Data Processing Engine helps transform data that's available in your Salesforce org and write
back the transformation results as new or updated records.

More Information
See Data Processing Engine in Salesforce Help for more information.

DebugApex
Enables Apex Interactive Debugger. You can use it to debug Apex code by setting breakpoints and checkpoints, and inspecting your
code to find bugs.

DecisionTable
Enables Decision Table license. Decision tables read business rules and decide the outcome for records in your Salesforce org or for the
values that you specify.

More Information
See Decision Table in Salesforce Help for more information.

DefaultWorkflowUser
Sets the scratch org admin as the default workflow user.

DeferSharingCalc
Allows admins to suspend group membership and sharing rule calculations and to resume them later.

More Information
Requires configuration using the Setup menu in the scratch org. See Defer Sharing Calculations in Salesforce Help.

DevelopmentWave
Enables CRM Analytics development in a scratch org. It assigns five platform licenses and five CRM Analytics platform licenses to the org,
along with assigning the permission set license to the admin user. It also enables the CRM Analytics Templates and Einstein Discovery
features.

DeviceTrackingEnabled
Enables Device Tracking.

89

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=data_mask_install.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.concept_data_processing_engine.htm&language=en_US
https://help.salesforce.com/s/articleView?id=concept_decision_table.htm&language=en_US
https://help.salesforce.com/articleView?id=security_sharing_defer_sharing_calculations.htm&type=5&language=en_US

DevOpsCenter
Enables DevOps Center in scratch orgs so that partners can create second-generation managed packages that extend or enhance the
functionality in the DevOps Center application (base) package.

Dev Hub Org
Ask a Salesforce admin to enable DevOps Center in the Dev Hub org. From Setup, enter DevOps Center in the Quick Find box, then
select DevOps Center. You can create scratch orgs after the org preference is enabled.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["DevOpsCenter"],
"settings": {

"devHubSettings": {
"enableDevOpsCenterGA": true
}

}
}

Scratch Org Definition File For Scratch Orgs Created from an Org Shape
If you create a scratch org based on an org shape with DevOps Center enabled, we still require that you add the DevOps Center feature
and setting to the scratch org definition for legal reasons as part of the DevOps Center terms and conditions.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5",
"features": ["DevOpsCenter"],
"settings": {

"devHubSettings": {
"enableDevOpsCenterGA": true
}

}
}

More Information
Salesforce Help: Build an Extension Package for DevOps Center

DisableManageIdConfAPI
Limits access to the LoginIP and ClientBrowser API objects to allow view or delete only.

DisclosureFramework
Provides the permission set licenses and permission sets required to configure Disclosure and Compliance Hub.

90

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.devops_center_partners_extension_packages.htm&language=en_US

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "dch org",
"edition": "Developer",
"features": ["DisclosureFramework"],
"settings": {
"industriesSettings":{
"enableGnrcDisclsFrmwrk": true,
"enableIndustriesAssessment" : true

}
}

}

More Information
For configuration steps, see Disclosure and Compliance Hub in the Set Up and Maintain Net Zero Cloud guide in Salesforce Help.

Division
Turns on the Manage Divisions feature under Company Settings. Divisions let you segment your organization's data into logical sections,
making searches, reports, and list views more meaningful to users. Divisions are useful for organizations with extremely large amounts
of data.

DocGen
Enables the Document Generation Feature in the Org.

DocGenDesigner
Enables the designers to create and configure document templates.

DocGenInd
Enables the Industry Document Generation features in the org.

DocumentChecklist
Enables Document Tracking and Approval features, and adds the Document Checklist permission set. Document tracking features let
you define documents to upload and approve, which supports processes like loan applications or action plans.

More Information
See Enable Document Tracking and Approvals in the Financial Services Cloud Administrator Guide for more information.

DocumentReaderPageLimit
Limits the number of pages sent for data extraction to 5.

91

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.netzero_setup_disclosure_and_compliance_hub.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/admin_enable_doc_mgmt.htm

More Information
See Intelligent Form Reader in Salesforce Help for more information.

DSARPortability
Enables an org to access the DSARPortability feature in Privacy Center. Also, provides one seat each of the PrivacyCenter and
PrivacyCenterAddOn licenses.

More Information
See Portability in the Salesforce REST API Developer Guide for more information.

DurableClassicStreamingAPI
Enables Durable PushTopic Streaming API for API version 37.0 and later.

More Information
Available in Enterprise and Developer Edition scratch orgs.

DurableGenericStreamingAPI
Enables Durable Generic Streaming API for API version 37.0 and later.

More Information
Available in Enterprise and Developer Edition scratch orgs.

DynamicClientCreationLimit
Allows the org to register up to 100 OAuth 2.0 connected apps through the dynamic client registration endpoint.

EAndUDigitalSales
Enables the Energy and Utilities Digital Sales feature in the org.

EAndUSelfServicePortal
Enables the Self Service Portal features for Digital Experience users in the org.

EAOutputConnectors
Enable CRM Analytics Output Connectors.

More Information
This scratch org requires the Dev Hub to have the EAOutputConnectors permission. See Salesforce Output Connection in Salesforce
Help for more details.

92

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.form_reader.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.242.0.api_rest.meta/api_rest/resources_portability.htm
https://help.salesforce.com/s/articleView?id=sf.bi_integrate_connectors_output_salesforce.htm&language=en_US

EASyncOut
Enable CRM Analytics SyncOut.

More Information
This scratch org requires the Dev Hub to have the EASyncOut permission. See Sync Out for Snowflake in Salesforce Help for more details.

EdPredictionM3Threshold
Sets the number of records in the payload to 10, after which the Einstein Discovery prediction service uses M3.

EdPredictionTimeout
Sets the maximum duration of a single Einstein Discovery prediction to 100 milliseconds.

EdPredictionTimeoutBulk
Sets the maximum duration of a single Einstein Discovery prediction when it runs in bulk to 10 milliseconds.

EdPredictionTimeoutByomBulk
Sets the maximum duration of a single Bring Your Own Model (BYOM) Einstein Discovery prediction to 100 milliseconds.

EducationCloud: <value>
Enables use of Education Cloud.

Supported Quantities
Maximum: 10; Multiplier: 1

More Information
Standard set up steps are required after enabling this feature. See Set Up Education Cloud in Salesforce Help for more information.

EinsteinAnalyticsPlus
Provides one CRM Analytics Plus license for the CRM Analytics platform.

EinsteinArticleRecommendations
Provides licenses for Einstein Article Recommendations. Einstein Article Recommendations uses data from past cases to identify Knowledge
articles that are most likely to help your customer service agents address customer inquiries.

More Information
Available in Enterprise Edition scratch orgs.

Requires configuration using the Setup menu in the scratch org.

93

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.bi_integrate_connectors_sync_out_snowflake.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sfdo.EC_Set_Up_Education_Cloud.htm&language=en_US

See Set Up Einstein Article Recommendations in Salesforce Help for more information.

EinsteinBuilderFree
Provides a license that allows admins to create one enabled prediction with Einstein Prediction Builder. Einstein Prediction Builder is
custom AI for admins

More Information
For configuration steps, see Einstein Prediction Builder in Salesforce Help.

EinsteinDocReader
Provides the license required to enable and use Intelligent Form Reader in a scratch org. Intelligent Form Reader uses optical character
recognition to automatically extract data with Amazon Textract.

More Information
To use this scratch org feature, the Dev Hub org requires the EinsteinDocReader and SalesforceManagedIFR permissions. For information
about Intelligent Form Reader, see Intelligent Form Reader in Salesforce Help.

EinsteinRecommendationBuilder
Provides a license to create recommendations with Einstein Recommendation Builder. Einstein Recommendation Builder lets you build
custom AI recommendations.

More Information
Enabled in Developer and Enterprise Editions.

Requires configuration using the Setup menu in the scratch org. You also need the EinsteinRecommendationBuilderMetadata feature
to use Einstein Recommendation Builder in scratch org.

See Einstein Recommendation Builder in Salesforce Help for more information.

EinsteinRecommendationBuilderMetadata
Enables Einstein Recommendation Builder to use the required metadata APIs. Enabling this feature lets you build custom AI
recommendations.

More Information
Enabled in Developer and Enterprise Editions.

Requires configuration using the Setup menu in the scratch org. You also need the EinsteinRecommendationBuilderMetadata feature
to use the Einstein Recommendation Builder in scratch org.

See Einstein Recommendation Builder in Salesforce Help for more information.

EinsteinSearch
Provides the license required to use and enable Einstein Search features in a scratch org.

94

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=einstein_article_recommendations_set_up.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=custom_ai_prediction_builder.htm&type=0&language=en_US
https://help.salesforce.com/s/articleView?id=sf.form_reader.htm&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=custom_ai_recommendation_builder.htm&language=en_US#custom_ai_recommendation_builder
https://help.salesforce.com/apex/HTViewHelpDoc?id=custom_ai_recommendation_builder.htm&language=en_US#custom_ai_recommendation_builder

More Information
Available in Professional and Enterprise Edition scratch orgs.

Requires configuration using the Setup menu in the scratch org.

See Manage Einstein Search Settings in Salesforce Help for more information.

EinsteinVisits
Enables Consumer Goods Cloud. With Consumer Goods cloud, transform the way you collaborate with your retail channel partners.
Empower your sales managers to plan visits and analyze your business’s health across stores. Also, allow your field reps to track inventory,
take orders, and capture visit details using the Retail Execution mobile app.

EinsteinVisitsED
Enables Einstein Discovery, which can be used to get store visit recommendations. With Einstein Visits ED, you can create a visit frequency
strategy that allows Einstein to provide optimal store visit recommendations.

More Information
See Create a Visit Frequency Next Best Action Strategy in Salesforce Help.

EmbeddedLoginForIE
Provides JavaScript files that support Embedded Login in IE11.

EmpPublishRateLimit:<value>
Increases the maximum number of standard-volume platform event notifications published per hour. Indicate a value between
1,000–10,000.

Supported Quantities
1,000–10,000, Multiplier: 1

EnablePRM
Enables the partner relationship management permissions for the org.

EnableManageIdConfUI
Enables access to the LoginIP and ClientBrowser API objects to verify a user's identity in the UI.

EnableSetPasswordInApi
Enables you to use sf org generate password to change a password without providing the old password.

95

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/apex/HTViewHelpDoc?id=search_es_settings.htm&language=en_US#search_es_settings
https://help.salesforce.com/s/articleView?id=sf.industries_einstein_visit_frequency_strategy.htm&type=5&language=en_US

EncryptionStatisticsInterval:<value>
Defines the interval (in seconds) between encryption statistics gathering processes. The maximum value is 604,800 seconds (7 days).
The default is once per 86,400 seconds (24 hours).

Supported Quantities
0–60,4800, Multiplier: 1

More Information
Requires enabling PlatformEncryption and some configuration using the Setup menu in the scratch org. See Which User Permissions
Does Shield Platform Encryption Require?, and Generate a Tenant Secret with Salesforce in Salesforce Help.

EncryptionSyncInterval:<value>
Defines how frequently (in seconds) the org can synchronize data with the active key material. The default and maximum value is 604,800
seconds (7 days). To synchronize data more frequently, indicate a value, in seconds, equal to or larger than 0.

Supported Quantities
0–604,800, Multiplier: 1

More Information
Requires enabling PlatformEncryption and some configuration using the Setup menu in the scratch org. See Which User Permissions
Does Shield Platform Encryption Require?, and Generate a Tenant Secret with Salesforce in Salesforce Help.

EnergyAndUtilitiesCloud
Enables the Energy and Utilities Cloud features in the org.

Entitlements
Enables entitlements. Entitlements are units of customer support in Salesforce, such as phone support or web support that represent
terms in service agreements.

EventLogFile
Enables API access to your org's event log files. The event log files contain information about your org’s operational events that you can
use to analyze usage trends and user behavior.

EntityTranslation
Enables translation of field data for Work Type Group, Service Territory, and Service Resource objects.

96

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_platformencryption
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_ui_setup.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_platformencryption
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_ui_setup.htm&language=en_US

More Information
To translate custom field data, also include the CustomFieldDataTranslation scratch org feature in your scratch org definition file. Not
available in Professional, Partner Professional, Group, or Partner Group Edition orgs.

ExpressionSetMaxExecPerHour
Enables an org to run a maximum of 500,000 expression sets per hour by using Connect REST API.

For more information, see Expression Set in Salesforce developer documentation.

ExternalIdentityLogin
Allows the scratch org to use Salesforce Customer Identity features associated with your External Identity license.

FieldAuditTrail
Enables Field Audit Trail for the org and allows a total 60 tracked fields. By default, 20 fields are tracked for all orgs, and 40 more are
tracked with Field Audit Trail.

More Information
Previous name: RetainFieldHistory

FieldService:<value>
Provides the Field Service license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
Available in Enterprise Edition. Enabled by default in Developer Edition. See Enable Field Service in Salesforce Help for more information.

FieldServiceAppointmentAssistantUser:<value>
Adds the Field Service Appointment Assistant permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
See Setup Field Service Appointment Assistant and Assign Field Service Permissions in Salesforce Help for more information.

97

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.industries_reference.meta/industries_reference/connect_resources_bre_expression_set.htm
https://help.salesforce.com/articleView?id=fs_enable.htm&language=en_US
https://help.salesforce.com/s/articleView?language=en_US&id=sf.mfs_appointment_assistant_parent.htm
https://help.salesforce.com/articleView?id=pfs_set_profiles_perms.htm&language=en_US

FieldServiceDispatcherUser:<value>
Adds the Field Service Dispatcher permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
See Assign Field Service Permissions in Salesforce Help for more information.

FieldServiceLastMileUser:<value>
Adds the Field Service Last Mile permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

FieldServiceMobileExtension
Adds the Field Service Mobile Extension permission set license.

FieldServiceMobileUser:<value>
Adds the Field Service Mobile permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
See Assign Field Service Permissions in Salesforce Help for more information.

FieldServiceSchedulingUser:<value>
Adds the Field Service Scheduling permission set license. Indicate a value between 1–25.

Supported Quantities
1–25, Multiplier: 1

More Information
See Assign Field Service Permissions in Salesforce Help for more information.

98

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=pfs_set_profiles_perms.htm&language=en_US
https://help.salesforce.com/articleView?id=pfs_set_profiles_perms.htm&language=en_US
https://help.salesforce.com/articleView?id=pfs_set_profiles_perms.htm&language=en_US

FinanceLogging
Adds Finance Logging objects to a scratch org. This feature is required for Finance Logging.

FinancialServicesCommunityUser:<value>
Adds the Financial Services Insurance Community permission set license, and enables access to Financial Services insurance community
components and objects. Indicate a value between 1–10.

Supported Quantities
1–10, Multiplier: 1

FinancialServicesInsuranceUser:<value>
Adds the Financial Services Insurance permission set license, and enables access to Financial Services insurance components and objects.
Indicate a value between 1–10.

Supported Quantities
1–10, Multiplier: 1

FinancialServicesUser:<value>
Adds the Financial Services Cloud Standard permission set license. This permission set enables access to Lightning components and the
standard version of Financial Services Cloud. Also provides access to the standard Salesforce objects and custom Financial Services Cloud
objects. Indicate a value between 1–10.

Supported Quantities
1–10, Multiplier: 1

FlowSites
Enables the use of flows in Salesforce Sites and customer portals.

ForceComPlatform
Adds one Salesforce Platform user license.

ForecastEnableCustomField
Enables custom currency and customer number fields for use as measures in forecasts based on opportunities.

More Information
Available in Enterprise Edition and Unlimited Edition scratch orgs, and requires enabling Collaborative Forecasts in Setup. See Collaborative
Forecasts in Salesforce Help for more information.

99

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.forecasts3_intro.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.forecasts3_intro.htm&language=en_US

FSCAlertFramework
Makes Financial Services Cloud Record Alert entities accessible in the scratch org.

More Information
Provides 11 seats of the FSCComprehensivePsl user license and 11 seats of the FSCComprehensiveAddOn add-on license.

Requires that you install Financial Services Cloud and OmniStudio. See Record Alerts in Financial Services Cloud Administrator Guide.

FSCServiceProcess
Enables the Service Process Studio feature of Financial Service Cloud. Provides 10 seats each of the IndustriesServiceExcellenceAddOn
and FinancialServicesCloudStardardAddOn licenses. To enable the feature, you must also turn on the StandardServiceProcess setting in
Setup and grant users the AccessToServiceProcess permission.

Fundraising
Gives users access to Nonprofit Cloud for Fundraising features and objects in Salesforce.

Scratch Org Definition File
To enable Fundraising, add these settings to your scratch org definition file.

{
"orgName": "My Company",
"edition": "Developer",
"features": [

"AccountingSubledgerGrowthEdition",
"IndustriesActionPlan",
"AnalyticsQueryService",
"PublicSectorAccess",
"Fundraising",
"IndustriesSalesExcellenceAddOn",
"IndustriesServiceExcellenceAddOn",
"MarketingUser",
"ProgramManagement",
"OmniStudioDesigner",
"OmniStudioRuntime",
"EnableSetPasswordInApi",
"PersonAccounts"

],
"settings": {

"lightningExperienceSettings": {
"enableS1DesktopEnabled": true

},
"mobileSettings": {

"enableS1EncryptedStoragePref2": false
},
"chatterSettings": {

"enableChatter": true
},
"apexSettings": {

100

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_record_alerts.htm

"enableDisableParallelApexTesting": true
},
"enhancedNotesSettings": {

"enableEnhancedNotes": true
}

}
}

More Information
See Nonprofit Cloud for Fundraising in Salesforce Help for more information.

GenericStreaming
Enables Generic Streaming API for API version 36.0 and earlier.

More Information
Available in Enterprise and Developer Edition scratch orgs.

GenStreamingEventsPerDay:<value>
Increases the maximum number of delivered event notifications within a 24-hour period, shared by all CometD clients, with generic
streaming for API version 36.0 and earlier. Indicate a value between 10,000–50,000.

Supported Quantities
10,000–50,000, Multiplier: 1

Grantmaking
Gives users access to Grantmaking features and objects in Salesforce and Experience Cloud.

More Information
See Grantmaking in Salesforce Help for more information. To enable Grantmaking, add these settings to your scratch org definition file.

{
"features": ["Grantmaking"],
"settings": {
"IndustriesSettings": {
"enableGrantmaking": true

}
}

}

HealthCloudAddOn
Enables use of Health Cloud.

101

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.NPC_FR_Nonprofit_Cloud_Fundraising.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.grmk_grantmaking.htm&language=en_US

More Information
See Administer Health Cloud in Salesforce Help for more information.

HealthCloudEOLOverride
Salesforce retired the Health Cloud CandidatePatient object in Spring ‘22 to focus on the more robust Lead object. This scratch org
feature allows you to override that retirement and access the object.

More Information
To use this scratch org feature, the Dev Hub org requires the HealthCloudEOLOverride permission. See Candidate Patient Data Entity
Retirement in Salesforce Help for more information.

HealthCloudForCmty
Enables use of Health Cloud for Experience Cloud Sites.

More Information
See Experience Cloud Sites in Salesforce Help for more information.

HealthCloudMedicationReconciliation
Allows Medication Management to support Medication Reconciliation.

More Information
See Enable Medication Management to Perform Medication Reconciliation in Salesforce Help for more information.

HealthCloudPNMAddOn
Enables use of Provider Network Management.

More Information
See Provider Network Management in Salesforce Help for more information.

HealthCloudUser
This enables the scratch org to use the Health Cloud objects and features equivalent to the Health Cloud permission set license for one
user.

More Information
See Assign Health Cloud Permission Sets and Permission Set Licenses in Salesforce Help for more information.

102

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/apex/HTViewHelpDoc?id=healthcare_admin.htm&language=en_US#healthcare_admin
https://help.salesforce.com/s/articleView?id=000391944&type=1&language=en_US
https://help.salesforce.com/s/articleView?id=000391944&type=1&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=admin_communities.htm&language=en_US#admin_communities
https://help.salesforce.com/s/articleView?id=sf.admin_medication_management_enable.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.admin_provider_network_management.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.admin_permissionset_licenses_assign.htm&type=5&language=en_US

HighVelocitySales
Provides Sales Engagement licenses and enables Salesforce Inbox. Sales Engagement optimizes the inside sales process with a
high-productivity workspace. Sales managers can create custom sales processes that guide reps through handling different types of
prospects. And sales reps can rapidly handle prospects with a prioritized list and other productivity-boosting features. The Sales Engagement
feature can be deployed in scratch orgs, but the settings for the feature can’t be updated through the scratch org definition file. Instead,
configure settings directly in the Sales Engagement app.

HoursBetweenCoverageJob:<value>
The frequency in hours when the sharing inheritance coverage report can be run for an object. Indicate a value between 1–24.

Supported Quantities
1–24, Multiplier: 1

IdentityProvisioningFeatures
Enables use of Salesforce Identity User Provisioning.

IgnoreQueryParamWhitelist
Ignores allowlisting rules for query parameter filter rules. If enabled, you can add any query parameter to the URL.

Note: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain terms
to avoid any effect on customer implementations.

IndustriesActionPlan
Provides a license for Action Plans. Action Plans allow you to define the tasks or document checklist items for completing a business
process.

More Information
Previous name: ActionPlan.

For more information and configuration steps, see Enable Actions Plans in Salesforce Help.

IndustriesBranchManagement
Branch Management lets branch managers and administrators track the work output of branches, employees, and customer segments
in Financial Services Cloud.

More Information
Provides the Branch Management add-on license and user permissions, plus 11 seats of the FSCComprehensivePsl user license and 11
seats of the FSCComprehensiveAddOn add-on license.

Requires that you install Financial Services Cloud. See Branch Management in Financial Services Cloud Administrator Guide.

103

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=fsc_action_plans.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_branch.htm

IndustriesCompliantDataSharing
Grants users access to participant management and advanced configuration for data sharing to improve compliance with regulations
and company policies.

More Information
Provides 1 seat of the FinancialServicesCloudStandardAddOn add-on license.

Requires that you install Financial Services Cloud. See Compliant Data Sharing in Financial Services Cloud Administrator Guide.

IndustriesMfgTargets
Enables Sales Agreements. With Sales Agreements, you can negotiate purchase and sale of products over a continued period. You can
also get insights into products, prices, discounts, and quantities. And you can track your planned and actual quantities and revenues
with real-time updates from orders and contracts.

More Information
See Track Sales Compliance with Sales Agreements in Salesforce Help for more information.

IndustriesManufacturingCmty
Provides the Manufacturing Sales Agreement for the Community permission set license, which is intended for the usage of partner
community users. It also provides access to the Manufacturing community template for admins users to create communities.

More Information
See Improve Partner Collaboration with Communities in Salesforce Help for more information.

IndustriesMfgAccountForecast
Enables Account Forecast. With Account Forecast, you can generate forecasts for your accounts based on orders, opportunities, and
sales agreements. You can also create formulas to calculate your forecasts per the requirements of your company.

More Information
See Create Account Forecasts to Enhance Your Planning in Salesforce Help for more information.

InsightsPlatform
Enables the CRM Analytics Plus license for CRM Analytics.

InsuranceCalculationUser
Enables the calculation feature of Insurance. Provides 10 seats each of the BRERuntimeAddOn and OmniStudioRuntime licenses. Also,
provides one seat each of the OmniStudio and BREPlatformAccess licenses.

104

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.financial_services_cloud_admin_guide.meta/financial_services_cloud_admin_guide/fsc_admin_cds.htm
https://help.salesforce.com/articleView?id=sa_admin_parent_concept.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=sa_admin_communityoverview_concept.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=af_admin_parent_concept.htm&type=5&language=en_US

InsuranceClaimMgmt
Enables claim management features. Provides one seat of the InsuranceClaimMgmtAddOn license.

More Information
See Manage Claims in Salesforce Help for more information.

InsurancePolicyAdmin
Enables policy administration features. Provides one seat of the InsurancePolicyAdministrationAddOn license.

More Information
See Manage Insurance Policies in Salesforce Help for more information.

IntelligentDocumentReader
Provides the license required to enable and use Intelligent Document Reader in a scratch org. Intelligent Document Reader uses optical
character recognition to automatically extract data with Amazon Textract by using your AWS account.

More Information
To use this scratch org feature, the Dev Hub org requires the EinsteinDocReader and BYOAForIFR permissions. For information about
Intelligent Document Reader, see Intelligent Document Reader in Salesforce Help.

Interaction
Enables flows. A flow is the part of Salesforce Flow that collects data and performs actions in your Salesforce org or an external system.
Salesforce Flow provides two types of flows: screen flows and autolaunched flows.

More Information
Requires configuration in the Setup menu of the scratch org.

IoT
Enables IoT so the scratch org can consume platform events to perform business and service workflows using orchestrations and contexts.

More Information
Also requires Metadata API Settings in the scratch org definition file.

JigsawUser
Provides one license to Jigsaw features.

105

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=ind.insurance_claims_617267.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=ind.insurance_policy_administration_621128.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.intelligent_document_reader.htm&language=en_US

Knowledge
Enables Salesforce Knowledge and gives your website visitors, clients, partners, and service agents the ultimate support tool. Create and
manage a knowledge base with your company information, and securely share it when and where it's needed. Build a knowledge base
of articles that can include information on process, like how to reset your product to its defaults, or frequently asked questions.

More Information
See Salesforce Knowledge in Salesforce Help for more information.

LegacyLiveAgentRouting
Enables legacy Live Agent routing for Chat. Use Live Agent routing to chat in Salesforce Classic. Chats in Lightning Experience must be
routed using Omni-Channel.

LightningSalesConsole
Adds one Lighting Sales Console user license.

LightningScheduler
Enables Lightning Scheduler. Lightning Scheduler gives you tools to simplify appointment scheduling in Salesforce. Create a personalized
experience by scheduling customer appointments—in person, by phone, or by video—with the right person at the right place and
time.

More Information
See Manage Appointments with Lightning Scheduler in Salesforce Help for more information.

LightningServiceConsole
Assigns the Lightning Service Console License to your scratch org so you can use the Lightning Service Console and access features that
help manage cases faster.

More Information
See Lightning Service Console in Salesforce Help for more information.

LiveAgent
Enables Chat for Service Cloud. Use web-based chat to quickly connect customers to agents for real-time support.

LiveMessage
Enables Messaging for Service Cloud. Use Messaging to quickly support customers using apps such as SMS text messaging and Facebook
Messenger.

106

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=knowledge_whatis.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=ls_overview.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=console_lex_service_intro.htm&language=en_US

LongLayoutSectionTitles
Allows page layout section titles to be up to 80 characters.

More Information
To turn on this feature, contact Salesforce Customer Support.

LoyaltyAnalytics
Enables Analytics for Loyalty license. The Analytics for Loyalty app gives you actionable insights into your loyalty programs.

More Information
See Analytics for Loyalty in Salesforce Help for more information.

LoyaltyEngine
Enables Loyalty Management Promotion Setup license. Promotion setup allows loyalty program managers to create loyalty program
processes. Loyalty program processes help you decide how incoming and new Accrual and Redemption-type transactions are processed.

More Information
See Create Processes with Promotion Setup in Salesforce Help for more information.

LoyaltyManagementStarter
Enables the Loyalty Management - Starter license. Create loyalty programs and set up loyalty program-specific processes that allow you
to recognize, rewards, and retain customers.

More Information
See Loyalty Management in Salesforce Help for more information.

LoyaltyMaximumPartners:<value>
Increases the number of loyalty program partners that can be associated with a loyalty program in an org where the Loyalty Management
- Starter license is enabled. The default and maximum value is 1.

Supported Quantities
0–1, Multiplier: 1

LoyaltyMaximumPrograms:<value>
Increases the number of loyalty programs that can be created in an org where the Loyalty Management - Starter license is enabled. The
default and maximum value is 1.

107

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.analytics_loyalty_deploy_and_use.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.promotion_setup.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.loyaltyoverview.htm&language=en_US

Supported Quantities
0–1, Multiplier: 1

LoyaltyMaxOrderLinePerHour:<value>
Increases the number of order lines that can be cumulatively processed per hour by loyalty program processes. Indicate a value between
1–3,500,000.

Supported Quantities
1–3,500,000, Multiplier: 1

LoyaltyMaxProcExecPerHour:<value>
Increases the number of transaction journals that can be processed by loyalty program processes per hour. Indicate a value between
1–500,000.

Supported Quantities
1–500,000, Multiplier: 1

LoyaltyMaxTransactions:<value>
Increases the number of Transaction Journal records that can be processed. Indicate a value between 1–50,000,000.

Supported Quantities
1–50,000,000, Multiplier: 1

LoyaltyMaxTrxnJournals:<value>
Increases the number of Transaction Journal records that can be stored in an org that has the Loyalty Management - Start license enabled.

Supported Quantities
1–25,000,000, Multiplier: 1

More Information
See Transaction Journal Limits in Salesforce Help for more information.

Macros
Enables macros in your scratch org. After enabling macros, add the macro browser to the Lightning Console so you can configure
predefined instructions for commonly used actions and apply them to multiple posts at the same time.

More Information
See Set Up and Use Macros in Salesforce Help for more information.

108

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.transaction_journal_limit_starter.htm&language=en_US
https://help.salesforce.com/articleView?id=macros_def.htm&language=en_US

MarketingUser
Provides access to the Campaigns object. Without this setting, Campaigns are read-only.

MaxActiveDPEDefs:<value>
Increases the number of Data Processing Engine definitions that can be activated in the org. Indicate a value between 1–50.

Supported Quantities
1–50, Multiplier: 1

MaxApexCodeSize:<value>
Limits the non-test, unmanaged Apex code size (in MB). To use a value greater than the default value of 10, contact Salesforce Customer
Support.

MaxAudTypeCriterionPerAud
Limits the number of audience type criteria available per audience. The default value is 10.

MaxCustomLabels:<value>
Limits the number of custom labels (measured in thousands). Setting the limit to 10 enables the scratch org to have 10,000 custom
labels. Indicate a value between 1–15.

Supported Quantities
1–15, Multiplier: 1,000

MaxDatasetLinksPerDT:<value>
Increases the number of dataset links that can be associated with a decision table. Indicate a value between 1–3.

Supported Quantities
1–3, Multiplier: 1

MaxDataSourcesPerDPE:<value>
Increases the number of Source Object nodes a Data Processing Engine definition can contain. Indicate a value between 1–50.

Supported Quantities
1–50, Multiplier: 1

MaxDecisionTableAllowed:<value>
Increases the number of decision tables rules that can be created in the org. Indicate a value between 1–30.

109

Scratch Org FeaturesScratch Orgs

Supported Quantities
1–30, Multiplier: 1

MaxFavoritesAllowed:<value>
Increases the number of Favorites allowed. Favorites allow users to create a shortcut to a Salesforce Page. Users can view their Favorites
by clicking the Favorites list dropdown in the header. Indicate a value between 0–200.

Supported Quantities
0–200, Multiplier: 1

MaxFieldsPerNode:<value>
Increases the number of fields a node in a Data Processing Engine definition can contain. Indicate a value between 1–500.

Supported Quantities
1–500, Multiplier: 1

MaxInputColumnsPerDT:<value>
Increases the number of input fields a decision table can contain. Indicate a value between 1–10.

Supported Quantities
1–10, Multiplier: 1

MaxLoyaltyProcessRules:<value>
Increases the number of loyalty program process rules that can be created in the org. Indicate a value between 1–20.

Supported Quantities
1–20, Multiplier: 1

MaxNodesPerDPE:<value>
Increases the number of nodes that a Data Processing Engine definition can contain. Indicate a value between 1–500.

Supported Quantities
1–500, Multiplier: 1

MaxNoOfLexThemesAllowed:<value>
Increases the number of Themes allowed. Themes allow users to configure colors, fonts, images, sizes, and more. Access the list of
Themes in Setup, under Themes and Branding. Indicate a value between 0–300.

110

Scratch Org FeaturesScratch Orgs

Supported Quantities
0–300, Multiplier: 1

MaxOutputColumnsPerDT:<value>
Increases the number of output fields a decision table can contain. Indicate a value between 1–5.

Supported Quantities
1–5, Multiplier: 1

MaxSourceObjectPerDSL:<value>
Increases the number of source objects that can be selected in a dataset link of a decision table. Indicate a value between 1–5.

Supported Quantities
1–5, Multiplier: 1

MaxStreamingTopics:<value>
Increases the maximum number of delivered PushTopic event notifications within a 24-hour period, shared by all CometD clients. Indicate
a value between 40–100.

Supported Quantities
40–100, Multiplier: 1

MaxUserNavItemsAllowed:<value>
Increases the number of navigation items a user can add to the navigation bar. Indicate a value between 0–500.

Supported Quantities
0–500, Multiplier: 1

MaxUserStreamingChannels:<value>
Increases the maximum number of user-defined channels for generic streaming. Indicate a value between 20–1,000.

Supported Quantities
20–1,000, Multiplier: 1

MaxWritebacksPerDPE:<value>
Increases the number of Writeback Object nodes a Data Processing Engine definition can contain. Indicate a value between 1–50.

111

Scratch Org FeaturesScratch Orgs

Supported Quantities
1–10, Multiplier: 1

MedVisDescriptorLimit:<value>
Increases the number of sharing definitions allowed per record for sharing inheritance to be applied to an object. Indicate a value between
150–1,600.

Supported Quantities
150–1,600, Multiplier: 1

MinKeyRotationInterval
Sets the encryption key material rotation interval at once per 60 seconds. If this feature isn't specified, the rotation interval defaults to
once per 604,800 seconds (7 days) for Search Index key material, and once per 86,400 seconds (24 hours) for all other key material.

More Information
Requires enabling PlatformEncryption and some configuration using the Setup menu in the scratch org. See Which User Permissions
Does Shield Platform Encryption Require? and Generate a Tenant Secret with Salesforce in Salesforce Help.

MobileExtMaxFileSizeMB:<value>
Increases the file size (in megabytes) for Field Service Mobile extensions. Indicate a value between 1–2,000.

Supported Quantities
1–2,000, Multiplier: 1

MobileSecurity
Enables Enhanced Mobile Security. With Enhanced Mobile Security, you can control a range of policies to create a security solution
tailored to your org’s needs. You can limit user access based on operating system versions, app versions, and device and network security.
You can also specify the severity of a violation.

MultiLevelMasterDetail
Allows the creation a special type of parent-child relationship between one object, the child, or detail, and another object, the parent,
or master.

MutualAuthentication
Requires client certificates to verify inbound requests for mutual authentication.

MyTrailhead
Enables access to a myTrailhead enablement site in a scratch org.

112

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_def_file_config_values.htm#so_platformencryption
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_permissions.htm&language=en_US
https://help.salesforce.com/articleView?id=security_pe_ui_setup.htm&language=en_US

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["MyTrailhead"],
"settings": {

"trailheadSettings": {
"enableMyTrailheadPref": true
}

}
}

More Information
Salesforce Help: Enablement Sites (myTrailhead)

NonprofitCloudCaseManagementUser
Provides the permission set license required to use and configure the Salesforce.org Nonprofit Cloud Case Management managed
package. You can then install the package in the scratch org.

More Information
For installation and configuration steps, see Salesforce.org Nonprofit Cloud Case Management.

NumPlatformEvents:<value>
Increases the maximum number of platform event definitions that can be created. Indicate a value between 5–20.

Supported Quantities
5–20, Multiplier: 1

ObjectLinking
Create rules to quickly link channel interactions to objects such as contacts, leads, or person accounts for customers (Beta).

OrderManagement
Provides the Salesforce Order Management license. Order Management is your central hub for handling all aspects of the order lifecycle,
including order capture, fulfillment, shipping, payment processing, and servicing.

More Information
Available in Enterprise and Developer Edition scratch orgs.

If you want to configure Order Management to use any of these features, enable it in your scratch org:

• MultiCurrency

113

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.mth_intro.htm&language=en_US
https://powerofus.force.com/s/article/CM-Documentation

• PersonAccounts

• ProcessBuilder

• StateAndCountryPicklist

Requires configuration using the Setup menu in the scratch org. For installation and configuration steps, see Salesforce Help: Salesforce
Order Management.

Note: The implementation process includes turning on several Order and Order Management feature toggles in Setup. In a scratch
org, you can turn them on by including metadata settings in your scratch org definition file. For details about these settings, see
OrderSettings and OrderManagementSettings in the Metadata API Developer Guide.

OrderSaveLogicEnabled
Enables scratch org support for New Order Save Behavior. OrderSaveLogicEnabled supports only New Order Save Behavior. If your scratch
org needs both Old and New Order Save Behavior, use OrderSaveBehaviorBoth.

Scratch Org Definition File
To enable OrderSaveLogicEnabled, update your scratch org definitions file.

{
"features": ["OrderSaveLogicEnabled"],
"settings": {
"orderSettings": {
"enableOrders": true

}
}

}

OrderSaveBehaviorBoth
Enables scratch org support for both New Order Save Behavior and Old Order Save Behavior.

Scratch Org Definition File
To enable OrderSaveLogicEnabled, update your scratch org definitions file.

{
"features": ["OrderSaveBehaviorBoth"],
"settings": {
"orderSettings": {
"enableOrders": true

}
}

}

OutboundMessageHTTPSession
Enables using HTTP endpoint URLs in outbound message definitions that have the Send Session ID option selected.

114

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.om_order_management.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.om_order_management.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_ordersettings.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_ordermanagementsettings.htm

OutcomeManagement
Gives users access to Outcome Management features and objects in Salesforce and Experience Cloud.

More Information
See Outcome Management in Salesforce Help for more information. To enable Outcome Management, add these settings to your
scratch org definition file.

{
"features": ["OutcomeManagement"],
"settings": {
"IndustriesSettings": {
"enableOutcomes": true

}
}

}

PardotScFeaturesCampaignInfluence
Enables additional campaign influence models, first touch, last touch, and even distribution for Pardot users.

PersonAccounts
Enables person accounts in your scratch org.

More Information
Available in Enterprise and Developer Edition scratch orgs.

PipelineInspection
Enables Pipeline Inspection. Pipeline Inspection is a consolidated pipeline view with metrics, opportunities, and highlights of recent
changes.

More Information
Available in Enterprise Edition scratch orgs.

PlatformCache
Enables Platform Cache and allocates a 3 MB cache. The Lightning Platform Cache layer provides faster performance and better reliability
when caching Salesforce session and org data.

More Information
See Platform Cache in the Apex Developer Guide for more information.

115

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.outcome_management.htm&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_cache_namespace_overview.htm

PlatformConnect:<value>
Enables Salesforce Connect and allows your users to view, search, and modify data that's stored outside your Salesforce org. Indicate a
value from 1–5.

Supported Quantities
1–5, Multiplier: 1

PlatformEncryption
Shield Platform Encryption encrypts data at rest. You can manage key material and encrypt fields, files, and other data.

PlatformEventsPerDay:<value>
Increases the maximum number of delivered standard-volume platform event notifications within a 24-hour period, shared by all CometD
clients. Indicate a value between 10,000–50,000.

Supported Quantities
10,000–50,000, Multiplier: 1

ProcessBuilder
Enables Process Builder, a Salesforce Flow tool that helps you automate your business processes.

More Information
Requires configuration in the Setup menu of the scratch org.

See Process Builder in Salesforce Help for more information.

ProductsAndSchedules
Enables product schedules in your scratch org. Enabling this feature lets you create default product schedules on products. Users can
also create schedules for individual products on opportunities.

ProductCatalogManagementAddOn
Enables read-write access to Product Catalog Management features and objects.

More Information
Available in Developer and Enterprise scratch org editions. Provides 1 Product Catalog Management add-on license.

ProductCatalogManagementViewerAddOn
Enables read access to Product Catalog Management features and objects.

116

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=process_overview.htm&language=en_US

More Information
Available in Developer and Enterprise scratch org editions. Provides 1 Product Catalog Management Viewer add-on license.

ProductCatalogManagementPCAddOn
Enables read access to Product Catalog Management features and objects for Partner Community Users in scratch orgs.

More Information

• Available in Developer and Enterprise scratch org editions.

• Provides 1 Product Catalog Management add-on license.

• Requires a partner community user to be set up. The partner community user must be granted the Product Catalog Management
Partner Community add-on license.

ProgramManagement
Enables access to all Program Management and Case Management features and objects.

More Information
To enable ProgramManagement, add these settings to your scratch org definition file.

{
"orgName": "Sample Org" ,
"edition": "Enterprise",
"features": ["ProgramManagement"],
"settings": {
"IndustriesSettings": {
"enableBenefitManagementPreference": true,
"enableBenefitAndGoalSharingPref": true,
"enableCarePlansPreference": true

}
}

}

Alternatively, enable the settings in the org manually. See Enable Program Management in Salesforce Help.

ProviderFreePlatformCache
Provides 3 MB of free Platform Cache capacity for security-reviewed managed packages. This feature is made available through a capacity
type called Provider Free capacity and is automatically enabled in Developer Edition orgs. Allocate the Provider Free capacity to a Platform
Cache partition and add it to your managed package.

More Information
See Set Up a Platform Cache Partition with Provider Free Capacity in Salesforce Help for more information.

PublicSectorAccess
Enables access to all Public Sector features and objects.

117

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sfdo.PM_NP_Enable_Program_Management.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=data_platform_cache_setup_provider_capacity.htm&type=5&language=en_US

PublicSectorApplicationUsageCreditsAddOn
Enables additional usage of Public Sector applications based on their pricing.

PublicSectorSiteTemplate
Allows Public Sector users access to build an Experience Cloud site from the templates available.

RecordTypes
Enables Record Type functionality. Record Types let you offer different business processes, picklist values, and page layouts to different
users.

RefreshOnInvalidSession
Enables automatic refreshes of Lightning pages when the user's session is invalid. If, however, the page detects a new token, it tries to
set that token and continue without a refresh.

RevSubscriptionManagement
Enables Subscription Management. Subscription Management is an API-first, product-to-cash solution for B2B subscriptions and one-time
sales.

More Information
Available in Enterprise and Developer scratch orgs. To enable Subscription Management in your scratch org, add this setting in your
scratch org definition file.

"settings": {
...
"subscriptionManagementSettings": {
"enableSubscriptionManagement": true

},
...

}

For more information about Subscription Management, see
https://developer.salesforce.com/docs/revenue/subscription-management/overview.

S1ClientComponentCacheSize
Allows the org to have up to 5 pages of caching for Lightning Components.

SalesCloudEinstein
Enables Sales Cloud Einstein features and Salesforce Inbox. Sales Cloud Einstein brings AI to every step of the sales process.

More Information
Available in Enterprise Edition scratch orgs.

118

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/revenue/subscription-management/overview

See Sales Cloud Einstein in Salesforce Help for more information.

SalesforceContentUser
Enables access to Salesforce content features.

SalesforceFeedbackManagementStarter
Provides a license to use the Salesforce Feedback Management - Starter features.

More Information
Available in Enterprise and Developer edition scratch orgs. To use the Salesforce Feedback Management - Starter features, enable Surveys
and assign the Salesforce Advanced Features Starter user permission to the scratch org user. For additional information on how to enable
Surveys and configuration steps, see Enable Surveys and Configure Survey Settings and Assign User Permissions in Salesforce Help.

SalesforceIdentityForCommunities
Adds Salesforce Identity components, including login and self-registration, to Experience Builder. This feature is required for Aura
components.

SalesUser
Provides a license for Sales Cloud features.

SAML20SingleLogout
Enables usage of SAML 2.0 single logout.

SCIMProtocol
Enables access support for the SCIM protocol base API.

SecurityEventEnabled
Enables access to security events in Event Monitoring.

SentimentInsightsFeature
Provides the license required to enable and use Sentiment Insights in a scratch org. Use Sentiment Insights to analyze the sentiment of
your customers and get actionable insights to improve it.

More Information
To use this scratch org feature, the Dev Hub org requires the IESentimentAnalysis, AwsSentimentAnalysis, BYOAForSentiment, and
IESentimentAnalysisEnabled permissions. For information about Sentiment Insights, see Sentiment Insights in Salesforce Help.

119

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/articleView?id=einstein_sales.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.task_enable_surveys.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.concept_setup_sfm_profiles.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.sentiment_insights.htm&language=en_US

ServiceCatalog
Enables Employee Service Catalog so you can create a catalog of products and services for your employees. It can also turn your employees'
requests for these products and services into approved and documented orders.

More Information
To use this scratch org feature, the Dev Hub org requires the ServiceCatalog permission. To learn more, see Employee Service Catalog.

ServiceCloud
Assigns the Service Cloud license to your scratch org, so you can choose how your customers can reach you, such as by email, phone,
social media, online communities, chat, and text.

ServiceCloudVoicePartnerTelephony
Assigns the Service Cloud Voice with Partner Telephony add-on license to your scratch org, so you can set up a Service Cloud Voice
contact center that integrates with supported telephony providers. Indicate a value from 1–50.

Supported Quantities
1–50, Multiplier: 1

More Information
For setup and configuration steps, see Service Cloud Voice with Partner Telephony in Salesforce Help.

ServiceUser
Adds one Service Cloud User license, and allows access to Service Cloud features.

SessionIdInLogEnabled
Enables Apex debug logs to include session IDs. If disabled, session IDs are replaced with "SESSION_ID_REMOVED" in debug logs.

SFDOInsightsDataIntegrityUser
Provides a license to Salesforce.org Insights Platform Data Integrity managed package. You can then install the package in the scratch
org.

More Information
For installation and configuration steps, see the Salesforce.org Insights Platform Data Integrity help.

SharedActivities
Allow users to relate multiple contacts to tasks and events.

120

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.esc_get_started_with_employee_service_catalog.htm&language=en_US
https://help.salesforce.com/articleView?id=sf.voice_pt_setup.htm&language=en_US
https://powerofus.force.com/s/article/IP-Documentation

More Information
For additional installation and configuration steps, see Considerations for Enabling Shared Activities in Salesforce Help.

Sites
Enables Salesforce Sites, which allows you to create public websites and applications that are directly integrated with your Salesforce
org. Users aren’t required to log in with a username and password.

More Information
You can create sites and communities in a scratch org, but custom domains, such as www.example.com, aren't supported.

SocialCustomerService
Enables Social Customer Service, sets post defaults, and either activates the Starter Pack or signs into your Social Studio account.

StateAndCountryPicklist
Enables state and country/territory picklists. State and country/territory picklists let users select states and countries from predefined,
standardized lists, instead of entering state, country, and territory data into text fields.

StreamingAPI
Enables Streaming API.

More Information
Available in Enterprise and Developer Edition scratch orgs.

StreamingEventsPerDay:<value>
Increases the maximum number of delivered PushTopic event notifications within a 24-hour period, shared by all CometD clients (API
version 36.0 and earlier). Indicate a value between 10,000–50,000.

Supported Quantities
10,000–50,000, Multiplier: 1

SubPerStreamingChannel:<value>
Increases the maximum number of concurrent clients (subscribers) per generic streaming channel (API version 36.0 and earlier). Indicate
a value between 20–4,000.

Supported Quantities
20–4,000, Multiplier: 1

121

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.activities_shared_considerations.htm&type=5&language=en_US

SubPerStreamingTopic:<value>
Increases the maximum number of concurrent clients (subscribers) per PushTopic streaming channel (API version 36.0 and earlier).
Indicate a value between 20–4,000.

Supported Quantities
20–4,000, Multiplier: 1

SurveyAdvancedFeatures
Enables a license for the features available with the Salesforce Feedback Management - Growth license.

More Information
Available in Enterprise and Developer edition scratch orgs. To use the Salesforce Feedback Management - Growth features, enable
Surveys and assign the Salesforce Surveys Advanced Features user permission to the scratch org user. For additional information on how
to enable Surveys and configuration steps, see Enable Surveys and Configure Survey Settings and Assign User Permissions in Salesforce
Help.

SustainabilityCloud
Provides the permission set licenses and permission sets required to install and configure Sustainability Cloud. To enable or use CRM
Analytics and CRM Analytics templates, include the DevelopmentWave scratch org feature.

More Information
For installation and configuration steps, see Sustainability Cloud Legacy Documentation in the Set Up and Maintain Net Zero Cloud
guide in Salesforce Help.

SustainabilityApp
Provides the permission set licenses and permission sets required to configure Net Zero Cloud. To enable or use Tableau CRM and Tableau
CRM templates, include the DevelopmentWave scratch org feature.

Scratch Org Definition File
Add these options to your scratch org definition file:

{
"orgName": "net zero scratch org",
"edition": "Developer",
"features": ["SustainabilityApp"],
"settings": {
"industriesSettings":{
"enableSustainabilityCloud": true,
"enableSCCarbonAccounting" : true

}
}

}

122

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=sf.task_enable_surveys.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.concept_setup_sfm_profiles.htm&type=5&language=en_US
https://help.salesforce.com/apex/HTViewHelpDoc?id=sustainability_cloud_legacy_documentation.htm&language=en_US#sustainability_cloud_legacy_documentation

More Information
For configuration steps, see Configure Net Zero Cloud in the Set Up and Maintain Net Zero Cloud guide in Salesforce Help.

TCRMforSustainability
Enables all permissions required to manage the Net Zero Analytics app by enabling Tableau CRM. You can create and share the analytics
app for your users to bring your environmental accounting in line with your financial accounting.

More Information
For more information, see Deploy Net Zero Analytics in the Set Up and Maintain Net Zero Cloud guide in Salesforce Help.

TimelineConditionsLimit
Limits the number of timeline record display conditions per event type to 3.

More Information
See Provide Holistic Patient Care with Enhanced Timeline in Salesforce Help for more information.

TimelineEventLimit
Limits the number of event types displayed on a timeline to 5.

More Information
See Provide Holistic Patient Care with Enhanced Timeline in Salesforce Help for more information.

TimelineRecordTypeLimit
Limits the number of related object record types per event type to 3.

More Information
See Provide Holistic Patient Care with Enhanced Timeline in Salesforce Help for more information.

TimeSheetTemplateSettings
Time Sheet Templates let you configure settings to create time sheets automatically. For example, you can create a template that sets
start and end dates. Assign templates to user profiles so that time sheets are created for the right users.

More Information
For configuration steps, see Create Time Sheet Templates in Salesforce Help.

TransactionFinalizers
Enables you to implement and attach Apex Finalizers to Queueable Apex jobs.

123

Scratch Org FeaturesScratch Orgs

https://help.salesforce.com/s/articleView?id=netzero_admin.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.netzero_admin_analytics_deploy.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.hc_timeline.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.hc_timeline.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.hc_timeline.htm&language=en_US
https://help.salesforce.com/articleView?id=fs_create_timesheets.htm&type=5&language=en_US

More Information

Note: This functionality is currently in open pilot and subject to restrictions.

See the Transaction Finalizers (Pilot) in Apex Developer Guide for more information.

WaveMaxCurrency
Increases the maximum number of supported currencies for CRM Analytics. Indicate a value between 1–5.

WavePlatform
Enables the Wave Platform license.

Workflow
Enables Workflow so you can automate standard internal procedures and processes.

More Information
Requires configuration in the Setup menu of the scratch org.

WorkflowFlowActionFeature
Allows you to launch a flow from a workflow action.

More Information
This setting is supported only if you enabled the pilot program in your org for flow trigger workflow actions. If you enabled the pilot,
you can continue to create and edit flow trigger workflow actions.

If you didn't enable the pilot, use the Flows action in the ProcessBuilder scratch org feature instead.

WorkplaceCommandCenterUser
Enables access to Workplace Command Center features including access to objects such as Employee, Crisis, and EmployeeCrisisAssessment.

More Information
For additional installation and configuration steps, see Set Up Your Work.com Development Org in the Workplace Command Center for
Work.com Developer Guide.

WorkThanksPref
Enables the give thanks feature in Chatter.

124

Scratch Org FeaturesScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_transaction_finalizers.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.workdotcom_dev_guide.meta/workdotcom_dev_guide/wdc_cc_setup_dev_org.htm

Scratch Org Settings
Scratch org settings are the format for defining org preferences in the scratch org definition. Because you can use all Metadata API
settings, they’re the most comprehensive way to configure a scratch org. If a setting is supported in Metadata API, it’s supported in
scratch orgs. Settings provide you with fine-grained control because you can define values for all fields for a setting, rather than just
enabling or disabling it.

For information on Metadata API settings and their supported fields, see Settings in Metadata API Developer Guide.

Important: Although the Settings are upper camel case in the Metadata API Developer Guide, be sure to indicate them as lower
camel case in the scratch org definition.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

},
"lightningExperienceSettings": {

"enableS1DesktopEnabled": true
},
"mobileSettings": {

"enableS1EncryptedStoragePref2": true
},
"omniChannelSettings": {

"enableOmniChannel": true
},
"caseSettings": {

"systemUserEmail": "support@acme.com"
}

}
}

Here’s an example of how to configure SecuritySettings in your scratch org. In this case, to define session timeout, you nest the field
values.

{
"orgName": "Acme",
"edition": "Enterprise",
"features": [],
"settings": {

"mobileSettings": {
"enableS1EncryptedStoragePref2": true

},
"securitySettings": {

"sessionSettings":{
"sessionTimeout": "TwelveHours"

}
}

}
}

125

Scratch Org SettingsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_settings.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_securitysettings.htm

This example shows how to use NameSettings to enable middle names and suffixes in your org for these person objects: Contact, Lead,
Person Account, and User.

{
"orgName": "Acme",
"edition": "Enterprise",
"settings": {

"mobileSettings": {
"enableS1EncryptedStoragePref2": true

},
"nameSettings": {

"enableMiddleName": true,
"enableNameSuffix": true

}
}

}

Create a Scratch Org Based on an Org Shape

We know it’s not easy to build a scratch org definition that mirrors the features and settings in your production org. With Org Shape for
Scratch Orgs, you can leave building the scratch org definition to us. After you capture the org’s shape, you can spin up scratch orgs
based on it.

Available in: Developer, Group, Professional, Unlimited, and Enterprise editions. The scratch org created from the org shape is the same
edition as the source org.

Not available in: Scratch orgs and sandboxes

What’s Included in Org Shape?
Features, Metadata API settings, edition, limits, and licenses determine what we refer to as an org’s shape. For further clarification, org
shape includes:

• Metadata API settings with boolean fields.

• Licenses associated with installed packages, but not the packages themselves. To use the associated package, install it in the scratch
org created from the org shape.

Note: Some features aren’t captured when the org shape is created. However, you can add the features manually to the scratch
org definition file. See Troubleshoot Org Shape for details.

What’s Not Included in Org Shape?
• Metadata API settings with integer or string fields. However, you can manually add non-Boolean settings or other settings

not included in the source org to your scratch org definition. See Scratch Org Definition for Org Shape for examples.

• Metadata types

• Data

126

Create a Scratch Org Based on an Org ShapeScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_namesettings.htm

Org Shapes Are Specific to a Release
Scratch org shapes are associated with a specific Salesforce release. Be sure to recreate the org shape after the source org is upgraded
to the new Salesforce release. During a Salesforce major release transition, your Dev Hub org and source org can be on different release
versions. See Scratch Org Definition for Org Shape for options during the transition period.

Enable Org Shape for Scratch Orgs

Enable Org Shape for Scratch Orgs in the org whose shape you want to capture (source org).

Org Shape Permissions

A Salesforce admin for the Dev Hub org must assign permissions to users who plan to create org shapes, or create scratch orgs based
on an org shape. If you already have a permission set for Salesforce DX users, you can update it to include access.

Create and Manage Org Shapes

Create an org shape to mimic the baseline setup (features, limits, edition, and Metadata API settings) of a source org without the
extraneous data and metadata. If the features, settings, or licenses of that org change, you can capture those updates by recreating
the org shape. You can have only one active org shape at a time.

Scratch Org Definition for Org Shape

During org shape creation, we capture the features, settings, edition, licenses, and limits of the specified source org. This way, you
don’t have to manually include these items in the scratch org definition file. You can create a scratch org based solely on the source
org shape. Or you can add more features and settings in the scratch org definition file to include functionality not present in the
source org.

Troubleshoot Org Shape

Here are some issues you can encounter when using Org Shape for Scratch Orgs.

SEE ALSO:

Metadata API Developer Guide: Settings

Enable Org Shape for Scratch Orgs
Enable Org Shape for Scratch Orgs in the org whose shape you want to capture (source org).

Available in: Developer, Group, Professional, Unlimited, and Enterprise editions

Not available in: Scratch orgs and sandboxes

Be sure to:

• Enable Org Shape for Scratch Orgs in both the source org and the Dev Hub org, if you want to capture the shape of an org that isn’t
also your Dev Hub org.

• When entering the org ID, use only the first 15 characters rather than the full 18-character org ID.

You can find the org ID in Setup > Company Information.

1. Enable Org Shape for Scratch Orgs in the Dev Hub org that you use to create scratch orgs. Contact a Salesforce admin if you require
assistance.

a. From Setup, enter Scratch Orgs in the Quick Find box, then select Scratch Orgs.

b. Click the toggle for Enable Org Shape for Scratch Orgs.

c. In the text box, enter the 15-character org ID for the Dev Hub, then click Save.

2. (Optional) If the source org is different from the Dev Hub org, enable Org Shape for Scratch Orgs in the source org.

127

Enable Org Shape for Scratch OrgsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_settings.htm

a. Log in to the source org.

b. From Setup, enter Scratch Orgs in the Quick Find box, then select Scratch Orgs.

c. Click the toggle for Enable Org Shape for Scratch Orgs.

d. Enter the 15-character Dev Hub org ID that you’re using to create scratch orgs.

You can specify up to 50 Dev Hub org IDs to address these common use cases:

• You have multiple production orgs but your development team has access to only one. For the customization they're building, they
require the shape of another production org.

• Your developers use their own Dev Hub orgs and don't have access to the production org. However, they want to create scratch
orgs based on the shape of the production org.

• You're an ISV who uses your production org to create scratch orgs. You want to capture the shape of your first-generation packaging
org so you can build second-generation packages.

Org Shape Permissions
A Salesforce admin for the Dev Hub org must assign permissions to users who plan to create org shapes, or create scratch orgs based
on an org shape. If you already have a permission set for Salesforce DX users, you can update it to include access.

PermissionsAccess

Object Settings > Shape Representation > Create, EditCreate an org shape

Object Settings > Shape Representation > DeleteDelete an org shape

No additional permissions are required besides the ones for creating
scratch orgs.

Use an org shape to create a scratch org

You don’t require the “Modify All” permission to delete shapes created by others because there can be only one active shape in the org
at a time.

Supported Licenses
In addition to providing users with appropriate permissions, be sure to assign the Salesforce license to Org Shape users. Other user
licenses aren’t supported at this time.

SEE ALSO:

Add Salesforce DX Users

SOAP API Developer Guide: ShapeRepresentation

Create and Manage Org Shapes
Create an org shape to mimic the baseline setup (features, limits, edition, and Metadata API settings) of a source org without the
extraneous data and metadata. If the features, settings, or licenses of that org change, you can capture those updates by recreating the
org shape. You can have only one active org shape at a time.

An org shape captures Metadata API settings, not all metadata types. For example, customizations that appear in the org, such as
Lightning Experience Themes, aren’t included as part of org shape. See Settings in the Metadata API Guide for the complete list.

128

Org Shape PermissionsScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.api.meta/api/sforce_api_objects_shaperepresentation.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_settings.htm

An org shape includes org preference and permissions. It doesn’t include data entries such as AddressSettings.

Important: Scratch org shapes are associated with a specific Salesforce release. Be sure to recreate the org shape after the source
org is upgraded to the new Salesforce release.

1. Authorize both your Dev Hub org and the source org. Run this command for each org.

sf auth web login --alias

2. Create the org shape for the source org. This command kicks off an asynchronous process to create the org shape.

sf org create shape --target-org <source org username/alias>
Successfully created org shape for 3SRB0000000TXbnOCG.

3. Check the status of the shape:create command.

sf org shape list

=== Org Shapes
ALIAS USERNAME ORG ID SHAPE STATUS CREATED BY CREATED DATE
────── ──────── ────────────────── ──────────── ────────── ─────────────
SrcOrg me@my.org 00DB1230000Ifx5MAC InProgress me@my.org 2020-08-06

You can use the org shape after the status is Active:

=== Org Shapes
ALIAS USERNAME ORG ID SHAPE STATUS CREATED BY CREATED DATE
────── ───────── ────────────────── ──────────── ──────────── ────────────
SrcOrg me@my.org 00DB1230000Ifx5MAC Active me@my.org 2020-08-06

If you run the sf org create shape command again for this org, the previous shape is marked inactive and replaced by a new
active shape.

If you don’t want to create scratch orgs based on this shape, you can delete the org shape. To delete an org shape:

sf org delete shape --target-org <username/alias>

Scratch Org Definition for Org Shape
During org shape creation, we capture the features, settings, edition, licenses, and limits of the specified source org. This way, you don’t
have to manually include these items in the scratch org definition file. You can create a scratch org based solely on the source org shape.
Or you can add more features and settings in the scratch org definition file to include functionality not present in the source org.

Important: In the scratch org definition, indicate the 15-character sourceOrg instead of edition. The sourceOrg is the
org ID for the org whose shape you created. Use only the first 15 characters rather than the full 18-character org ID.

Simple Scratch Org Definition File
If your Dev Hub org, source org, and org shape are all on the same Salesforce version, you can use the simple scratch org definition.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5"

}

129

Scratch Org Definition for Org ShapeScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_addresssettings.htm

Scratch Org Definition File during Salesforce Release Transitions
During the Salesforce major release transition, your Dev Hub org and source org can be on different versions. If your Dev Hub org is on
a different version than your source org, add the release option to your scratch org definition file to create scratch orgs using the
org shape.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5",
"release": "previous"

}

Release Option to Use in
Scratch Org Definition File

Supported Scratch Org
Version

Dev Hub VersionSource Org/Org Shape
Version

"release": "previous"Current version onlyPreviewCurrent

"release": "preview"Preview version onlyCurrentPreview

Scratch Org Definition File for DevOps Center
If you create a scratch org based on an org shape with DevOps Center enabled, we still require that you add the DevOps Center feature
and setting to the scratch org definition. We require that customers explicitly enable it for legal reasons as part of the DevOps Center
terms and conditions.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5",
"features": ["DevOpsCenter"],
"settings": {

"devHubSettings": {
"enableDevOpsCenterGA": true
}

}
}

Scratch Org Definition File with Other Features and Settings
To add features not captured by org shape, or to test features that your source org doesn't have, you can add more scratch org features
and Metadata API settings. Settings refer to the Settings metadata type, not all metadata types.

{
"orgName": "Acme",
"sourceOrg": "00DB1230000Ifx5",
"features": ["Communities", "ServiceCloud", "Chatbot"],
"settings": {

"communitiesSettings": {
"enableNetworksEnabled": true

},
"mobileSettings": {

"enableS1EncryptedStoragePref2": true
},
"omniChannelSettings": {

130

Scratch Org Definition for Org ShapeScratch Orgs

"enableOmniChannel": true
},
"caseSettings": {

"systemUserEmail": "support@acme.com"
}

}
}

Next: Create a scratch org using the org shape scratch org definition file.

SEE ALSO:

Metadata API Developer Guide: Settings

Troubleshoot Org Shape
Here are some issues you can encounter when using Org Shape for Scratch Orgs.

Some Features Not Captured by Org Shape
Description: Some features and settings aren’t enabled in the org shape, in many cases by design due to security or legal reasons.

• DevOpsCenter

• MultiCurrency

• PersonAccounts

Workaround: Add them to the scratch org definition.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5",
"features": ["MultiCurrency", "DevOpsCenter"],
"settings":
{
"currencySettings":

"enableMultiCurrency": true
}
"devHubSettings": {

"enableDevOpsCenterGA": true
}

}

Some Field Service Features Aren't Enabled in Org Shape
Description: Even when the Field Service Enhanced Scheduling and Optimization, and Field Service Integration features are enabled
in the source org in which the org shape is created, these features aren’t enabled when creating a scratch org based on the org shape.

Workaround: Manually add the missing Field Service Metadata API settings to the scratch org definition depending on which features
are enabled in the source org.

131

Troubleshoot Org ShapeScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_settings.htm

Scenario 1: If the org shape included both the Field Service Enhanced Scheduling and Optimization, and Field Service Integration features,
manually add the Field Service Enhanced Scheduling and Optimization Metadata API setting, o2EngineEnabled, in the scratch
org definition file, which enables both features.

"settings":
{
"fieldServiceSettings":
{
"fieldServiceOrgPref": true,
"o2EngineEnabled": true

}
}

Scenario 2: If the org shape included only the Field Service Integration feature, manually add the Field Service Enhanced Scheduling and
Optimization Metadata API setting optimizationServiceAccess, to the scratch org definition file.

"settings":
{
"fieldServiceSettings":
{
"fieldServiceOrgPref": true,

"optimizationServiceAccess": true
}

}

DevOps Center Isn’t Enabled in a Scratch Org Based on an Org Shape
Description: Although DevOps Center is enabled in the source org, the scratch org created from the source org’s shape doesn’t have
DevOps Center enabled. The DevOps Center org preference is purposely toggled off. We require that customers explicitly enable it by
indicating the feature and setting in the scratch org definition file for legal reasons as part of the DevOps Center terms and conditions.

Workaround: Add the DevOps Center feature and setting to the scratch org definition file. See Scratch Org Definition for Org Shape for
details.

ERROR running force:org:shape:list
Description: A trial org from which you created the org shape has expired. You could see either of these errors:

ERROR running org list shape: Error authenticating with the refresh token due to: inactive
user
ERROR running org list shape: Error authenticating with the refresh token due to: expired
access/refresh token

Workaround:

• Use sf org logout to log out and remove the expired org.

• Run sf org list shape again.

Can't create a Digital Experience Cloud Site Using Org Shape
Description: When you try to create a scratch org from an org shape that contains an Experience Cloud Site, you get an error.

Required fields are missing: [Welcome Email Template, Change Password Email Template, Lost
Password Template]

132

Troubleshoot Org ShapeScratch Orgs

Workaround: None.

Error While Creating Scratch Org Using a Shape
Description: You see this error when creating a scratch org using a shape.

ERROR running org create scratch: A fatal signup error occurred. Please try again.
If you still see this error, contact Salesforce Support for assistance.

Workaround: Generate a new shape using the org create shape command, then try again.

Shift Status Picklists Aren’t Populated When Using a Shape With Field Service
Description: When you create a scratch org from a shape with Field Service enabled, the Status field picklist for Shifts is empty.

Workaround: Use an org shape with field service disabled, then enable field service in the scratch org definition file settings.

{
"orgName": "Acme",
"sourceOrg": "00DB1230000Ifx5",
"settings": {

"fieldServiceSettings": {
"fieldServiceOrgPref": true

}
}
}

Org Shape Feature Accepts Only 15-Character Org IDs
Description: You can use only 15-character org IDs when enabling Org Shape for Scratch Orgs and specifying the source org in the
scratch org definition file. Org IDs are usually 18 characters long, which is what the org list command displays.

Workaround: Use only the first 15 characters of a standard 18-character org ID when working with the Org Shape feature.

Create Scratch Orgs

Easily spin up a scratch org and open it directly from the command line.

Before you create a scratch org:

• Set up your Salesforce DX project

• Authorize the Dev Hub org

• Create the scratch org definition file (build your own or use an org shape)

You can create scratch orgs for different functions, such as for feature development, for development of packages that contain a
namespace, or for user acceptance testing.

Tip: Delete any unneeded or malfunctioning scratch orgs in the Dev Hub org or via the command line so that they don’t count
against your active scratch org allocations.

Indicate the path to the scratch definition file relative to your current directory. For sample repos and new projects, this file is located in
the config directory.

133

Create Scratch OrgsScratch Orgs

Ways to Create Scratch Orgs
Create a scratch org for development using a scratch org definition file, give the scratch org an alias, and indicate that this scratch org
is the default. Use the --target-dev-hub flag to specify your Dev Hub org’s username or alias; if you don’t specify this flag, the
command uses your default Dev Hub.

sf org create scratch --definition-file config/project-scratch-def.json --alias MyScratchOrg
--set-default --target-dev-hub MyHub

You can override many of the options in the user definition file by specifying the corresponding flag at the command line when you run
org create scratch. This technique allows multiple users or continuous integration jobs to share a base definition file and then
customize options when they run the command. This example overrides the adminEmail and edition options.

sf org create scratch --definition-file config/project-scratch-def.json --admin-email
me@email.com --edition developer

You’re not required to specify a definition file when you create a scratch org, as long as you specify the required flag --edition.

sf org create scratch --edition developer

This example creates a scratch org from an org shape with the specified ID.

sf org create scratch --source-org 00DB1230000Ifx5

Create a scratch org for user acceptance testing or to test installations of packages. In this case, you don’t want to create a scratch org
with a namespace. You can use this command to override the namespace value in the scratch org definition file. This example also
specifies the scratch org’s duration, which indicates when the scratch org expires (in 1-30 days). The default duration is 7 days.

sf org create scratch --definition-file config/project-scratch-def.json --no-namespace
--duration-days 30

Specify the Salesforce release for the scratch org. During the Salesforce release transition, you can specify the release (preview or previous)
when creating a scratch org. See Select the Salesforce Release for a Scratch Org for details.

sf org create scratch --edition developer --release preview

Request a scratch org, but don’t wait for it complete, by specifying the --async flag.

sf org create scratch --edition developer --async

The command displays a job ID that you pass to the org resume scratch command. Use this command to also resume a scratch
org creation that times out.

sf org resume scratch --job-id 2SRB0000CSqdJOAT

Create a scratch org with source tracking disabled.

sf org create scratch --definition-file config/project-scratch-def.json --no-track-source

If Scratch Org Creation Is Successful
While executing, the org create scratch command displays running information about the background processes, such as
sending requests, deploying org settings, and so on. When the command completes, it displays two important pieces of information:
the org ID and the username.

Creating Scratch Org...
RequestId: 2SRB000000CSqdEOAT (https://cbdocorg.my.salesforce.com/2SRB000000CSqdEOAT)

134

Create Scratch OrgsScratch Orgs

OrgId: 00D8I000000PhAk
Username: test-st9thgoyyyq3@example.com
Prepare Request
Send Request
Wait For Org
Available
Authenticate
Deploy Settings

Done

Your scratch org is ready.

You can now open the org.

sf org open --target-org test-st9thgoyyyq3@example.com

If you used the --alias flag to set an alias, you can use that value for --target-org.

sf org open --target-org MyScratchOrg

Troubleshooting Tips
If the create command runs into an error, it’s not always clear if the scratch org was created. Issue this command on your Dev Hub org
to see if it returns the scratch org ID, which confirms the existence of a scratch org created today and owned by you:

sf data query --query "SELECT ID, Name, Status FROM ScratchOrgInfo WHERE CreatedBy.Name =
'<your name>' AND CreatedDate = TODAY" --target-org <Dev Hub org>

Use this information to determine if the creation actually worked. For example, let’s say your name is Jane Doe, and you created an alias
for your Dev Hub org called DevHub:

sf data query --query "SELECT ID, Name, Status FROM ScratchOrgInfo WHERE CreatedBy.Name =
'Jane Doe' AND CreatedDate = TODAY" --target-org DevHub

SEE ALSO:

Project Setup

Authorization

Build Your Own Scratch Org Definition File

Deploy Source From Your Project to the Scratch Org

Scratch Org Snapshots (Beta)

Capture the state of a scratch org’s configuration so that you can use it to create scratch org replicas. A snapshot is a point-in-time copy
of a scratch org that includes installed packages, features, limits, licenses, metadata, and data.

Note: This feature is a Beta Service. Customers may opt to try such Beta Service in its sole discretion. Any use of the Beta Service
is subject to the applicable Beta Services Terms provided at Agreements and Terms.

Configuring a scratch org with a project’s dependencies can be a manual and time-consuming process. It can require pushing dependent
metadata to a scratch org, seeding it with sample data, installing a package or two, and then performing manual tasks directly in the

135

Scratch Org Snapshots (Beta)Scratch Orgs

https://www.salesforce.com/company/legal/agreements/

scratch org. And then, poof, the scratch org expires, and you have to start all over again. With scratch org snapshots, you can quickly
replicate scratch orgs with the required project dependencies.

How Snapshots Fit in the Development Lifecycle
Because a snapshot is a point-in-time copy of your scratch org, it’s static. To update your snapshot, delete it and create a new snapshot.

You can create a snapshot from only a scratch org and, conversely, you can create only scratch orgs from a snapshot. Snapshots have
the same 200-MB data storage limit as scratch orgs. A snapshot isn’t meant to replace source-driven development or a version control
system. You continue to follow development best practices by externalizing and modularizing your project source.

Snapshots and scratch orgs don’t replace sandboxes for user acceptance testing. A snapshot is intended to contain the static dependencies
of a project, and not the entire happy soup of your production org.

Snapshot Allocations and Limits
Snapshots are associated with a Dev Hub org. Therefore, you must use the same Dev Hub org when you create the scratch org from the
snapshot.

• You can create up to 5 snapshots per Dev Hub org daily, with a maximum of 5 active snapshots.

• Snapshots expire after 30 days.

Get Started with Scratch Org Snapshots (Beta)

Install the required Salesforce DX tools, then enable Dev Hub and Scratch Org Snapshots in an org, usually your production org.

Salesforce CLI Snapshot Commands (Beta)

You must use Salesforce CLI commands to create and manage your scratch org snapshots.

Create a Scratch Org Snapshot (Beta)

You can create a snapshot if the source scratch org wasn’t created using a snapshot or with a namespace. You can create up to 5
snapshots per Dev Hub daily, with a maximum of 5 active snapshots.

Create a Snapshot for Use with Namespaced Scratch Orgs (Beta)

You can use a namespace when creating a scratch org from a snapshot. That way, you can deploy namespaced metadata to the
scratch org. However, you can’t use a namespaced scratch org to create a snapshot. Snapshots are intended to include only dependent
packages, metadata, and test data.

Create a Scratch Org Based on a Snapshot (Beta)

The snapshot must belong to the Dev Hub that you’re using to create the scratch org. Create a scratch org definition file that references
the snapshot. We recommend creating a definition file specifically for this purpose. Changing or deleting a scratch org has no effect
on a snapshot.

Manage and Maintain Your Snapshots (Beta)

You can check the status of snapshot creation, list all snapshots, and delete a snapshot.

SEE ALSO:

Trailblazer Community: Scratch Org Snapshots

Get Started with Scratch Org Snapshots (Beta)
Install the required Salesforce DX tools, then enable Dev Hub and Scratch Org Snapshots in an org, usually your production org.

136

Get Started with Scratch Org Snapshots (Beta)Scratch Orgs

https://trailhead.salesforce.com/trailblazer-community/groups/0F93A00000020d5SAA

• Install Salesforce CLI.

• Enable Dev Hub in your production org.

• Authorize your Dev Hub org. The Dev Hub org is the org you use to create and manage scratch orgs.

• Enable Scratch Org Snapshots in the Dev Hub org.

• Provide users with permissions to create snapshots.

Enable Scratch Org Snapshots in the Dev Hub Org (Beta)

A snapshot must belong to the Dev Hub org that you’re using to create the scratch orgs.

Assign Scratch Org Snapshots User Permissions and Licenses (Beta)

For non-admin users, assign the appropriate Salesforce license and create a permission set to provide access to snapshot objects.
Dev Hub (production org) admins can create snapshots by default.

Enable Scratch Org Snapshots in the Dev Hub Org (Beta)

EDITIONS

Available in: Developer,
Enterprise, Group,
Professional, and Unlimited
editions

Not available in: Scratch
orgs and sandboxes

A snapshot must belong to the Dev Hub org that you’re using to create the scratch orgs.

1. Log into your Dev Hub org as the admin user.

2. From Setup, enter Scratch Orgs in the Quick Find box, then select Scratch Orgs.

3. Click to enable Enable Scratch Org Snapshots.

Assign Scratch Org Snapshots User Permissions and Licenses
(Beta)
For non-admin users, assign the appropriate Salesforce license and create a permission set to provide
access to snapshot objects. Dev Hub (production org) admins can create snapshots by default.

Important: Scratch Org Snapshots can’t be used with the Salesforce Limited Access license. Instead, assign users a Salesforce or
Salesforce Platform license.

1. Log in to your Dev Hub org as the admin user.

2. In Setup, create a permission set.

3. From Object Settings, select Org Snapshots.

4. Under Object Permissions, click Edit, then select Read, Create, and Delete.

a. (Optional) Select View All to allow users to see snapshots that other users create.

b. (Optional) Select Modify All to allow users to delete snapshots that other users create.

c. Save your changes.

5. Click Manage Assignments, then Add Assignments.

6. Select the users, click Assign, then Done.

Salesforce CLI Snapshot Commands (Beta)
You must use Salesforce CLI commands to create and manage your scratch org snapshots.

org create snapshot
Create a snapshot of a scratch org.

137

Salesforce CLI Snapshot Commands (Beta)Scratch Orgs

https://developer.salesforce.com/tools/salesforcecli
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth.htm

org delete snapshot
Delete a scratch org snapshot.

org get snapshot
Get details about a scratch org snapshot.

org list snapshot
List scratch org snapshots that belong to the specified Dev Hub org.

Get Help in the Terminal for Command Syntax
The --help and -h flags enable you to get varying levels of help (comprehensive or abbreviated) right in the command window:

Example:

sf org create snapshot --help

Create a Scratch Org Snapshot (Beta)
You can create a snapshot if the source scratch org wasn’t created using a snapshot or with a namespace. You can create up to 5 snapshots
per Dev Hub daily, with a maximum of 5 active snapshots.

Before you begin:

• Enable Dev Hub in your production org, or another org you use to create scratch orgs.

• Enable Scratch Org Snapshots in the Dev Hub org.

A snapshot captures the state of a scratch org at a point in time. To update your snapshot, delete it and create a new snapshot. Unlike
an org shape, a snapshot includes installed packages, metadata, and data. The time to create a snapshot depends on the size of the
source scratch org. To speed up snapshot creation time, include only what’s absolutely necessary for your project.

Command syntax:

sf org create snapshot --name <name> --source-org <ID or alias of scratch org> \
--target-dev-hub <username or alias> --description <text>

A snapshot name can have a maximum length of 15 characters. It can contain only alphanumeric characters (no special characters or
spaces, even if the name is surrounded by quotation marks during creation).

Example:

sf org create snapshot --name dhsnapshot --source-org dreamhouse-scratch \
--target-dev-hub my-dev-hub --description "Dreamhouse app"

Your request is initially InProgress:

Name Value
────────────────── ────────────────────
Id 0Oo1Q0000004C93SXX
Snapshot Name dhsnapshot
Description Dreamhouse app
Status InProgress
Source Org 00D050000004ipAEXX
Created Date 09/22/2023, 02:07 PM
Last Modified Date 09/22/2023, 02:07 PM
Expiration Date

138

Create a Scratch Org Snapshot (Beta)Scratch Orgs

Last Cloned Date
Last Cloned By Id

Create a Snapshot for Use with Namespaced Scratch Orgs (Beta)
You can use a namespace when creating a scratch org from a snapshot. That way, you can deploy namespaced metadata to the scratch
org. However, you can’t use a namespaced scratch org to create a snapshot. Snapshots are intended to include only dependent packages,
metadata, and test data.

1. Create and register the namespace in the Dev Hub org and add it to the sfdx-project.json file.

2. When you create the scratch org that you plan to use as the source of the snapshot, be sure to indicate the --no-namespace
flag.

3. Create the scratch org snapshot.

4. Create a scratch org based on the snapshot.

SEE ALSO:

Link a Namespace to a Dev Hub Org

Create a Scratch Org Based on a Snapshot (Beta)
The snapshot must belong to the Dev Hub that you’re using to create the scratch org. Create a scratch org definition file that references
the snapshot. We recommend creating a definition file specifically for this purpose. Changing or deleting a scratch org has no effect on
a snapshot.

Create the Scratch Org Definition File
The scratch org definition is the blueprint for your scratch org. It’s likely that your snapshot includes all the required features and settings
to configure the scratch orgs created from it.

Using our Dreamhouse scratch org as an example, let’s create a scratch org definition file called dhsnapshot-scratch-def.json
that contains only two entries: orgName and snapshot, which is the name you gave the snapshot when you created it.

Important: Be sure you use the snapshot option instead of edition in the scratch org definition file.

{
"orgName": "Salesforce",
"snapshot": "dhsnapshot"

}

In beta, you can’t specify features, settings, and org preferences in your snapshot scratch org definition.

Create the Scratch Org Based On Your Snapshot
It can take Salesforce a little longer to create a scratch org from a snapshot, so we suggest you increase the --wait value so the
command doesn’t time out. Remember to set the --target-dev-hub flag to the same Dev Hub org associated with the snapshot.

For example:

sf org create scratch --definition-file config/dhsnapshot-scratch-def.json \
--alias dh-scratch-ci --wait 10 --target-dev-hub my-dev-hub

139

Create a Snapshot for Use with Namespaced Scratch Orgs
(Beta)

Scratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm

Success! Development and testing with scratch orgs just got a whole lot easier.

Snapshot Error Codes
See Scratch Org Error Codes for details.

Manage and Maintain Your Snapshots (Beta)
You can check the status of snapshot creation, list all snapshots, and delete a snapshot.

Check the Status of a Snapshot Creation
Creating a snapshot can take a while. Use the snapshot name or ID to check its creation status.

sf org get snapshot --snapshot <name or ID> --target-dev-hub <username or alias>

For example:

sf org get snapshot --snapshot dhsnapshot --target-dev-hub my-dev-hub

After the status changes to Active, you can use the snapshot to create scratch orgs.

Name Value
────────────────── ────────────────────
Id 0Oo1Q0000004C93SXX
Snapshot Name dhsnapshot
Description Dreamhouse app
Status Active
Source Org 00D050000004ipAEXX
Created Date 09/22/2023, 02:07 PM
Last Modified Date 09/22/2023, 02:14 PM
Expiration Date 2024-09-21
Last Cloned Date
Last Cloned By Id

List All Scratch Org Snapshots
You can view all the snapshots in a Dev Hub org that you have access to. If you’re an admin, you can see all snapshots associated with
the Dev Hub org. If you’re a user, you can see only your snapshots, unless a Dev Hub admin gives you View All permissions.

sf org list snapshot --target-dev-hub <username or alias>

Delete a Scratch Org Snapshot
If you don’t need a snapshot anymore or run out of active snapshots, you can delete a snapshot. Dev Hub admins can delete any snapshot,
while users can delete only their snapshots unless a Dev Hub admin gives the user Modify All permissions.

sf org delete snapshot --snapshot dhsnapshot --target-dev-hub <username or alias>

140

Manage and Maintain Your Snapshots (Beta)Scratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs_error_codes.htm

Select the Salesforce Release for a Scratch Org

During the Salesforce release transition, you can specify the release (preview or previous) when creating a scratch org.

What Is Salesforce Preview?
During every major Salesforce release, you can get early access to the upcoming release in your scratch orgs and sandboxes to test new
customizations and features before your production org is upgraded. This window is called the Salesforce Preview, and scratch orgs
created on the upcoming release are called preview scratch orgs.

Normally, you create scratch orgs that are the same version as the Dev Hub. However, during the major Salesforce release transition that
happens three times a year, you can select the Salesforce release version Preview or Previous, based on the version of your Dev
Hub.

To try out new features in an upcoming release, you no longer have to create a trial Dev Hub on the upcoming version to create preview
scratch orgs. You can use your existing Dev Hub that includes your existing scratch org active and daily limits.

For example, you can select a version over the next three releases during these release transition dates. Preview start date is when
sandbox instances are upgraded. Preview end date is when all instances are on the GA release.

Preview End DatePreview Start DateRelease Version

February 10, 2024January 7, 2024Spring ’24

June 15, 2024May 12, 2024Summer ’24

October 12, 2024September 8, 2024Winter ’25

Because previous and preview are relative terms, your Dev Hub org version during the release transition determines their relative
significance. Here’s what happens when you try to create a scratch org with one of the release values.

PreviousPreviewDev Hub Version

Prior Dev Hub versionError (Dev Hub is already on the latest
version)

Dev Hub has upgraded to the latest version

Error (Dev Hub is on the GA version;
previous version unavailable)

Version following the Dev Hub version
(newly released Salesforce version)

Dev Hub is still on the GA version

Note: If you don’t specify a release value, the scratch org version is the same version as the Dev Hub org.

Create a Scratch Org for a Specific Release
You can specify the release version in the scratch org definition file or directly on the command line. Any value you set on the command
line overrides what you have defined in your scratch definition file.

• Find out which instance your Dev Hub org is on: https://status.salesforce.com.

141

Select the Salesforce Release for a Scratch OrgScratch Orgs

https://status.salesforce.com

• Add the release option (lowercase) to your scratch org definition file.

{
"orgName": "Dreamhouse",
"edition": "Developer",
"release": "preview",
"settings": {

"mobileSettings": {
"enableS1EncryptedStoragePref2": true

}
}

}

Alternatively, you can specify the release value directly on the command line with the --release flag. Any value you specify on
the command line overrides the value in the scratch org definition.

• Create the scratch org by executing the org create scratch command in a terminal (macOS and Linux) or command
prompt (Windows).

In this example, we’re creating a scratch org on the preview release.

sf org create scratch --definition-file config/project-scratch-def.json --alias PreviewOrg
--target-dev-hub DevHub --release preview

Be sure to set the apiVersion to match the scratch org version.

To set it globally for all DX projects:

sf config set org-api-version 59.0 --global

To set it on the command line:

SF_ORG_API_VERSION=59.0 sf org create scratch --definition-file
config/project-scratch-def.json --alias PreviewOrg --target-dev-hub DevHub --release preview

Note: Regardless of the release version of your Dev Hub, you can use scratch org features that are available in the release (preview
or previous) of the scratch org you create.

What If I Want to Create a Pre-Release Scratch Org?
Pre-release is a very early build of the latest version of Salesforce that’s available before Salesforce Preview. It's not built to handle scale
and doesn't come with any Salesforce Support service-level agreements (SLAs). For this reason, the only way to create a pre-release
scratch org is to sign up for a pre-release trial Dev Hub org (subject to availability).

Deploy Source From Your Project to the Scratch Org

After changing the source, you can sync the changes to your scratch org by deploying the changed source to it with the project
deploy start command.

Note: Scratch orgs have source tracking enabled by default. But sometimes you don’t want source tracking, such as in a continuous
integration environment when you want to speed up deployments. You can opt out of source tracking when you create the scratch
org by specifying the --no-track-source flag.

sf org create scratch --definition-file config/project-scratch-def.json --no-track-source

142

Deploy Source From Your Project to the Scratch OrgScratch Orgs

https://sfdc.co/RR-Pre-Release

See Create Scratch Orgs for more reasons to disable source tracking.

The first time you deploy source to the org, all source in the package directories in the sfdx-project.json file is deployed to the
scratch org to complete the initial setup. At this point, Salesforce CLI starts source-tracking locally on the file system and remotely in the
scratch org to determine which metadata has changed. Let’s say you deployed an Apex class to a scratch org and then decide to modify
the class in the scratch org instead of your local file system. Salesforce CLI tracks in which local package directory the class was created,
so when you retrieve it back to your project, it knows where it belongs.

To run the deploy commands described in the remainder of this topic, first open a terminal (macOS and Linux) or command window
(Windows) and then change to your Salesforce DX project directory.

Preview a Deployment
Before you deploy source to an org, you can preview the components that will be deployed, the potential conflicts, and the ignored
files by executing project deploy preview. For example, this command displays a preview of deploying all the source in your
project to a scratch org with alias MyGroovyScratchOrg.

sf project deploy preview --target-org MyGroovyScratchOrg

Use flags to target the source you want to preview, such as only the source listed in a manifest. In this example, --target-org
points to the scratch org’s username.

sf project deploy preview --manifest package.xml --target-org test-am6xqkossaq8@example.com

Tip: You can create an alias for an org using alias set. To display the usernames and aliases of all the scratch orgs you’ve
created, run org list.

Deploy Source to a Scratch Org
To deploy changed local source to your default scratch org, run this command.

sf project deploy start

The command displays what it deployed. This sample output shows a deployment of the PropertyController Apex class.

Deploying v58.0 metadata to test-am6xqkossaq8@example.com using the v59.0 SOAP API.
Deploy ID: 0Af7e00001WsuoSCAR
Status: Succeeded | ██ | 1/1 Components (Errors:0)
| 0/0 Tests (Errors:0)

Deployed Source
===
| State Name Type Path

| ─────── ────────────────── ─────────
──
| Changed PropertyController ApexClass force-app/main/default/classes/PropertyController.cls

| Changed PropertyController ApexClass
force-app/main/default/classes/PropertyController.cls-meta.xml

Use flags to target the source you want to deploy, rather than everything that’s changed.

• Use the --metadata flag to deploy specific metadata components, such as Apex classes.

143

Deploy Source From Your Project to the Scratch OrgScratch Orgs

• Use the --manifest flag to deploy components in a manifest file.

• Use --source-dir to deploy source in a package directory.

See the reference information about project deploy start for examples and other flags you can specify.

Select Files to Ignore During Deploys
It’s likely that you have some files that you don’t want to sync between the project and scratch org. Add these files to the .forceignore
file so they’re ignored by the deploy command.

If the Deploy Detects Warnings
If you run project deploy start, and warnings occur, Salesforce CLI doesn’t deploy the source. Warnings can occur, for example,
if your project source is using an outdated version. If you want to ignore these warnings and deploy the source to the scratch org, run:

sf project deploy start --ignore-warnings

Tip: Although you can successfully deploy using this option, we recommend addressing the issues in the source files. For example,
if you see a warning because a Visualforce page is using an outdated version, consider updating your page to the current version
of Visualforce. This way, you can take advantage of new features and performance improvements.

If the Deploy Detects File Conflicts
During development, you change files locally in your file system and change the scratch org directly using the builders and editors that
Salesforce supplies. Usually, these changes don’t cause a conflict and involve unique files. Also, the project deploy start
command doesn’t handle merges. Projects and scratch orgs are meant to be used by one developer.

However, if you run project deploy start, and conflicts are detected, Salesforce CLI terminates the operation and doesn’t
deploy the source. Instead, it displays conflict information, such as this sample output. The PropertyController Apex class has been
changed both locally and in the org, but the changes are in conflict.

sf project deploy start
STATE FULL NAME TYPE FILE PATH

──────── ────────────────── ─────────
───

Conflict PropertyController ApexClass
<dir>/force-app/main/default/classes/PropertyController.cls-meta.xml
Conflict PropertyController ApexClass
<dir>/force-app/main/default/classes/PropertyController.cls
Error (1): There are changes in the org that conflict with the local changes you're trying
to deploy.

First decide which change you want to keep. To keep the local change, rerun the deploy and specify the --ignore-conflicts
flag.

sf project deploy start --ignore-conflicts

144

Deploy Source From Your Project to the Scratch OrgScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm#cli_reference_project_deploy_start_unified

To keep the change that’s in the org, run the project retrieve start command to retrieve the change to your local project,
and specify the --ignore-conflicts flag.

sf project retrieve start --ignore-conflicts

SEE ALSO:

How to Exclude Source When Syncing

Retrieve Source from the Scratch Org to Your Project

Track Changes Between Your Project and Org

Retrieve Source from the Scratch Org to Your Project

After you do an initial deploy, your changes are tracked between your local file system and your scratch org. If you change metadata in
your scratch org, retrieve those changes to your local project to keep both in sync.

Note: Scratch orgs have source tracking enabled by default. But sometimes you don’t want source tracking, such as in a continuous
integration environment when you want to speed up deployments. You can opt out of source tracking when you create the scratch
org by specifying the --no-track-source flag.

sf org create scratch --definition-file config/project-scratch-def.json --no-track-source

See Create Scratch Orgs for more reasons to disable source tracking.

To run the retrieve commands described in the remainder of this topic, first open a terminal (macOS and Linux) or command window
(Windows) and then change to your Salesforce DX project directory.

Preview a Retrieve
Before you retrieve metadata from an org, you can preview the components that will be retrieved, the potential conflicts, and the ignored
files by executing project retrieve preview. For example, this command displays a preview of retrieving changed metadata
from a scratch org with the alias MyGroovyScratchOrg to your local project.

sf project retrieve preview --target-org MyGroovyScratchOrg

Tip: You can create an alias for an org using alias set. To display the usernames and aliases of all the scratch orgs you’ve
created, run org list.

Retrieve Metadata from Your Scratch Org
To retrieve changed source from your default scratch org to your project, run this command

sf project retrieve start

The command displays what it retrieved and where in your local Salesforce DX project it puts it. This sample output shows a retrieve of
the DiscountSpecial Apex class and DiscountPermSet permission set into the force-app/main/default directory.

Preparing retrieve request...
Preparing retrieve request... Succeeded

Retrieved Source
==

145

Retrieve Source from the Scratch Org to Your ProjectScratch Orgs

| State Name Type Path

| ─────── ─────────────── ─────────────
──
| Created DiscountSpecial ApexClass force-app/main/default/classes/DiscountSpecial.cls

| Created DiscountSpecial ApexClass
force-app/main/default/classes/DiscountSpecial.cls-meta.xml
| Created DiscountPermSet PermissionSet
force-app/main/default/permissionsets/DiscountPermSet.permissionset-meta.xml

Use flags to target the source you want to retrieve, rather than everything that’s changed.

• Use the --metadata flag to retrieve specific metadata components, such as Apex classes.

• Use the --manifest flag to retrieve components in a manifest file.

• Use --source-dir to retrieve source in a package directory.

See the reference information about project retrieve start for examples and other flags you can specify.

Select Files to Ignore During Retrieves
It’s likely that you have some files that you don’t want to sync between the project and scratch org. Add these files to the .forceignore
file so they’re ignored by the retrieve command.

If the Retrieve Detects File Conflicts
During development, you change files locally in your file system and change the scratch org using builders and editors. Usually, these
changes don’t cause a conflict and involve unique files. Also, the project retrieve start command doesn’t handle merges.
Projects and scratch orgs are meant to be used by one developer.

However, if you run project retrieve start, and conflicts are detected, Salesforce CLI terminates the operation and doesn’t
retrieve the source. Instead, it displays conflict information, such as this sample output. The PropertyController Apex class has been
changed both locally and in the org, but the changes are in conflict.

sf project retrieve start
Preparing retrieve request... Sending request to org
STATE FULL NAME TYPE FILE PATH

──────── ────────────────── ─────────
───
Conflict PropertyController ApexClass
<dir>force-app/main/default/classes/PropertyController.cls-meta.xml
Preparing retrieve request... Error
Error (1): There are changes in your local files that conflict with the org changes you're
trying to retrieve.

First decide which change you want to keep. To keep the change that’s in the org, rerun the retrieve and specify the
--ignore-conflicts flag.

sf project retrieve start --ignore-conflicts

146

Retrieve Source from the Scratch Org to Your ProjectScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_project_commands_unified.htm#cli_reference_project_retrieve_start_unified

To keep the local change, run the project deploy start command to deploy the change to your org, and specify the
--ignore-conflicts flag.

sf project deploy start --ignore-conflicts

SEE ALSO:

Retrieve Source from the Scratch Org to Your Project

How to Exclude Source When Syncing

Track Changes Between Your Project and Org

Scratch Org Users

A scratch org includes one administrator user by default. The admin user is typically adequate for all your testing needs. But sometimes
you need other users to test with different profiles and permission sets.

You can create a user by opening the scratch org in your browser and navigating to the Users page in Setup. You can also use the org
create user CLI command to easily integrate the task into a continuous integration job.

Scratch Org User Limits, Defaults, and Considerations
• You can run the org create user command only for scratch orgs. If you try to create a user for a non-scratch org, the command

fails.

• Your scratch org edition determines the number of available user licenses. The number of licenses determines the number of users
you can create. For example, a Developer Edition org includes a maximum of two Salesforce user licenses. Therefore, in addition to
the default administrator user, you can create one standard user.

• The new user’s username must be unique across all Salesforce orgs and in the form of an email address. The org create user
command provides the --set-unique-username flag to ensure uniqueness. The username is active only within the bounds
of the associated scratch org.

• You can’t delete a user using Salesforce CLI, just like you can’t delete a Salesforce user using Setup. The user is deactivated when
you delete the scratch org with which the user is associated. Deactivating a user frees up the user license. But you can’t reuse
usernames, even if the associated user has been deactivated.

• The simplest way to create a user is to let the org create user command assign default or generated characteristics to the
new user. If you want to customize your new user, create a definition file and specify it with the --definition-file (-f)
flag. In the file, you can include all the User sObject fields and a set of Salesforce DX-specific options, described in User Definition
File for Customizing a Scratch Org User. You can also specify these options on the command line.

• If you don’t customize your new user, the org create user command creates a user with the following default characteristics.

– The username is the existing administrator’s username prepended with a timestamp. For example, if the administrator username
is test-wvkpnfm5z113@example.com, the new username is something like 1505759162830_test-wvkpnfm5z113@example.com.

– The user’s profile is Standard User.

– The values of the required fields of the User sObject are the corresponding values of the administrator user. For example, if the
administrator’s locale (specifically the LocaleSidKey field of User sObject) is en_US, the new user’s locale is also en_US.

Create a Scratch Org User

Although scratch orgs were designed to be used by one developer, sometimes you need other users to test with different profiles
and permission sets.

147

Scratch Org UsersScratch Orgs

User Definition File for Customizing a Scratch Org User

To customize a new scratch org user, rather than use the default and generated values, create a definition file.

Generate or Change a Password for a Scratch Org User

By default, new scratch orgs contain one administrator user with no password. Use the org generate password CLI command
to generate or change a password for this admin user. After it's set, you can’t unset a password, you can only change it.

SEE ALSO:

User sObject API Reference

Create a Scratch Org User
Although scratch orgs were designed to be used by one developer, sometimes you need other users to test with different profiles and
permission sets.

Use the org create user command to create a user. Specify the --set-alias flag to assign a simple name to the user that
you can reference in later CLI commands. When the command completes, it outputs the new username and user ID.

sf org create user --set-alias qa-user --target-org my-scratch
Successfully created user "1690397809_test-st9thgoyyyq3@example.com" with ID 0058I002inzvQAA
for org 00D80000PhAkUAK.

See more details about this user by running "sf org user display -o
1690397809774_test-st9thgoyyyq3@example.com".

Users are associated with a specific scratch org. Specify the scratch org username or alias at the command line with the --target-org
flag if it isn’t already set as the default. If you try to create a user for a non-scratch org, the org create user command fails.

You can customize the new user by creating a definition file on page 149 and specifying it with the --definition-file flag.

sf org create user --set-alias qa-user --definition-file config/user-def.json

View the list of users associated with a scratch org with the org list users command. The (A) on the left identifies the administrator
user that was created when the scratch org was created.

sf org list users --target-org my-scratch
=== Users in org 00D80000PhAkUAK

Default Alias Username Profile Name User
Id
─────── ────────── ─── ────────────────────
───────────────
(A) my-scratch test-st9thgoyyyq3@example.com System Administrator
0058I002inzvQAA

qa-user 1690397809_test-st9thgoyyyq3@example.com Standard User
0058I002inzvQAA

Display details about a user with the org display user command.

sf org display user --target-org qa-user
Warning: This command exposes sensitive information <truncated for readability>

=== User Description

key label

148

Create a Scratch Org UserScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

────────────
──

Username 1690397809_test-st9thgoyyyq3@example.com

Profile Name Standard User

Id 0058I002inzvQAA

Org Id 00D80000PhAkUAK

Access Token 00D8I<truncated>
Instance Url https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com

Login Url https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com

Alias qa-user

User Definition File for Customizing a Scratch Org User
To customize a new scratch org user, rather than use the default and generated values, create a definition file.

The user definition file uses JSON format and can include any Salesforce User sObject field and these Salesforce DX-specific options.

Default If Not SpecifiedDescriptionSalesforce DX Option

NoneAn array of permission sets assigned to the
user. Separate multiple values with commas,
and enclose in square brackets.

You must have previously deployed the
permission sets to the scratch org with
project deploy start.

permsets

FalseBoolean. Specifies whether to generate a
random password for the user.

If set to true, org create user
displays the generated password after it

generatePassword

completes. You can also view the password
using org display user.

Standard UserName of a profile to associate with the user.
Similar to the ProfileId field of the User

profileName

sObject except that you specify the name
of the profile and not its ID. Convenient
when you know only the name of the
profile.

The user definition file options are case-insensitive. However, we recommend that you use lower camel case for the Salesforce DX-specific
options and upper camel case for the User sObject fields. This format is consistent with other Salesforce DX definition files.

149

User Definition File for Customizing a Scratch Org UserScratch Orgs

This user definition file includes some User sObject fields and three Salesforce DX options (profileName, permsets, and
generatePassword).

{
"Username": "tester1@sfdx.org",
"LastName": "Hobbs",
"Email": "tester1@sfdx.org",
"Alias": "tester1",
"TimeZoneSidKey": "America/Denver",
"LocaleSidKey": "en_US",
"EmailEncodingKey": "UTF-8",
"LanguageLocaleKey": "en_US",
"profileName": "Standard Platform User",
"permsets": ["Dreamhouse", "Cloudhouse"],
"generatePassword": true

}

In the example, the username tester1@sfdx.org must be unique across the entire Salesforce ecosystem; otherwise, the org create
user command fails. We recommend that you use the --set-unique-username flag, which overrides the value in the
configuration file and ensures a unique username. The alias in the Alias option is different from the alias you specify with the
--set-alias flag of org create user. Use the Alias option only with the Salesforce UI. The --set-alias flag is local to
the computer from which you run the CLI, and you can use it with other CLI commands.

Indicate the path to the user definition file with the --definition-file flag. You can name this file whatever you like and store
it anywhere the CLI can access.

sf org create user --set-alias qa-user --definition-file config/user-def.json --target-org
my-scratch

You can override an option in the user definition file by specifying it as a name-value pair at the command line. This technique allows
multiple users or continuous integration jobs to share a base definition file and then customize options when they run the command.
This example overrides the username, list of permission sets, and whether to generate a password.

sf org create user --set-alias qa-user --definition-file config/user-def.json
permsets="Dreamy,Cloudy" Username=tester345@sfdx.org generatePassword=false --target-org
my-scratch

You can also add options at the command line that aren’t in the user definition file. This example adds the City option.

sf org create user --set-alias qa-user --definition-file config/user-def.json City=Oakland
--target-org my-scratch

SEE ALSO:

User sObject API Reference

Generate or Change a Password for a Scratch Org User
By default, new scratch orgs contain one administrator user with no password. Use the org generate password CLI command
to generate or change a password for this admin user. After it's set, you can’t unset a password, you can only change it.

You can also use the --on-behalf-of flag to generate a password for a scratch org user that you've created locally with the org
create user command. You can’t use the org generate password command for users that you created in the scratch
org with Setup.

150

Generate or Change a Password for a Scratch Org UserScratch Orgs

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_user.htm

1. Generate a password for a scratch org user with this command:

sf org generate password --target-org <username-or-alias>

You can run this command for scratch org users only. The command outputs the generated password.

The target org must be the username or alias for the scratch org admin user. Use the --on-behalf-of flag to assign passwords
to multiple users at once, including admin users, or to users who don’t have permissions to do it themselves. Specify multiple locally
created users by specifying multiple --on-behalf-of flags. For example, let’s say the my-scratch alias corresponds to the
scratch org’s admin user, and you want to generate a password for users with aliases ci-user and qa-user:

sf org generate password --target-org my-scratch --on-behalf-of ci-user --on-behalf-of
qa-user

By default, the command generates a password that's 13 characters in length; the possible characters include all lower and upper
case letters, numbers, and symbols. To change the password strength, use the --length and --complexity flags. The
--complexity flag is a number from 0 through 5; the higher the value, the more possible characters are used, which strengthens
the password. The default value is 5. See the command-line help for a description of each value. This example shows how to generate
a password that's 20 characters long:

sf org generate password --target-org my-scratch --length 20

2. View the generated password and other user details:

sf org display user --target-org qa-user
Warning: This command exposes sensitive information <truncated for readability>

=== User Description

key label

────────────
──

Username 1690397809_test-st9thgoyyyq3@example.com

Profile Name Standard User

Id 0058I002inzvQAA

Org Id 00D80000PhAkUAK

Access Token 00D8I<truncated>
Instance Url https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com

Login Url https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com

Alias qa-user
Password ogihymg%lXa

3. Log in to the scratch org with the new password:

a. From the org display user output, copy the value of the Instance URL and paste it into your browser. In our example,
the instance URL is https://connect-enterprise-1121-dev-ed.scratch.my.salesforce.com.

b. If you’ve already opened the scratch org with the org open command, you’re automatically logged in again. To try out the
new password, log out and enter the username and password listed in the output of the org display user command.

151

Generate or Change a Password for a Scratch Org UserScratch Orgs

c. Click Log In to Sandbox.

Note: If you change a scratch org user’s password using the Salesforce UI, the new password doesn’t show up in the org
display user output.

Manage Scratch Orgs from the Dev Hub Org

You can view and delete your scratch orgs and their associated requests from the Dev Hub org.

In the Dev Hub org, the ActiveScratchOrg standard object represents the scratch orgs that are currently in use. The ScratchOrgInfo
standard object represents the requests that were used to create scratch orgs and provides historical context.

1. Log in to the Dev Hub org as the System Administrator or as a user with the Salesforce DX permissions.

2. From the App Launcher, select Active Scratch Orgs to see a list of all active scratch orgs.

To view more details about a scratch org, click the link in the Number column.

3. To delete an active scratch org from the Active Scratch Orgs list view, choose Delete from the dropdown.

Deleting an active scratch org doesn’t delete the request (ScratchOrgInfo) that created it, but it does free up a scratch org so that it
doesn’t count against your allocations.

4. To view the requests that created the scratch orgs, select Scratch Org Infos from the App Launcher.

To view more details about a request, click the link in the Number column. The details of a scratch org request include whether it's
active, expired, or deleted.

5. To delete the request that was used to create a scratch org, choose Delete from the dropdown.

Deleting the request (ScratchOrgInfo) also deletes the active scratch org.

SEE ALSO:

Add Salesforce DX Users

Scratch Org Error Codes

If scratch org creation fails, the system generates an error code that can help you identify the cause. Some of these errors are generated
by the SignupRequest API and apply to all org signups.

DescriptionError Code

Duplicate username.C-1007

Error while establishing the new org’s My Domain (subdomain) settings. Contact Salesforce Support for
assistance.

C-1015

Error while configuring the OAuth connected app for Proxy Signup. Verify that your connected app has a
valid consumer key, callback URL, and unexpired certificate (if applicable).

C-1016

Invalid subdomain value provided during sign-up.C-1018

Subdomain in use. Choose a new subdomain value.C-1019

152

Manage Scratch Orgs from the Dev Hub OrgScratch Orgs

DescriptionError Code

Template not found. Either the template doesn’t exist or it was deleted.C-1020

Template is the wrong version.C-1033

Can’t create the org. Contact Salesforce Customer Support for assistance.C-1034

Not a valid scratch org. Contact Salesforce Customer Support for assistance.C-9998

Generic fatal error. Contact Salesforce Customer Support for assistance.C-9999

Namespace isn’t registered. To use a namespace with a scratch org, you must link the Developer Edition
org where the namespace is registered to a Dev Hub org. See Salesforce Help: Link a Namespace to a Dev
Hub Org.

S-1017

Invalid country.S-2006

Can't create scratch org from org shape. Contact the source org admin to add your Dev Hub org ID. From
Setup, in the Quick Find box, enter Org Shape, and then select Org Shape.

SH-0001

Can't create scratch org. No org shape exists for the specified sourceOrg. Create an org shape and try
again.

SH-0002

Can't create scratch org from the org shape because it was created on a previous Salesforce release version
and is outdated. Recreate the org shape and try again.

SH-0003

The snapshot has expired. Create another snapshot, then try again.SN-0001

The snapshot doesn’t belong to the specified Dev Hub org. Run the command with the appropriate
--target-dev-hub.

SN-0002

Can’t validate org shape due to fatal error. Contact Salesforce Customer Support for assistance.SH-9999

Can’t create the scratch org. Try again later.VR-0001

Can’t create the scratch org. Check that the release value is valid. If no release value was specified, contact
Salesforce Customer Support.

VR-0002

Can’t create the scratch org. Check that the release value is valid. If no release value was specified, contact
Salesforce Customer Support.

VR-0003

153

Scratch Org Error CodesScratch Orgs

https://help.salesforce.com/articleView?id=sfdx_dev_reg_namespace.htm&language=en_US
https://help.salesforce.com/articleView?id=sfdx_dev_reg_namespace.htm&language=en_US

CHAPTER 7 Sandboxes

USER PERMISSIONS

To view a sandbox:
• View Setup and

Configuration

To create, refresh, activate,
and delete a sandbox:
• Manage Sandbox

Sandboxes are copies of your Salesforce org that you can use for
development, testing, and training, without compromising the
data and applications in your production org.

Salesforce offers sandboxes and a set of deployment tools, so you
can:

In this chapter ...

• Authorize Your
Production Org

• Create a Sandbox
Definition File

• Isolate customization and development work from your
production environment until you’re ready to deploy changes.

• Create, Clone, or
Delete a Sandbox

• Test changes against copies of your production data and users.

• Provide a training environment.

• Coordinate individual changes into one deployment to production.

Traditionally, you or your Admin has created and managed your sandboxes through the Setup UI. But
we realize that many developers want the ability to create and manage their developer and testing
environments programmatically, and to automate their CI processes. Salesforce CLI enables you to do
both.

Where Do Sandboxes Fit in the Application
Development Lifecycle?

The development model you use determines in which stages you use sandboxes. For more information
on our development models and where sandboxes fit, see Determine Which Application Lifecycle Model
Is Right for You (Trailhead).

154

https://trailhead.salesforce.com/content/learn/trails/determine-which-application-lifecycle-management-model-is-right-for-you
https://trailhead.salesforce.com/content/learn/trails/determine-which-application-lifecycle-management-model-is-right-for-you

Authorize Your Production Org

JWT and Web-based flows require a production org with sandbox licenses instead of a Dev Hub. However, it’s OK if your production org
is also a Dev Hub org.

The examples in Authorize an Org Using the JWT-Based Flow and Authorize an Org Using the Web-Based Flow are geared toward scratch
orgs. Follow these tips to successfully authorize your production org.

• Be sure to use https://login.salesforce.com for sfdcLoginUrl in sfdx-project.json file. Alternatively,
you can use org login jwt --instance-url to specify the URL directly on the command line. This value overrides the
login URL you specified in the sfdx-project.json file.

• Specify the username for your production org when running the org login jwt command. No need to specify a Dev Hub or
indicate a default Dev Hub.

• The JWT authorization flow requires that you create a connected app. When you create the connected app, log in to your production
org, not a Dev Hub org.

Create a Sandbox Definition File

Before you can create a sandbox using Salesforce CLI, define the configuration for it in a sandbox definition file. The sandbox definition
file is a blueprint for the sandbox. You can create different definition files for each sandbox type that you use in the development process.

Sandbox Configuration Values

DescriptionRequired?Option

A reference to the ID of an Apex class that runs after
each copy of the sandbox. Allows you to perform
business logic on the sandbox to prepare it for use.

NoapexClassId

If true, you can activate a sandbox refresh
immediately.

NoautoActivate

Full sandboxes only. This field is visible if your
organization has purchased an option to copy

NocopyArchivedActivities

archived activities for sandbox. To obtain this option,
contact Salesforce Customer Support.

If true, archived Chatter data is copied to the
sandbox.

NocopyChatter

A description of the sandbox (1000 or fewer
characters), which helps you distinguish it from other
sandboxes.

Nodescription

Full sandboxes only. Represents the number of days
of object history to be copied in the sandbox.

Valid values:

NohistoryDays

• -1, which means all available days

• 0 (default)

155

Authorize Your Production OrgSandboxes

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_jwt_flow.htm#sfdx_dev_auth_jwt_flow
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth_web_flow.htm#sfdx_dev_auth_web_flow

DescriptionRequired?Option

• 10

• 20

• 30

• 60

• 90

• 120

• 150

• 180

Valid values are Developer, Developer_Pro,
Partial, and Full.

Yes (for sandbox creation)licenseType

A unique alphanumeric string (10 or fewer characters)
to identify the sandbox. You can’t reuse a name while
a sandbox is in the process of being deleted.

YessandboxName

Name of the sandbox being cloned.Yes (for sandbox cloning)sourceSandboxName

Optional for Full sandboxes. Not available for
Developer and Developer Pro sandboxes.

A reference to the sandbox template as identified by
the 15-character ID beginning with 1ps in the URL

Yes (for Partial sandboxes)templateId

when viewing a sandbox template in a browser. A
sandbox template lets you select which objects to
copy in a sandbox.

Note: You can indicate either licenseType or sourceSandboxName in your definition file, but not both.

Sample Sandbox Definition File
Although you can place the sandbox definition file anywhere, we recommend keeping it in your Salesforce DX project in the config
directory. When naming the file, we suggest providing a descriptive name that ends in sandbox-def.json, for example,
developer-sandbox-def.json.

Here's a sample definition file for creating a sandbox:

{
"sandboxName": "dev1",
"licenseType": "Developer"

}

Here's a sample definition file for cloning a sandbox:

{
"sandboxName": "dev1clone",

156

Create a Sandbox Definition FileSandboxes

"sourceSandboxName": "dev1"
}

SEE ALSO:

Tooling API: SandboxInfo

Create, Clone, or Delete a Sandbox

Create a sandbox to use for development, testing, or training. Clone a sandbox to copy its data and metadata to another sandbox.

Before you create or clone a sandbox:

• Create a Salesforce DX project with a manifest file.

• Authorize to a production org with available sandbox licenses.

• Create the sandbox definition file.

Why We Recommend Using Aliases
When you create or clone a sandbox, the usernames generated in the sandbox are based on the usernames present in the production
org or sandbox. The username looks like an email address, such as username@company.com.dev1. If the resulting username
isn’t unique, we prepend some characters and digits to the username. The modified username looks something like
00x7Vqusername@company.com.dev1.

As you can imagine, remembering these usernames can be challenging, especially if you have several sandboxes you’re managing.
Aliasing is a powerful way to manage and track your orgs, and we consider it a best practice. So when you issue a command that requires
the username, using an alias that you can remember can speed up things.

If you didn’t set an alias when you created the sandbox, you can set one later.

sf alias set MyDevSandbox username@company.com.dev1

Create a Sandbox
Optional: Create a Sandbox Definition File

When you create a sandbox, Salesforce copies the metadata and optionally data from your production org to a sandbox org. Specify the
username or alias of your production org with the --target-org flag.

sf org create sandbox --target-org prodOrg --definition-file config/dev-sandbox-def.json
--alias MyDevSandbox --set-default --wait 30

The command asks you to confirm the sandbox configuration and then shows information as the sandbox is being created.

The --set-default flag indicates that this sandbox is your default org for all CLI commands. If you’re working with several orgs
and you don’t want this one to be the default, exclude this flag.

To directly define the required sandbox options, or to override the values defined in the sandbox definition file, specify appropriate flags
on the command line.

sf org create sandbox --name FullSbx --license-type=Full --target-org prodOrg --alias
MyFullSandbox --wait 30

157

Create, Clone, or Delete a SandboxSandboxes

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_tooling.meta/api_tooling/tooling_api_objects_sandboxinfo.htm

Tip: Because the sandbox is processed in a queue, the sandbox creation process can take longer than the default wait time of 6
minutes. We recommend setting a larger value for --wait, for example, 30 minutes.

How long the creation process takes depends on the size and complexity of your production org. You see status messages posted to
output:

Sandbox Create... 00:28:00 until timeout. 26%
Field Value
───────────── ────────────────────────────
Id 0GR1Q888800HORuWAO
SandboxName dev11
Status Processing
LicenseType DEVELOPER
SandboxInfoId 0GQ1Q000009999mWAO
Created Date 2023-10-17T21:42:49.000+0000
CopyProgress 26%
SandboxOrg 00DP0099993zEZj

Sandbox Create Stages
- Pending

… - Processing
… - Activating
… - Authenticating

After the wait period is over, you can run the org resume sandbox command to check the status of the sandbox creation process.
If the sandbox is created within the wait time, Salesforce CLI automatically authenticates in to the sandbox. And the sandbox appears
in the output of the org list command. Team members can authenticate to the sandbox by running the org web login
command and providing their usernames and passwords.

sf org web login --instance-url https://test.salesforce.com

Clone a Sandbox
You can create a sandbox by cloning an existing sandbox rather than using your production org as your source. You can save time by
customizing a sandbox with a set of data and metadata and then replicating it. Use the --clone flag to specify the existing sandbox
name and the --name flag to the name of the new sandbox. Both sandboxes must be associated with the specified production org
that contains the sandbox licenses. (--target-org flag).

Sandbox cloning simplifies having multiple concurrent streams of work in your application life cycle. You can set up a sandbox for each
type of work, such as development, testing, and staging. Your colleagues can easily clone individual sandboxes instead of sharing one
sandbox and stepping on each other’s toes.

sf org create sandbox --clone ExistingSandbox --name NewClonedSandbox --target-org prodOrg
--alias MyDevSandbox --set-default --wait 30

Tip: Because the sandbox is processed in a queue, the sandbox cloning process can take longer than the default wait time of 6
minutes. We recommend setting a larger value for --wait, for example, 30 minutes.

After the wait period is over, you can run the org resume sandbox command to check the status of the sandbox cloning process.
If the sandbox is cloned within the wait time, the CLI automatically authenticates in to the sandbox. And the sandbox appears in the
output of the org list command. Team members can authenticate to the sandbox by running the org web login command
and providing their usernames and passwords.

sf org web login --instance-url https://test.salesforce.com

158

Create, Clone, or Delete a SandboxSandboxes

Check the Sandbox Status
Creating or cloning a sandbox can take several minutes. If the command times out, it displays a job ID that you can pass to the org
resume sandbox command to report on creation or cloning status. When the sandbox is ready, this command also authenticates
to the sandbox.

sf org resume sandbox --job-id 0GR1888880000HORuWAO --target-org prodOrg

If the org create sandbox command times out, the alias isn’t set. However, you can set it using the alias set command:

sf alias set MyDevSandbox username@company.com.dev1

Open a Sandbox
After the sandbox is ready, you can open it by specifying its username or alias. However, you don’t have to provide its password because
the CLI manages the authentication details for you.

sf org open --target-org MyDevSandbox

Delete a Sandbox
You can delete a sandbox using Salesforce CLI, whether you created it locally with org create sandbox or logged into an existing
sandbox with a org login command. You must also have previously logged into the production org that contains the sandbox
license.

sf org delete sandbox --target-org MyDevSandbox

Next:
• Retrieve metadata from your sandbox to your local DX project.

• Develop directly in your sandbox, then retrieve the changes to your local DX project.

• Deploy local changes to a sandbox.

SEE ALSO:

Salesforce Help: Deploy Enhancements from Sandboxes

Salesforce Help: Create, Clone, or Refresh a Sandbox Using Setup UI

Authorize an Org Using the JWT Flow

Authorize an Org Using a Browser

159

Create, Clone, or Delete a SandboxSandboxes

https://help.salesforce.com/articleView?id=deploy_sandboxes_parent.htm&language=en_US
https://help.salesforce.com/articleView?id=data_sandbox_create_parent.htm&language=en_US

CHAPTER 8 Track Changes Between Your Project and Org

Use source tracking to track the changes between your local project and a scratch org or sandbox when
you create, update, or delete source code.

In this chapter ...

• Manage Source
Tracking for Your org Source tracking has no direct effect on the org; it affects only your local environment. Specifically,

Salesforce CLI checks a local configuration file to determine whether you’ve enabled source tracking for
• Preview Changes

Identified by Source
Tracking

a particular org. If you have, then source tracking operations are executed when you work with the org,
such as using the project deploy start command.

The project deploy|retrieve start commands without flags deploy or retrieve all changed
source between your local project and the target org. For more granular control, use flags to specify

• Deploy and Retrieve
Changes Identified
by Source Tracking specific metadata components, package directories, or manifest files to deploy or retrieve. This example

retrieves the MyFabClass Apex class:

sf project retrieve start --metadata ApexClass:MyFabClass

• Resolve Conflicts
Between Your Local
Project and Org

In addition to listing the changes you make, source tracking makes it possible to:• Get Change
Information by • Automatically track changes to metadata components, saving you from tracking them manually.
Querying the • See changes deployed to a sandbox by other developers.
SourceMember
Object • Deploy or retrieve changed source.

• Identify and resolve conflicts between your local project and scratch org or sandbox before deploying
or retrieving source.

• Best Practices

• Performance
Considerations of
Source Tracking

To see which metadata components support source tracking, check the Source Tracking column of the
Metadata Coverage Report.

160

https://developer.salesforce.com/docs/metadata-coverage/

Manage Source Tracking for Your org

Source tracking works only if your target org allows it. Don’t worry, you can still deploy or retrieve metadata to and from an org without
source tracking. But the commands don’t check for conflicts, and you must specify exactly what you want to deploy or retrieve using an
appropriate flag, such as --source-dir or --metadata.

Org Editions that Support Source Tracking
• Developer Edition orgs, production orgs, Partial Copy sandboxes, and Full sandboxes—Source tracking isn’t supported.

• Developer and Developer Pro sandboxes—Source tracking is supported if their associated production org has been enabled for
source tracking.

• Scratch orgs—Source tracking is always supported.

Manage Source Tracking in New Orgs
Scratch Orgs have source tracking enabled by default. For Developer and Developer Pro sandboxes, source tracking is also enabled by
default as long as their associated production org has been enabled for source tracking.

You can opt out of source tracking when you create the scratch org or sandbox by specifying the --no-track-source flag of the
org create scratch|sandbox command. This flag affects only your local configuration, not the org itself. Salesforce CLI sets
a local configuration option trackSource: false as part of your authorization information to the org. If you log out of the org
and then log back in again, source tracking is enabled again by default.

Here’s how to create a scratch org with source tracking disabled.

sf org create scratch --target-dev-hub=MyHub --definition-file
config/project-scratch-def.json --no-track-source

Here’s a sandbox example.

sf org create sandbox --definition-file config/dev-sandbox-def.json --target-org prodOrg
--no-track-source

Manage Source Tracking in Existing Orgs
You can change whether an existing scratch org or sandbox allows source tracking with these two commands:

• org enable tracking: Allow Salesforce CLI to track changes in your source files between your project and an org.

• org disable tracking: Prevent Salesforce CLI from tracking changes in your source files between your project and an org.

This example shows how to enable source tracking in an org with alias mySandbox; the command returns an error if the org doesn't
support tracking, such as a Full sandbox.

sf org enable tracking --target-org mySandbox

Let’s say you have a sandbox that you use for integration tests, and you want to deploy source to it but not wait for tracking operations.
This example shows how to disable source tracking on an org with alias mySandbox:

sf org disable tracking --target-org mySandbox

161

Manage Source Tracking for Your orgTrack Changes Between Your Project and Org

Preview Changes Identified by Source Tracking

To see changes between your local project and target org, navigate to the project directory for which you want to see changes. Then
run one of the preview commands, which display either the local changes in your project you can deploy to your org, or the org changes
that you can retrieve.

1. In a terminal or command window, navigate to the project directory. In this example, the directory is named MyProject.

cd /Users/joe/dx-projects/MyProject

2. To see what’s changed between your project and org, run either the project deploy preview or project retrieve
preview command. Include the --target-org flag to specify the username or alias of the scratch org or sandbox that you
want to compare with your local project. In this example, the command displays the local changes that can be deployed to the
sandbox with the alias DevSandbox.

sf project deploy preview --target-org DevSandbox

Similarly, this example displays the remote changes in the sandbox that can be retrieved back into the local project.

sf project retrieve preview --target-org DevSandbox

The project deploy preview command accepts the --metadata, --source-dir, and --manifest flags,
which you can use to preview more granular deployments. This example previews a deployment of only ApexClass metadata:

sf project deploy preview --metadata ApexClass --target-org DevSandbox

This project deploy preview sample output shows that there are local changes to the WidgetClass Apex class and
WidgetObject__c custom object that can be deployed to the org.

sf project deploy preview --target-org DevSandbox

No conflicts found.

No files will be deleted.

Will Deploy [2] files.
Type Fullname Path

──────────── ───────────────
──
ApexClass WidgetClass force-app/main/default/classes/WidgetClass.cls-meta.xml

CustomObject WidgetObject__c
force-app/main/default/objects/WidgetObject__c/WidgetObject__c.object-meta.xml

No files were ignored. Update your .forceignore file if you want to ignore certain files.

This project retrieve preview sample output shows that there are remote changes to the GizmoClass Apex class and
GizmoObject__c custom object (and its layout) that can be retrieved from the org to the local project. The output also shows that there
are no conflicts between the project and org.

sf project retrieve preview --target-org DevSandbox

No conflicts found.

162

Preview Changes Identified by Source TrackingTrack Changes Between Your Project and Org

No files will be deleted.

Will Retrieve [3] files.
Type Fullname Path
──────────── ───────────────────────────────── ────
Layout GizmoObject__c-GizmoObject Layout
CustomObject GizmoObject__c
ApexClass GizmoClass

Ignored [2] files. These files won't retrieve because they're ignored by your .forceignore
file.
Type Fullname Path
─────── ─────────────────────────────────── ────
Profile Admin
Profile B2B Reordering Portal Buyer Profile

The preview commands use tables of change information with three columns: Type, Fullname, and Path. Each row represents one
change.

• Type is the changed component’s metadata type. It describes what the component is, such as an Apex class or a custom object.

• Fullname is the API name of the component.

• Path is the location of the component in your local project. If it’s blank, the component isn’t present in your local project. When
blank, it usually means that a component is present in the org but not in your local project.

If source tracking doesn’t detect any changes, then the preview commands return a statement saying No results found.

=== Source Status
No results found

After previewing the changes in the source in your local project and the org, you’re ready to deploy or retrieve and resolve potential
conflicts.

Deploy and Retrieve Changes Identified by Source Tracking

When you create a Salesforce app, you typically use both low-code and pro-code techniques. An example of low-code is creating a
custom object directly in an org using Setup. An example of pro-code is creating an Apex class in your local project using an IDE, such
as VS Code. As you work, source tracking identifies changes so you can keep the remote metadata in the org in sync with the source in
your local project.

The process is iterative. First you preview the remote and local changes. If conflicts exist, you resolve them. You must now ensure that
these changes exist in both the org and your local project. So you retrieve the remote changes to your local project, then push them to
your source control repository, to ensure that the source control system contains all your changes and is the source of historical truth.
You deploy your local changes, such as Apex code, to the org so you can validate and test it. And you keep iterating through this process
until you finish developing the Salesforce app.

To see source tracking in action, let’s look at some examples.

Say you run project retrieve preview and see remote changes.

sf project retrieve preview --target-org DevSandbox

No conflicts found.

No files will be deleted.

163

Deploy and Retrieve Changes Identified by Source TrackingTrack Changes Between Your Project and Org

Will Retrieve [3] files.
Type Fullname Path
──────────── ───────────────────────────────── ────
Layout GizmoObject__c-GizmoObject Layout
CustomObject GizmoObject__c
ApexClass GizmoClass

Ignored [2] files. These files won't retrieve because they're ignored by your .forceignore
file.
Type Fullname Path
─────── ─────────────────────────────────── ────
Profile Admin
Profile B2B Reordering Portal Buyer Profile

Retrieve the changes in your org to your local project with the project retrieve start command. Now that the components
have been created locally, the Path column has a value and it includes the default package directory.

sf project retrieve start --target-org DevSandbox
Preparing retrieve request... Sending request to org
Preparing retrieve request... Succeeded

Retrieved Source
===
| State Name Type Path

| ─────── ───────────────────────────────── ────────────
──
| Created GizmoClass ApexClass
force-app/main/default/classes/GizmoClass.cls
| Created GizmoClass ApexClass
force-app/main/default/classes/GizmoClass.cls-meta.xml
| Created GizmoObject__c CustomObject
force-app/main/default/objects/GizmoObject__c/GizmoObject__c.object-meta.xml
| Created GizmoObject__c-GizmoObject Layout Layout
force-app/main/default/layouts/GizmoObject__c-GizmoObject Layout.layout-meta.xml

After retrieving the source, run project retrieve preview again. Now, source tracking reports that there’s nothing to retrieve.

sf project retrieve preview

No conflicts found.

No files will be deleted.

No files will be retrieved.

Ignored [2] files. These files won't retrieve because they're ignored by your .forceignore
file.
Type Fullname Path
─────── ─────────────────────────────────── ────
Profile Admin
Profile B2B Reordering Portal Buyer Profile

164

Deploy and Retrieve Changes Identified by Source TrackingTrack Changes Between Your Project and Org

Let’s now look at deploying. To preview your local changes, run project deploy preview.

sf project deploy preview --target-org DevSandbox

No conflicts found.

No files will be deleted.

Will Deploy [2] files.
Type Fullname Path

──────────── ───────────────
──
ApexClass WidgetClass force-app/main/default/classes/WidgetClass.cls-meta.xml

CustomObject WidgetObject__c
force-app/main/default/objects/WidgetObject__c/WidgetObject__c.object-meta.xml

No files were ignored. Update your .forceignore file if you want to ignore certain files.

Then deploy your local changes. After deploying to a sandbox, other developers that are using the sandbox can see your changes.

sf project deploy start --target-org DevSandbox
Deploying v59.0 metadata to test-ikspctiorkzs@example.com using the v59.0 SOAP API.
Deploy ID: 0Af8D00000pNmKySAK
Status: Succeeded | ██ | 2/2 Components (Errors:0)
| 0/0 Tests (Errors:0)

Deployed Source
===
| State Name Type Path

| ─────── ─────────────── ────────────
──
| Created WidgetClass ApexClass force-app/main/default/classes/WidgetClass.cls

| Created WidgetClass ApexClass
force-app/main/default/classes/WidgetClass.cls-meta.xml
| Created WidgetObject__c CustomObject
force-app/main/default/objects/WidgetObject__c/WidgetObject__c.object-meta.xml

Run project deploy preview again.

sf project deploy preview

No conflicts found.

No files will be deleted.

No files will be deployed.

No files were ignored. Update your .forceignore file if you want to ignore certain files.

The command reports there’s nothing to deploy, indicating that your local project and the org are synchronized.

165

Deploy and Retrieve Changes Identified by Source TrackingTrack Changes Between Your Project and Org

Retrieve Changes to Profiles with Source Tracking

Retrieving profiles behaves a little differently with source tracking.

Retrieve Changes to Profiles with Source Tracking
Retrieving profiles behaves a little differently with source tracking.

Important: In general, we recommend that you use permission sets instead of profiles. Profiles aren’t consistent across orgs, and
the source files that are retrieved and deployed depend on the org type, the tracking state, and other metadata in the operation.
If you decide to continue using profiles, we recommend that you exclude them when you deploy or retrieve by adding them to
the .forceignore file.

Without source tracking, retrieving profiles only returns some profile information. Retrieving profiles returns information about profiles
that pertains to other items specified in the package.xml file.

For example, retrieving profiles with this package.xml file returns profile permissions for the MyCustomField__c custom field on
the Account object.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>Account.MyCustomField__c</members>
<name>CustomField</name>
</types>
<types>
<members>*</members>
<name>Profile</name>
</types>
<version>50.0</version>
</Package>

With source tracking, retrieving profiles returns profile information pertaining to anything else specified in the package.xml file
plus any components getting tracked by source tracking. That includes any entity for which a change exists between your local project
and the org.

For example, say you create a custom field on the Opportunity object called OppCustomField__c in your local environment. Source
tracking detects the change and reports it. Now you retrieve profiles using the same package.xml file as you did when source
tracking was off.

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
<types>
<members>Account.MyCustomField__c</members>
<name>CustomField</name>
</types>
<types>
<members>*</members>
<name>Profile</name>
</types>
<version>50.0</version>
</Package>

Even though the package.xml file doesn’t reference OppCustomField__c, because source tracking is tracking the new custom field,
your retrieve returns profile permissions for both the MyCustomField__c custom field on the Account object and the OppCustomField__c
on the Opportunity object.

166

Retrieve Changes to Profiles with Source TrackingTrack Changes Between Your Project and Org

For more information about retrieving profiles, see the Profile metadata type in the Metadata API Developer Guide.

Note: Although source retrieves don’t include package.xml files, retrieve requests return profile information pertaining to
everything reported by source tracking.

SEE ALSO:

Salesforce Help: Permission Sets

How to Exclude Source When Syncing

Resolve Conflicts Between Your Local Project and Org

As a best practice, if conflicts exist for components in your local project or in the org, resolve them before moving forward. You can
resolve the conflict manually, or overwrite one version of a component with another. Only overwrite changes if you're certain that the
new version is the one you want to use.

Say you run project deploy preview and see conflicting changes between your local project and in the org. For example,
this command output shows that WidgetClass has conflicting changes but GizmoClass is ready to be deployed.

sf project deploy preview --target-org DevSandbox

Conflicts [1]. Run the command with the --ignore-conflicts flag to override.
Type Fullname Path
───────── ─────────── ───
ApexClass WidgetClass force-app/main/default/classes/WidgetClass.cls-meta.xml

No files will be deleted.

Will Deploy [1] files.
Type Fullname Path
───────── ────────── ──
ApexClass GizmoClass force-app/main/default/classes/GizmoClass.cls-meta.xml

No files were ignored. Update your .forceignore file if you want to ignore certain files.

If you try to actually deploy the source, Salesforce CLI reports the conflict again and stops the operation from completing. You see similar
conflict messages when you run project retrieve preview. To successfully deploy or retrieve, first resolve the conflicts, and
then overwrite either your local project or the org with the resolved file. Let’s see how this works.

Overwrite Conflicting Changes
If you decide that the local version is correct, overwrite the conflicting change in the org by including the --ignore-conflicts
flag when you deploy. In our example, because only WidgetClass has conflicting changes, let’s first deploy just that component
to get rid of the conflicts and then deploy the non-conflicting source later.

sf project deploy start --metadata ApexClass:WidgetClass --ignore-conflicts --target-org
DevSandbox

The DevSandbox org now has the same version of WidgetClass that was in your local project. When you run project deploy
preview again you see no conflicting changes messages.

167

Resolve Conflicts Between Your Local Project and OrgTrack Changes Between Your Project and Org

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_profile.htm
https://help.salesforce.com/s/articleView?id=sf.perm_sets_overview.htm&type=5&language=en_US

If, however, you decide that the version of WidgetClass in the org is the correct one, overwrite your local copy by retrieving the
DevSandbox org version while ignoring conflicts.

sf project retrieve start --metadata ApexClass:WidgetClass --ignore-conflicts --target-org
DevSandbox

Your local project now has the same version of WidgetClass that was in your org.

Well done, you resolved the conflict! Now run project deploy start without any special flags to finish deploying GizmoClass
and any other new local source.

sf project deploy start --target-org DevSandbox
Deploying v59.0 metadata to test-ikspctiorkzs@example.com using the v59.0 SOAP API.
Deploy ID: 0Af8D00000pNtEUSA0
Status: Succeeded | ██ | 1/1 Components (Errors:0)
| 0/0 Tests (Errors:0)

Deployed Source
===
| State Name Type Path
| ─────── ────────── ───────── ──
| Created GizmoClass ApexClass force-app/main/default/classes/GizmoClass.cls
| Created GizmoClass ApexClass force-app/main/default/classes/GizmoClass.cls-meta.xml

Get Change Information by Querying the SourceMember Object

The SourceMember object is reserved for internal use. Accuracy of results isn’t guaranteed.

Review Preview Changes Identified by Source Tracking instead of querying the SourceMember object.

Best Practices

Get the most out of source tracking by following these best practices.

Retrieve changes and resolve conflicts before deploying your changes to
a sandbox
This practice helps other developers incorporate your changes and facilitates collaboration.

Review metadata change history with a version control system like Git
With a version control system, you can version your changes, track change history, and review metadata changes before promoting to
other environments, such as a sandbox.

Get source tracking files back into sync
If source tracking gets confused and starts reporting inaccuracies, you can use the project deploy|retrieve start
commands to get back into sync. Which command you use depends on which source you most trust: use project deploy start

168

Get Change Information by Querying the SourceMember
Object

Track Changes Between Your Project and Org

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_tracking_see_changes.htm

if you trust your local source files and project retrieve start if you trust what’s in your org. For either command, specify
the --ignore-conflicts flag. See Resolve Conflicts Between Your Local Project and Org for details and examples.

Performance Considerations of Source Tracking

Source tracking performs extra functions to determine changes to source tracked components, such as running more queries and waiting
for the SourceMember Tooling API object to be updated after a deployment. So, some commands can take a little longer to run when
working with medium-to-large sized projects. If you’re working with small projects, you don’t notice any slowdown.

A medium-sized project has 30 or more components or 50 or more tests. A project with 25 components and 51 tests is considered
medium.

A large-sized project is 600 or more components or 150 or more tests. A project with 610 components and 140 tests is considered large.

If you experience long-running commands, break up your projects into smaller sets of components, and deploy the smaller sets.

You can also opt out of source tracking when you create a scratch org or sandbox by specifying the --no-track-source flag of
the org create scratch|sandbox command. See Source Tracking for use cases.

If creating a scratch org or sandbox for use as a development environment in DevOps Center, don’t disable source tracking.

169

Performance Considerations of Source TrackingTrack Changes Between Your Project and Org

CHAPTER 9 Development

After you import some test data, you’ve completed the process of setting up your project. Now, you’re
ready to start the development process.

In this chapter ...

• Develop Against Any
Org

Create Source Files from the CLI

To add source files from the CLI, make sure that you’re working in an appropriate directory. For example,
if your package directory is called force-app, create Apex classes in

• Assign a Permission
Set

• Ways to Add Data to
Your Org

force-app/main/default/classes. You can organize your source as you want underneath
each package directory except for documents, custom objects, and custom object translations.

• Create Lightning
Apps and Aura
Components As of API version 45.0, you can build Lightning components using two programming models: Lightning

Web Components and Aura Components. To organize your components’ source files, your Aura• Create Lightning Web
Components components must be in the aura directory. Your Lightning web components must be in the lwc

directory.• Create an Apex
Class Execute one of these commands.

• Create an Apex
Trigger

• apex generate class

• apex generate trigger• Create a Custom
Object • cmdt generate object

• cmdt generate field• Execute Anonymous
Apex • cmdt generate record

• Run Apex Tests • cmdt generate records

• cmdt generate fromorg

• lightning generate app

• lightning generate component

• lightning generate event

• lightning generate interface

• lightning generate test

• schema generate sobject

• schema generate field

• schema generate platformevent

• schema generate tab

• static-resource generate

• visualforce generate component

• visualforce generate page

170

Many of the commands have these two helpful optional flags:

DescriptionFlag

The directory for saving the created files. If you don’t indicate
a directory, your source is added to the current folder. To add

-d, --output-dir

the source to an existing directory, indicate the absolute or
relative path. If you don’t indicate an absolute or a relative
path and the directory doesn’t exist, Salesforce CLI attempts
to create it for you.

Template used for the file creation.-t, --template

Tip: If you want to know more information about a command, run it with the --help flag. For
example, sf apex generate class --help.

Edit Source Files

Use your favorite code editor to edit Apex classes, Visualforce pages and components, Lightning web
components, and Aura components in your project. You can also make edits in the Setup UI of your org
and then use project retrieve start to retrieve those changes to your project. For Lightning
pages (FlexiPage files) that are already in your org, use the shortcut to open Lightning App Builder in a
scratch org from your default browser. Lightning Pages are stored in the flexipages directory.

To edit a FlexiPage in your default browser—for example, to edit the Property_Record_Page
source—execute this command from the flexipages directory.

sf org open --source-file Property_Record_Page.flexipage-meta.xml

If you want to generate a URL that loads the .flexipage-meta.xml file in Lightning App Builder
but doesn’t launch your browser, use the --url-only | -r flag.

sf org open --source-file Property_Record_Page.flexipage-meta.xml
--url-only

SEE ALSO:

Salesforce CLI Command Reference

171

Development

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_unified.htm

Develop Against Any Org

After developing against scratch or sandbox orgs that have source tracking enabled, you eventually test and validate your changes in a
non-source-tracked org.

You can use Salesforce CLI to retrieve and deploy metadata (in metadata format) to non-source-tracked orgs with the same ease as
retrieving and deploying source (in source format) to and from scratch orgs. If you’re new to Salesforce CLI, Salesforce DX Project Structure
and Source File Format explains the difference between source format and metadata format.

Using project retrieve start, you can retrieve the metadata you need in source format to your local file system (DX project).
When your changes are ready for testing or production, you can use project deploy start to deploy your local files directly
to a non-source-tracked org.

Not sure what metadata types are supported or which metadata types support wild cards in package.xml? See Metadata Types in
the Metadata API Developer Guide.

Before You Begin
Before you begin, don't forget to:

• Create a Salesforce DX project that includes a manifest (package.xml). Run project generate --name mywork
MyProject --manifest.

• Authorize your non-source-tracked org. If connecting to a sandbox, edit your sfdx-project.json file to set sfdcLoginUrl
to https://test.salesforce.com before you authorize the org. Don't forget to create aliases for your non-source-tracked
orgs.

Metadata Names That Require Encoding on the Command Line
When retrieving or deploying metadata using the --metadata option, commas in metadata names require encoding to work
properly.

Don’t: sf project deploy start --metadata "Profile:Standard User" --metadata
"Layout:Page,Console"

Do: sf project deploy start --metadata "Profile:Standard User" --metadata
"Layout:Page%2CConsole"

Retrieve Source from a Non-Source-Tracked Org
Use the project retrieve start command to retrieve source from orgs that don’t have source tracking, such as a sandbox
or your production org. If you already have the source code and metadata in a VCS, you might be able to skip this step. If you're starting
anew, you retrieve the metadata associated with the feature, project, or customization you're working on.

You can retrieve metadata in source format using one of these methods:

• Specify a package.xml that lists the components to retrieve.

• Specify a comma-separated list of metadata component names.

• Specify a comma-separated list of source file paths to retrieve. You can use the source path option when source exists locally, for
example, after you've done an initial retrieve.

• Specify a comma-separated list of package names.

If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set of double quotes.

172

Develop Against Any OrgDevelopment

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_source_file_format.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_meta.meta/api_meta/meta_types_list.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_cli_usernames_orgs.htm

Command ExampleTo Retrieve:

sf project retrieve start --manifest
path/to/package.xml

All metadata components listed in a manifest

sf project retrieve --source-dir path/to/sourceSource files in a directory

sf project retrieve --source-dir
path/to/apex/classes/MyClass.cls --source-dir
path/to/source/objects

A specific Apex class and the objects whose source
is in a directory

sf project retrieve start --metadata
"Profile:Standard User"

Metadata that contains spaces

sf project retrieve --metadata ApexClassAll Apex classes

sf project retrieve --metadata ApexClass:MyApexClassA specific Apex class

sf project retrieve --metadata "Layout:Page%2C
Console"

A layout name that contains a comma (Layout: Page,
Console)

sf project retrieve --metadata --package-name
DreamHouse

All the metadata related to a specific package or
packages

You can specify only one scoping parameter when retrieving metadata: --metadata, --source-dir, or --manifest. If you
indicate --package-name, you can include one additional scoping parameter.

sf project retrieve start --package-name DreamHouse --manifest manifest/package.xml

Deploy Source to a Non-Source-Tracked Org
Use the project deploy start command to deploy source to orgs that don’t have source tracking, such as a sandbox or
production org.

You can deploy metadata in source format using these methods:

• Specify a package.xml that lists the components to deploy

• Specify a comma-separated list of metadata component names

• Specify a comma-separated list of source file paths to deploy

If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set of double quotes.

Command ExampleTo Deploy:

sf project deploy start --manifest
path/to/package.xml

All components listed in a manifest

sf project deploy start --source-dir path/to/sourceSource files in a directory

sf project deploy start --source-dir
path/to/apex/classes/MyClass.cls --source-dir
path/to/source/objects

A specific Apex class and the objects whose source
is in a directory

sf project deploy start --metadata ApexClassAll Apex classes

173

Develop Against Any OrgDevelopment

Command ExampleTo Deploy:

sf project deploy start --metadata
ApexClass:MyApexClass

A specific Apex class

sf project deploy start --metadata CustomObject
--metadata ApexClass

All custom objects and Apex classes

sf project deploy start --metadata ApexClass
--metadata "Profile:Content Experience Profile"

All Apex classes and a profile that has a space in its
name

sf project deploy quick --job-id JOBID

You can run this option after you have run tests, passed code coverage
requirements, and performed a check-only deployment using the project
deploy validate command, which returns the job ID.

A recently validated set of components without
running Apex tests (often referred to as a quick
deploy)

sf project deploy start --ignore-warningsEven if the deployment contains warnings

sf project deploy start --ignore-errorsRegardless of whether the deployment contains
errors (not recommended if deploying to a
production org)

Delete Non-Tracked Source
Use the project delete source command to delete components from orgs that don’t have source tracking, such as sandboxes.

If the source exists locally in a DX project, you can delete metadata by specifying the path to the source or by listing individual metadata
components. If the comma-separated list you’re supplying contains spaces, enclose the entire comma-separated list in one set of double
quotes.

Command ExampleTo Delete:

sf project delete source --source-dir path/to/sourceSource files in a directory

sf project delete source --metadata
FlexiPage:Broker_Record_Page

A specific component, such as a FlexiPage

sf project delete source --metadata "Profile:Content
Experience Profile"

A specific component that includes a space

Do You Want to Retain the Generated Metadata?
Normally, when you run some CLI commands, a temporary directory with all the metadata is created then deleted upon successful
completion of the command. However, retaining these files can be useful for several reasons. You can debug problems that occur during
command execution. You can use the generated package.xml when running subsequent commands, or as a starting point for
creating a manifest that includes all the metadata you care about.

To retain all the metadata in a specified directory path when you run these commands, set the SF_MDAPI_TEMP_DIR environment
variable:

• project deploy start

• project retrieve start

174

Develop Against Any OrgDevelopment

• project delete source

• project convert mdapi|source

• org create scratch (if your scratch org definition contains scratch org settings, not org preferences)

Example:

SF_MDAPI_TEMP_DIR=/users/myName/myDXProject/metadata

Assign a Permission Set

After creating your scratch org and deploying the source, you must sometimes give your users access to your application, especially if
your app contains custom objects.

1. If needed, create the permission set in the scratch org.

a. Open the scratch org in your browser.

sf org open --target-org <scratch org username/alias>

b. From Setup, enter Perm in the Quick Find box, then select Permission Sets.

c. Click New.

d. Enter a descriptive label for the permission set, then click Save.

e. Under Apps, click Assigned Apps > Edit.

f. Under Available Apps, select your app, then click Add to move it to Enabled Apps.

g. Click Save.

2. Retrieve the permission set from the scratch org to your project.

sf project retrieve start --target-org <scratch org username/alias>

3. Assign the permission set to one or more users of the org that contains the app:

sf org assign permset --name <permset_name> --target-org <username/alias>

The target username must have permission to assign a permission set. Use the --on-behalf-of flag to assign a permission
set to non-administrator users.

sf org assign permset --name <permset_name> --target-org <admin-user> --on-behalf-of
<non-admin-user>

You can also assign permission set licenses to users using the org assign permsetlicense command. It works similarly to
the org assign permset command.

SEE ALSO:

Salesforce Help: Permission Sets

Salesforce Help: Permission Set Licenses

175

Assign a Permission SetDevelopment

https://help.salesforce.com/s/articleView?id=sf.perm_sets_overview.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.users_permissionset_licenses_overview.htm&type=5&language=en_US

Ways to Add Data to Your Org

Orgs for development need a small set of stock data for testing.

Sometimes, the stock data in a scratch org doesn’t meet your development needs. Apex tests generally create their own data. Therefore,
if Apex tests are the only tests you’re running in a scratch org, you probably don’t need to worry about data for the time being. However,
other tests, such as UI, API, or user acceptance tests, do need baseline data. Make sure that you use consistent datasets when you run
tests of each type.

The following sections describe the Salesforce CLI commands you can use to populate your orgs. The commands you use depend on
your current stage of development.

You can also use the data query CLI command to run a SOQL query against an org. While the command doesn’t change the data
in an org, it’s useful for searching or counting the data. You can also use it with other data manipulation commands. See the SOQL and
SOSL Reference Guide for general SOQL limits that also apply when you use these commands.

Considerations for Scratch Orgs
Scratch orgs come with the same set of data as the edition on which they’re based. For example, Developer Edition orgs typically include
10–15 records for key standard objects, such as Account, Contact, and Lead. These records come in handy when you’re testing something
like a new trigger, workflow rule, Lightning web component, Aura component, or Visualforce page.

data export | import tree Commands
The SObject Tree Save API drives the data export|import tree commands for exporting and importing data. The commands
use JSON files to describe objects and relationships. The data export command requires a SOQL query to select the data in an org
that it writes to the JSON files. Rather than loading all records of each type and establishing relationships, the data import command
loads parents and children already in the hierarchy.

Note: These commands are intended for developers to test with small datasets. The query for export can return a maximum of
2000 records. The files for import can have a maximum of 200 records.

data delete | upsert bulk Commands
Bulk API 2.0 drives the data delete|upsert bulk commands for exporting a basic dataset from an org and storing that data
in source control. You can then update or augment the data directly rather than in the org from where it came. The data
delete|upsert bulk commands use CSV files to import data files into scratch orgs or to delete sets of data that you no longer
want hanging around. Use dot notation to establish child-to-parent relationships.

data create | delete | get record Commands
Everyone’s process is unique, and you don’t always need the same data as your teammates. When you want to create, modify, or delete
individual records quickly, use the data create|delete|get record commands. No data files are needed.

176

Ways to Add Data to Your OrgDevelopment

https://developer.salesforce.com/docs/atlas.en-us.248.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_limits.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_limits.htm

Example: Export and Import Data Between Orgs

Let’s say you’ve created the perfect set of data to test your application, and it currently resides in a scratch org. You finished coding
a new feature in a second scratch org, pushed your source code, and assigned the needed permission sets. Now you want to populate
the scratch org with your perfect set of data from the other org. How? Read on!

SEE ALSO:

SObject Tree Request Body (REST API Developer Guide)

Create Multiple Records (REST API Developer Guide)

Create Nested Records (REST API Developer Guide)

Salesforce Object Query Language (SOQL)

Sample CSV File (Bulk API 2.0 and Bulk API Developer Guide)

Salesforce CLI Command Reference

Example: Export and Import Data Between Orgs
Let’s say you’ve created the perfect set of data to test your application, and it currently resides in a scratch org. You finished coding a
new feature in a second scratch org, pushed your source code, and assigned the needed permission sets. Now you want to populate
the scratch org with your perfect set of data from the other org. How? Read on!

While this example is a bit contrived, it’s useful for getting some hands-on experience with the data commands. The example refers to
the Broker and Properties custom objects of the Salesforce DreamHouse LWC application example on GitHub. Let’s say that the scratch
org from which you want to export data has the alias org-with-data. Similarly, the scratch org into which you want to import data
has the alias org-needs-data. For the org-with-data scratch org, it’s assumed that you have already:

• Created the Broker and Properties custom objects by deploying the DreamHouse source.

• Assigned the permission set.

• Populated the objects with the data.

For the org-needs-data scratch org, however, it’s assumed that you’ve created the Broker and Properties objects and assigned
the permission set but not yet populated the objects with data.

See the README in the dreamhouse-lwc GitHub repo for instructions on these prerequisite tasks.

1. Export the data from the org-with-data scratch org.

Use the data query command to fine-tune the SELECT query so that it returns the exact set of data you want to export. This
command outputs the results to your terminal or command window, but it doesn’t generate any files.

Note: Because the SOQL query is long, the sample command is broken up with backslashes for easier reading. You can still
copy and paste the command into your terminal window and run it.

sf data query --target-org org-with-data --query \
"SELECT Id, Name, Title__c, Phone__c, Mobile_Phone__c, \

Email__c, Picture__c, \
(SELECT Name, Address__c, City__c, State__c, Zip__c, \

Price__c, Beds__c, Baths__c, Picture__c, \
Thumbnail__c, Description__c \

FROM Properties__r) \
FROM Broker__c"

177

Example: Export and Import Data Between OrgsDevelopment

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_rest.meta/api_rest/requests_composite_sobject_tree.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_rest.meta/api_rest/dome_composite_sobject_tree_flat.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_rest.meta/api_rest/dome_composite_sobject_tree_create.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.soql_sosl.meta/soql_sosl/sforce_api_calls_soql.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.api_asynch.meta/api_asynch/datafiles_csv_sample_file.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://github.com/trailheadapps/dreamhouse-lwc
https://github.com/trailheadapps/dreamhouse-lwc

2. When you’re satisfied with the SELECT statement, use it to export the data into a set of JSON files with the data export tree
command.

sf data export tree --target-org org-with-data --query \
"SELECT Id, Name, Title__c, Phone__c, Mobile_Phone__c, \

Email__c, Picture__c, \
(SELECT Name, Address__c, City__c, State__c, Zip__c, \

Price__c, Beds__c, Baths__c, Picture__c, \
Thumbnail__c, Description__c \

FROM Properties__r) \
FROM Broker__c" \

--prefix export-demo --output-dir sfdx-out --plan

The data export tree command writes the JSON files to the sfdx-out directory and prefixes each file name with the
string export-demo. The files include a plan definition file, which refers to the other files that contain the data, one for each
exported object (Broker and Properties).

3. Import the data into the org-needs-data scratch org by specifying the plan definition file to the data import tree
command.

sf data import tree --target-org org-needs-data \
--plan sfdx-out/export-demo-Broker__c-Property__c-plan.json

Use the --plan parameter to specify the full path name of the plan execution file generated by the data export tree
command. Plan execution file names always end in -plan.json.

Example: Looking for a more complicated example? The easy-spaces-lwc sample app has a data plan showing how to import
Accounts, related Contacts, and a 3-level deep custom object chain.

SEE ALSO:

GitHub: Dreamhouse LWC sample repo

Salesforce CLI Command Reference

Create Lightning Apps and Aura Components

You can use Salesforce CLI to create Lightning apps and Aura components in your local Salesforce DX project. The generated files live
in an aura directory in a package directory of your project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Create the aura directory in the location you want to generate the Lightning app and Aura components. For example, if you want
to generate them in the default package directory, create the force-app/main/default/aura directory if it doesn’t exist.

3. Create a Lightning app or an Aura component; specify the app or component name with the --name flag and the aura directory
with the --output-dir flag.

sf lightning generate app --name myApp --output-dir force-app/main/default/aura

sf lightning generate component --type aura --name myAuraComponent --output-dir
force-app/main/default/aura

178

Create Lightning Apps and Aura ComponentsDevelopment

https://github.com/trailheadapps/easy-spaces-lwc
https://github.com/trailheadapps/easy-spaces-lwc/blob/develop/data/Plan2.json
https://github.com/trailheadapps/dreamhouse-lwc
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference

Use the project deploy start command to deploy the new Lightning app and Aura component to your org.

sf project deploy start --metadata AuraDefinitionBundle:myApp --metadata
AuraDefinitionBundle:myAuraComponent

SEE ALSO:

Create Lightning Web Components

Create Lightning Web Components

You can use Salesforce CLI to create Lightning web components in your local Salesforce DX project. The generated files live in a lwc
directory in a package directory of your project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Create the lwc directory in the location you want to generate the Lightning app and Aura components. For example, if you want
to generate them in the default package directory, create the force-app/main/default/aura directory if it doesn’t exist.

3. Create the Lightning web component; specify the component name with the --name flag and the lwc directory with the
--output-dir flag.

sf lightning generate component --type lwc --name myLightningWebComponent --output-dir
force-app/main/default/lwc

Use the project deploy start command to deploy your new Lightning web component to your org.

sf project deploy start --metadata LightningComponentBundle:myLightningWebComponent

SEE ALSO:

Create Lightning Apps and Aura Components

Lightning Web Components Dev Guide: Introducing Lightning Web Components

Create an Apex Class

You can use Salesforce CLI to create Apex classes in your local Salesforce DX project. The generated class files live in a classes directory
in a package directory of your project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Create the classes directory in the location you want to generate the Apex class. For example, if you want to generate it in the
default package directory, create the force-app/main/default/classes directory if it doesn’t exist.

3. Create the Apex class; specify the class name with the --name flag and the classes directory with the --output-dir
flag.

sf apex generate class --name myClass --output-dir force-app/main/default/classes

The command generates two files:

• myClass.cls-meta.xml—metadata file

• myClass.cls—Apex source file

179

Create Lightning Web ComponentsDevelopment

https://developer.salesforce.com/docs/component-library/documentation/lwc

By default, the command creates an empty Apex class. However, you can select different templates, depending on what you’re creating,
by specifying the --template flag.

More Information in Apex Developer
Guide

DescriptionTemplate

ClassesStandard Apex class.DefaultApexClass (default)

Exception Class and Built-in ExceptionsUse Apex built-in exceptions or create
custom exceptions. All exceptions have
common methods.

ApexException

isTest AnnotationUse the @isTest annotation to define
classes and methods that only contain code
used for testing your application.

ApexUnitTest

Apex Email ServiceUse email services to process the contents,
headers, and attachments of inbound email.

InboundEmailService

This example selects the ApexException template.

sf apex generate class --name myException --template ApexException --output-dir
force-app/main/default/classes

Use the project deploy start command to deploy the new Apex class to your org.

sf project deploy start --metadata ApexClass:myClass

SEE ALSO:

Apex Developer Guide

Create an Apex Trigger

Use Apex triggers to perform custom actions before or after a change to a Salesforce record, such as an insertion, update, or deletion.
You can use Salesforce CLI to create Apex triggers in your local Salesforce DX project. The generated files live in a triggers directory
in a package directory of your project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Create the triggers directory in the location you want to generate the Apex trigger. For example, if you want to generate it in
the default package directory, create the force-app/main/default/triggers directory if it doesn’t exist.

3. Generate the Apex trigger; specify the trigger name with the --name flag and the triggers directory with the --output-dir
flag.

sf apex generate trigger --name myTrigger --output-dir force-app/main/default/triggers

By default, the generated trigger is for before insert events on the generic sObject. Use the --event and --sobject
flags to change these default values. This example generates a trigger that fires before and after an insert into the Account object.

sf apex generate trigger --name myTrigger --event 'before insert,after insert' --sobject
Account --output-dir force-app/main/default/triggers

180

Create an Apex TriggerDevelopment

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_understanding.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_classes_exception_methods.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_annotation_isTest.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_classes_email_inbound_what_is.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_dev_guide.htm

The command generates two files.

• myTrigger.trigger-meta.xml—metadata file

• myTrigger.trigger—Apex trigger source file

Use the project deploy start command to deploy the new Apex trigger to your org.

sf project deploy start --metadata ApexTrigger:myTrigger --target-org myscratch

SEE ALSO:

Apex Developer Guide: Triggers

Trailhead: Apex Triggers

Create a Custom Object

You can use Salesforce CLI to generate the metadata files for new custom objects in your local Salesforce DX project.

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Run the interactive schema generate sobject command. You must specify a label for your new custom object with the
--label flag. The command uses this label to provide intelligent suggestions for other object properties, such as its API name
and plural label.

sf schema generate sobject --label "New Object"

Answer all the questions about your new object, such as the location of the generated files in your Salesforce DX project and whether
to enable various object properties.

After you create your custom object:

• Create a custom field on your new object with the interactive schema generate field command, which generates the
necessary metadata files in your project. You can also use the command to create a custom field on a standard object, such as
Account.

• Create a custom tab for your new object with the schema generate tab command.

Then deploy your new custom object to your org.

sf project deploy start --metadata CustomObject:NewObject__c --target-org myscratch

The first time you deploy your new custom object to a source-tracking org, the org creates additional properties and sets new defaults
on it. For this reason, we recommend that you immediately retrieve the custom object so your local source files are updated with this
new information.

SEE ALSO:

Salesforce Help: Fields Required for Creating Custom Objects

Salesforce Help: Custom Field Types

Salesforce Help: Custom Field Attributes

Execute Anonymous Apex

You can execute an anonymous block of Apex code in an org with the apex run Salesforce CLI command.

181

Create a Custom ObjectDevelopment

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_triggers.htm
https://trailhead.salesforce.com/en/modules/apex_triggers
https://help.salesforce.com/s/articleView?id=sf.dev_objectcreate.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.custom_field_types.htm&type=5&language=en_US
https://help.salesforce.com/s/articleView?id=sf.custom_field_types.htm&type=5&language=en_US

1. Open a terminal (macOS and Linux) or command prompt Windows and change to your Salesforce DX project directory.

2. Run the apex run command with no flags to open an interactive shell. At the prompt, enter all your Apex code; press CTRL-D
when you're finished. Your code is then executed in a single execute anonymous request in the specified org, or the default org if
you don’t specify one.

sf apex run --target-org myscratch

This output shows an example of executing the Apex code system.debug ('Hello world!');

Start typing Apex code. Press the Enter key after each line, then press CTRL+D when
finished.
system.debug ('Hello world!');
Compiled successfully.
Executed successfully.

58.0 APEX_CODE,DEBUG;APEX_PROFILING,INFO
Execute Anonymous: system.debug ('Hello world!');
14:23:06.174
(174742273)|USER_INFO|[EXTERNAL]|0058H000005QWcE|test-ux9lpg9jyyqt@example.com|(GMT-07:00)
Pacific Daylight Time (America/Los_Angeles)|GMT-07:00
14:23:06.174 (174785450)|EXECUTION_STARTED
14:23:06.174 (174792639)|CODE_UNIT_STARTED|[EXTERNAL]|execute_anonymous_apex
14:23:06.174 (175417814)|USER_DEBUG|[1]|DEBUG|Hello world!
14:23:06.175 (175529797)|CUMULATIVE_LIMIT_USAGE
14:23:06.175 (175529797)|LIMIT_USAGE_FOR_NS|(default)|
Number of SOQL queries: 0 out of 100
Number of query rows: 0 out of 50000
Number of SOSL queries: 0 out of 20
Number of DML statements: 0 out of 150
Number of Publish Immediate DML: 0 out of 150
Number of DML rows: 0 out of 10000
Maximum CPU time: 0 out of 10000
Maximum heap size: 0 out of 6000000
Number of callouts: 0 out of 100
Number of Email Invocations: 0 out of 10
Number of future calls: 0 out of 50
Number of queueable jobs added to the queue: 0 out of 50
Number of Mobile Apex push calls: 0 out of 10

14:23:06.175 (175529797)|CUMULATIVE_LIMIT_USAGE_END

14:23:06.174 (175598235)|CODE_UNIT_FINISHED|execute_anonymous_apex
14:23:06.174 (175617689)|EXECUTION_FINISHED

Use the --file flag to execute Apex code in a file rather than interactively.

sf apex run --file ~/test.apex

SEE ALSO:

Apex Developer Guide: Anonymous Blocks

182

Execute Anonymous ApexDevelopment

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_anonymous_block.htm

Run Apex Tests

When you’re ready to test changes to your source code, you can run Apex tests in an org using Salesforce CLI on the command line. You
can also run Apex tests from Salesforce Extensions for VS Code or from within third-party continuous integration tools, such as Jenkins
or CircleCI.

Minimum User Permissions and Settings Required
The user running Apex tests must have these user permissions in the org:

• View Setup and Configuration

• API Enabled

Also ensure that the Enable Streaming API setting is enabled in the org’s user interface. The setting is enabled by default.

See User Permissions and Configure User Interface Settings for details.

Run All Apex Tests and View Results
This command runs all Apex tests in the specified org asynchronously, which is the default behavior.

sf apex run test --target-org myscratch

Rather than display the actual test results, the command outputs the apex get test command with a job ID that you then run
to view the full results. For example:

sf apex get test --test-run-id 7078HzRMVV --target-org myscratch

Use the --synchronous flag to run tests synchronously. The command waits to display the test results until all tests finish.

sf apex run test --synchronous

Run Specific Apex Tests
Use --test-level to run a subset of tests. See Understanding Deploy in the Apex Developer Guide for the list of possible test level
values.

sf apex run test --test-level RunLocalTests

Use flags to list the test classes or suites to run, specify the output format, view code coverage results, and more. For example, the
following command runs the TestA and TestB test classes, provides results in Test Anything Protocol (TAP) format, and requests code
coverage results. The tests are run in the default org.

sf apex run test --class-names TestA --class-names TestB --result-format tap --code-coverage

Use the --tests flag to run specific test methods using the standard notation Class.method. If you’re testing a managed package,
use namespace.Class.method. If you specify a test class without a method, the command runs all methods in the class. This
example shows how to run two methods in the TestA class and all methods in the TestB class.

sf apex run test --tests TestA.excitingMethod --tests TestA.boringMethod --tests TestB

183

Run Apex TestsDevelopment

https://help.salesforce.com/articleView?id=sf.admin_userperms.htm&type=5&language=en_US
https://help.salesforce.com/articleView?id=sf.customize_ui_settings.htm&type=5&language=en_US
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_deploying_ant_deploy.htm

Here’s the same example but with a namespace.

sf apex run test --tests ns.TestA.excitingMethod --tests ns.TestA.boringMethod --tests
ns.TestB

You can specify either --tests or --class-names for apex run test but not both.

Debug Apex

If you use Salesforce Extensions for Visual Studio Code (VS Code) for your development tasks, you have a choice of Apex Debugger
extensions. Whichever debugger you chose, you set breakpoints in your Apex classes and step through their execution to inspect
your code in real time to find bugs. You can run Apex tests in VS Code or on the command line.

Generate and View Apex Debug Logs

Apex debug logs can record database operations, system processes, and errors that occur when executing a transaction or running
unit tests in any authenticated org. Enable the Debug Log in Salesforce Extensions for VS Code, then view the logs with VS Code or
Salesforce CLI.

SEE ALSO:

Apex Developer Guide : Debugging, Testing, and Deploying Apex

Salesforce CLI Command Reference : Apex Commands

Test Anything Protocol (TAP)

Debug Apex
If you use Salesforce Extensions for Visual Studio Code (VS Code) for your development tasks, you have a choice of Apex Debugger
extensions. Whichever debugger you chose, you set breakpoints in your Apex classes and step through their execution to inspect your
code in real time to find bugs. You can run Apex tests in VS Code or on the command line.

Apex Replay Debugger
Apex Replay Debugger is available for use without any additional licenses. To configure and use it, see Apex Replay Debugger.

Apex Interactive Debugger
You must have at least one available Apex Debugger session in your Dev Hub org. To purchase more sessions for an org, contact your
System Admin to open a case.

• Performance Edition and Unlimited Edition orgs include one Apex Debugger session.

• Apex Debuggers sessions aren’t available in Trial and Developer Edition orgs.

• You can purchase Apex Debugger sessions for Enterprise Edition orgs.

Enable the Apex Debugger in your scratch orgs by adding the DebugApex feature to your scratch org definition file:

"features": "DebugApex"

To configure and use it, see Apex Interactive Debugger.

184

Debug ApexDevelopment

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_debug_test_deploy.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference_apex_commands_unified.htm
https://testanything.org/
https://developer.salesforce.com/tools/vscode/en/apex/replay-debugger
https://help.salesforce.com/articleView?id=000314082&type=1&mode=1&language=en_US
https://developer.salesforce.com/tools/vscode/en/apex/interactive-debugger

ISV Debugger (Salesforce Extensions for VS Code Only)
ISV Customer Debugger is part of the Apex Interactive Debugger (salesforcedx-vscode-apex-debugger) extension, so
you don’t have to install anything other than the Salesforce Extension Pack and its prerequisites. You can debug only sandbox orgs.

See ISV Customer Debugger in Salesforce Extensions for VS Code for details.

SEE ALSO:

Build Your Own Scratch Org Definition File

Apex Debugger for Visual Studio Code

Generate and View Apex Debug Logs
Apex debug logs can record database operations, system processes, and errors that occur when executing a transaction or running unit
tests in any authenticated org. Enable the Debug Log in Salesforce Extensions for VS Code, then view the logs with VS Code or Salesforce
CLI.

1. In Salesforce Extensions for VS Code, prepare the org to generate logs and configure the debugger.

a. Log in to the org.

b. For Replay Debugger, run SFDX: Turn on Apex Debug Log for Replay Debugger.

c. Create a launch configuration file for Replay Debugger or Interactive Debugger.

2. After you run the tests, get a list of the debug logs.

sf apex list log --target-org myscratch

APPLICATION DURATION (MS) ID LOCATION SIZE (B) LOG USER OPERATION REQUEST
START TIME STATUS
─────────── ───────────── ─────── ───────── ──────── ───────── ─────────────── ───────
─────────── ───────
Unknown 1143 07L9Axx SystemLog 23900 User User ApexTestHandler Api
2017-09-05x Success

3. View a debug log by passing its ID to the apex get log command.

sf apex get log --log-id 07L9A000000aBYGUA2

38.0
APEX_CODE,FINEST;APEX_PROFILING,INFO;CALLOUT,INFO;DB,INFO;SYSTEM,DEBUG;VALIDATION,INFO;VISUALFORCE,INFO;WAVE,INFO;WORKFLOW,INFO
15:58:57.3
(3717091)|USER_INFO|[EXTERNAL]|0059A000000TwPM|test-ktjauhgzinnp@example.com|Pacific
Standard Time|GMT-07:00
15:58:57.3 (3888677)|EXECUTION_STARTED
15:58:57.3
(3924515)|CODE_UNIT_STARTED|[EXTERNAL]|01p9A000000FmMN|RejectDuplicateFavoriteTest.acceptNonDuplicate()
15:58:57.3 (5372873)|HEAP_ALLOCATE|[72]|Bytes:3
...

SEE ALSO:

Apex Developer Guide: Debug Log

185

Generate and View Apex Debug LogsDevelopment

https://developer.salesforce.com/tools/vscode/en/apex/isv-debugger
https://marketplace.visualstudio.com/items?itemName=salesforce.salesforcedx-vscode-apex-debugger
https://developer.salesforce.com/tools/vscode/en/apex/replay-debugger/#set-up-apex-replay-debugger
https://developer.salesforce.com/tools/vscode/en/apex/interactive-debugger/#set-up-apex-debugger
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_debugging_debug_log.htm

CHAPTER 10 Build and Release Your App

When you finish writing your code, the next step is to deploy it. We offer different deployment options
based on your role and needs as a customer, system integrator, or independent software vendor (ISV)
partner.

In this chapter ...

• Build and Release
Your App with
Metadata API To learn about the benefits of the different development models, review these Trailhead modules:

• Determine Which Application Lifecycle Management Model Is Right for You

• Application Lifecycle and Development Models

• Package Development Model

• Quick Start: Unlocked Packages

• Unlocked Packages for Customers

Based on your adoption readiness, review this table for your recommended options:

Release Options To Deliver Apps

Customers and Non-ISV Partners

• Unlocked package

An unlocked package is for customers who want to organize metadata into a package and deploy
the metadata (via packages) to different orgs.

Note: An unlocked package offers a super-set of the capabilities of an unmanaged package.
Therefore, unmanaged packages aren’t included in this list.

For more information, see Unlocked Packages.

• Change sets, or org development via Salesforce CLI

ISV Partners

• Second-Generation Managed Package

If you’re an ISV that develops apps and lists them on AppExchange, Salesforce recommends managed
packages.

Second-generation managed packaging (managed 2GP) ushers in a new way for AppExchange
partners to develop, distribute, and manage their apps and metadata. You can use managed 2GP
to organize your source, build small modular packages, integrate with your version control system,
and better utilize your custom Apex code. You can execute all packaging operations via Salesforce
CLI, or automate them using scripts.

For more information on managed 2GP packages, see the Second-Generation Managed Packaging
Developer Guide.

• First-Generation Managed Package

186

https://trailhead.salesforce.com/en/content/learn/trails/determine-which-application-lifecycle-management-model-is-right-for-you
https://trailhead.salesforce.com/en/content/learn/modules/application-lifecycle-and-development-models
https://trailhead.salesforce.com/content/learn/modules/sfdx_dev_model
https://trailhead.salesforce.com/projects/quick-start-unlocked-packages
https://trailhead.salesforce.com/trails/sfdx_get_started/modules/unlocked-packages-for-customers
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm

Similar to managed 2GP, managed 1GP packages are used by ISVs to distribute their business apps
to customers via AppExchange.

If you’re familiar with first-generation managed packages and want to learn more about how 1GP
differs from 2GP, see Comparison of First- and Second-Generation Managed Packages.

For more information on managed 1GP packages, see Create a First-Generation Managed Package
using Salesforce DX.

Not Ready for Package Development?

If you or your team isn’t ready for package development, you can continue to use change sets, or try to
the org development model, where you deploy changes using Salesforce CLI. For more information, see
Build and Release Your App with Metadata API.

187

Build and Release Your App

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_comparison.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/sfdx_dev_build_release.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/sfdx_dev_build_release.htm

Build and Release Your App with Metadata API

Develop and test your app in your sandboxes. Use Salesforce CLI or Salesforce Extensions for VS Code to retrieve and deploy your source.
This development work flow is called the org development model.

Develop and Test in a Sandbox Using the Org Development Model
Similar to change sets, the release artifact is a set of changed metadata to update in the production org. You can develop, test, and
deploy your changes using the project deploy commands. If you want to know more about this development model, see the
Org Development Model module in Trailhead.

Development and Release Environments
1. Develop and test: Each team member has their own Developer sandbox to create their assigned customization. Developer sandboxes

contain no production data.

2. Build release: Team members each migrate their customizations from their respective developer sandboxes to a shared Developer
Pro sandbox for integration. Developer Pro sandboxes don’t contain production data, but you can seed them with testing data.

3. Test release: For user-acceptance testing, the team uses a Partial sandbox to create a complete replica of production.

4. Release: After the release is in production, the team can use the Full sandbox to train users without the risk of altering production
data. A Full sandbox includes a copy of production data.

188

Build and Release Your App with Metadata APIBuild and Release Your App

https://trailhead.salesforce.com/content/learn/modules/org-development-model

What Tools Do I Need?

DescriptionTool

The Salesforce DX project contains the metadata and source files
that comprise your changes. A DX project has a specific project
structure and source format.

In addition to source files, the project contains a configuration file,
sfdx-project.json. This file contains project information

Salesforce DX project

and enables you to leverage Salesforce DX tools for many of your
development tasks.

After testing the changes, you create the deployment artifact, a
.zip file that contains changed files to deploy. Deploy the release

Deployment artifact

artifact to the full (staging) sandbox first, and then finally to
production. You can think of the deployment artifact as the
inbound change set. The changes don’t take effect until they are
deployed.

All changes are merged and stored in a source control system,
which contains the Salesforce DX project.

Source control system

You can use Salesforce CLI for every phase of the org development
life cycle. It improves productivity by providing a single interface
for all your development, testing, and automation use cases.

Salesforce CLI

Salesforce Extensions for VS Code is built on top of Salesforce CLI
and Visual Studio Code. Together, they are an integrated

Salesforce Extensions for VS Code

development environment for custom development on Lightning
Platform. You can run Salesforce CLI commands directly from the
command palette or terminal.

It’s still important to capture your changes externally using formal
change-tracking tools, such as a change list, a deployment run list,
and other project management tools.

Change management mechanisms

Considerations for Deploying Apex Code
To deploy Apex to production, unit tests of your Apex code must meet coverage requirements. Code coverage indicates how many
executable lines of code in your classes and triggers are covered by your test methods. Write test methods to test your triggers and
classes, and then run those tests to generate code coverage information.

If you don’t specify a test level when initiating a deployment, the default test execution behavior depends on the contents of your
deployment package.

• If your deployment package contains Apex classes or triggers, when you deploy to production, all tests are executed, except tests
that originate from a managed package.

• If your package doesn’t contain Apex code, no tests are run by default.

You can run tests for a deployment of non-Apex components. You can override the default test execution behavior by setting the test
level in your deployment options. Test levels are enforced regardless of the types of components present in your deployment package.

189

Build and Release Your App with Metadata APIBuild and Release Your App

We recommend that you run all local tests in your development environment, such as a sandbox, before deploying to production.
Running tests in your development environment reduces the number of tests required in a production deployment.

Develop and Test Changes Locally

Develop changes in source format, deploying to and retrieving from your Developer sandbox.

Build and Test the Release Artifact

After your team has finished its development tasks, transition to the build release phase to integrate your changes in a Developer
Pro sandbox. Then build the release artifact.

Test the Release Artifact in a Staging Environment

Stage the changes and run regression tests in a Full sandbox.

Release Your App to Production

Now that all your tests have passed in the Full sandbox, you’re ready to deploy to production.

Cancel a Metadata Deployment

You can cancel a metadata deployment from Salesforce CLI and specify a wait time for the command to complete.

Develop and Test Changes Locally
Develop changes in source format, deploying to and retrieving from your Developer sandbox.

These steps provide the high-level work flow.

1. Create the source control repository.

2. Create a DX project.

3. Add the DX project files to your source control repository.

4. Authorize the Developer sandbox.

5. Perform development tasks in your developer sandbox.

6. Retrieve the changes from the developer sandbox. If you have a few changes, you can indicate a comma-separated list of metadata
component names. If you have many changes, you can use a manifest (package.xml).

sf project retrieve start --manifest path/to/package.xml

7. Commit the changes to the source control repository.

Next: Deploy all changes the team has made to the Developer Pro sandbox, then test those changes.

Build and Test the Release Artifact
After your team has finished its development tasks, transition to the build release phase to integrate your changes in a Developer Pro
sandbox. Then build the release artifact.

Here are the high-level steps in the work flow to create the release artifact.

1. Pull the changes from the repo so your local project contains all the changes your team has made.

2. Authorize the Developer Pro sandbox.

190

Develop and Test Changes LocallyBuild and Release Your App

3. Run the deploy command that mimics what you’ll deploy to production, for example:

sf project source deploy --manifest manifest/package.xml --target-org dev-pro-sandbox
\
--test-level RunSpecifiedTests --tests TestMyCode

4. Open the sandbox.

5. Perform testing.

6. If the testing passes, continue to the test release phase where you deploy the release artifact to the partial sandbox. Then perform
user-acceptance testing.

After the testing passes, move to the release phase and perform regression tests in the Full sandbox.

Test the Release Artifact in a Staging Environment
Stage the changes and run regression tests in a Full sandbox.

After you have made all your changes based on the integration testing, the next step is to stage the changes in a Full sandbox. The
process of deploying changes to the Full sandbox is similar to the process you used to deploy changes to your Developer Pro sandbox.
This phase includes regression testing and mimics how you release the changes to production.

These steps provide the high-level work flow.

1. Authorize the Full sandbox.

2. (Optional) If you made any changes based on your testing in the Developer Pro sandbox, create a release artifact (.zip). If not, use
the existing release artifact.

3. To validate the deployment without saving the components in the target org, run all local (regression) tests. A validation enables
you to verify the results of tests that would be executed during a deployment, but doesn’t commit any changes.

sf project deploy validate --manifest manifest/package.xml --target-org full-sandbox
--test-level RunLocalTests

4. Test the actual production deployment steps in the staging sandbox. Set up the same quick deploy that you plan to execute against
the production org.

sf project deploy validate --manifest manifest/package.xml --target-org full-sandbox
--test-level RunSpecifiedTests

This command returns a job ID that you reference in the quick deploy.

5. Next, test the quick deploy using the job ID returned in the previous step.

sf project deploy quick --target-org full-sandbox --job-id jobID

After you validate a deployment, you have 10 days to perform the quick deployment to production.

Release Your App to Production
Now that all your tests have passed in the Full sandbox, you’re ready to deploy to production.

1. In your deployment run list, complete any pre-deployment tasks.

2. Authorize your production org.

191

Test the Release Artifact in a Staging EnvironmentBuild and Release Your App

3. Set up the quick deploy by validating the deployment.

sf project deploy validate --source-dir force-app --target-org prod-org --test-level
RunLocalTests

This command returns a job ID that you reference in the quick deploy.

4. After the tests are run, verify that all the Apex tests have passed. Be sure that the tests cover at least 75% of the code being deployed.

5. Run the quick deploy:

sf project deploy quick --target-org prod-org --job-id jobID

6. Open the production org, then perform any post-deployment tasks listed in the deployment run list.

Cancel a Metadata Deployment
You can cancel a metadata deployment from Salesforce CLI and specify a wait time for the command to complete.

To cancel your most recent deployment, run project deploy cancel --use-most-recent. You can cancel earlier
deployments by using the --job-id <JOBID> flag to specify the deployment that you want to cancel.

sf project deploy cancel --job-id <jobid>

The default wait time for the cancel command to complete and display its results in the terminal window is 33 minutes. If the command
isn’t completed by the end of the wait period, the CLI returns control of the terminal window to you. You can adjust the wait time as
needed by specifying the number of minutes in the --wait flag, as shown in the following example:

sf project deploy cancel --wait 20 --use-most-recent

Curious about the status of a canceled deployment? Run a deployment report.

sf project deploy report --use-most-recent

192

Cancel a Metadata DeploymentBuild and Release Your App

CHAPTER 11 Unlocked Packages

Salesforce offers different types of packages, and unlocked packages are especially suited for internal
business apps. Unless you plan to distribute an app on AppExchange, an unlocked package is the right
package type for most use cases. You can use unlocked packages to organize your existing metadata,
package an app, extend an app that you’ve purchased from AppExchange, or package new metadata.

In this chapter ...

• What’s an Unlocked
Package?

• Package-Based
Development Model

Unlocked packages follow a source-driven development model. The source of truth of the metadata
contained in the package is your version control system, not what’s in an org. This model brings with it
all the benefits of modern source-driven development models.• Before You Create

Unlocked Packages
Note: If you’re an AppExchange partner that plans to distribute your app to customers via
AppExchange, use second-generation managed packaging. See Second-Generation Managed
Packages for more information.

• Know Your Orgs

• Create
Org-Dependent
Unlocked Packages

• Workflow for
Unlocked Packages

• Configure Unlocked
Packages

• How We Handle
Profile Settings in
Unlocked Packages

• Develop Unlocked
Packages

• Push a Package
Upgrade for
Unlocked Packages

• Install an Unlocked
Package

• Migrate Deprecated
Metadata from
Unlocked Packages

• Uninstall an
Unlocked Package

• Transfer an Unlocked
Package to a
Different Dev Hub

193

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp.htm

What’s an Unlocked Package?

If you’re new to packaging, you can think about a package as a container that you fill with metadata. It contains a set of related features,
customizations, and schema. You use packages to move metadata from one Salesforce org to another.

Each unlocked package has a distinct life cycle. You add metadata to a package, and create a new package version. While the package
is continually evolving, each package version is an immutable artifact.

A package version contains the specific metadata and features associated with the package version, at the time it was created. As you
iterate on your package, and add, remove, or change the packaged metadata, you create many package versions.

You can install a package version in a scratch, sandbox, trial, developer edition, or production org. Installing a package version is similar
to deploying metadata. Each package version has a version number, and subscribers can install a new package version into their org
through a package upgrade.

Note: Since package versions are immutable, they can also be used as artifacts for Continuous Integration (CI) and Continuous
Delivery (CD) processes.

You can repeat the package development cycle any number of times. You can change metadata, create a package version, test the
package version, and finally deploy or install the package to a production org. This distinct app development lifecycle lets you control
exactly what, when and how your metadata is rolled out. In the installed org, you can inspect which metadata came from which package
and the set of all metadata associated with a specific package.

Package-Based Development Model

To demonstrate the power of unlocked packages, here’s how packaging works in the traditional development model. For most production
orgs, metadata traditionally is contained in two buckets: a set of managed packages installed from AppExchange, and unpackaged
metadata.

Customers often invest in Salesforce customizations to support business processes and extend the power of the Salesforce platform. In
the development model, your Salesforce org’s monolith of unpackaged metadata contains all the metadata that belongs to a custom
app or extension. Because that metadata isn’t isolated or organized, it can be difficult to understand, upgrade, and maintain.

In the package development model, you can organize your unpackaged metadata in your production org into well-defined packages.
And you can use Salesforce DX projects to organize your source into package directories with everything managed in a version control
system of your choice. Your end goal is to create packages using those directories that are versionable, easy to maintain, update, install,
and upgrade.

Unlocked packages allow you to declare multi-level dependencies on one or many managed and unlocked packages, which keeps your
packages small and modular. You can use the command line to execute unlocked packaging operations, or you can include
packaging-specific Salesforce CLI commands in a script and automate your package development.

Before You Create Unlocked Packages

When you use unlocked packaging, to be sure that you set it up correctly, verify the following.

Did you?

• Enable Dev Hub in Your Org

• Enable Second-Generation Managed Packaging

• Install Salesforce CLI

Note: Unlocked packaging is available with these licenses: Salesforce or Salesforce Limited Access - Free (partners only).

194

What’s an Unlocked Package?Unlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_devhub.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_enable_secondgen_pkg.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_intro.htm

Developers who work with unlocked packages need the correct permission set in the Dev Hub org. Developers need either the System
Administrator profile or the Create and Update Second-Generation Packages permission. For more information, see Add Salesforce DX
Users.

The maximum number of unlocked package versions that you can create from a Dev Hub per day is the same as your daily scratch org
allocation. To request a limit increase, contact Salesforce Customer Support.

Scratch orgs and packages count separately, so creating an unlocked package doesn’t count against your daily scratch org limit. To view
your scratch org limits, use the CLI:

sf limits api display

For more information on scratch org limits, see Scratch Orgs.

Know Your Orgs

Some of the orgs that you use with unlocked packaging have a unique purpose.

Choose Your Dev Hub Org
Use the Dev Hub org for these purposes.

When you create an unlocked package using Salesforce CLI, you associate the package with a specific Dev Hub org. When you’re ready
to define and create a package for production use, be sure to create the package using the Dev Hub in one of your production orgs.

• As owner of all unlocked packages

• To link your namespaces if you want to create namespaced unlocked packages

• To authorize and run your sf package commands

Namespace Org
If you are using a namespace, you’ll need a namespace org to acquire a package namespace. If you want to use the namespace strictly
for testing, choose a disposable namespace.

After you create a namespace org and specify the namespace in it, open the Dev Hub org and link the namespace org to the Dev Hub
org.

Other Orgs
When you work with packages, you also use these orgs:

• You can create scratch orgs on the fly to use while testing your packages.

• The target or installation org is where you install the package.

195

Know Your OrgsUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_add_users.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_setup_add_users.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_scratch_orgs.htm

Create Org-Dependent Unlocked Packages

USER PERMISSIONS

To create packages:
• Create and Update

Second-Generation
Packages

Org-dependent unlocked packages are a variation of unlocked packages that allow you to create
packages that depend on unpackaged metadata in the org where you plan to install the package
(installation org).

Untangling your production org metadata can be a daunting project. But now you have a solution
that enables you to package metadata without completely accounting for all metadata dependencies:
org-dependent unlocked packages. When you use org-dependent unlocked packages, metadata
validation occurs during package installation, instead of during package version creation.

Longstanding and large production orgs often accumulate large amounts of metadata that are difficult to modularize when adopting
a package-based Application Lifecycle Management (ALM) approach. Instead, you can package metadata that depends on unpackaged
metadata in the installation org.

Note: Org-dependent unlocked packages are a variation of unlocked packages, and not a separate package type. They follow
the same package development steps, and use the same supported metadata types as unlocked packages.

To create an org-dependent unlocked package, specify the orgdependent CLI parameter on the sf package create CLI
command.

sf package create -t Unlocked -r force-app -n MyPackage --org-dependent

Org Dependent Unlocked PackagesUnlocked PackagesScenario

No. These packages are designed for specific
production and sandbox orgs. You can install

YesBuild once, install anywhere

them only in orgs that contain the metadata that
the package depends on.

Occurs during package installationOccurs during package version creationDependency validation

NoYesCan depend on other packages

NoYesRequires dependencies to be
resolved to create the package

See the unlocked packaging channel of the
Metadata Coverage Report.

See the unlocked packaging channel of the
Metadata Coverage Report.

Supported metadata types

Use a sandbox that contains the dependent
metadata. Consider enabling Source Tracking in

Use scratch orgs to develop and test your
unlocked packages.

Recommended development
and testing environment

Sandboxes to develop your org-dependent
unlocked package. Then, test the package in a
sandbox org before installing it in your production
org.

We don’t calculate code coverage, but we
recommend that you ensure the Apex code in
your package is well tested.

Before you can promote and release an unlocked
package, the Apex code must meet a minimum
75% code coverage requirement.

Code coverage requirement

To review which of your packages are org-dependent unlocked packages, use sf package list --verbose.

196

Create Org-Dependent Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_unlocked_pkg_workflow.htm
https://developer.salesforce.com/docs/metadata-coverage/
https://developer.salesforce.com/docs/metadata-coverage/
https://developer.salesforce.com/docs/metadata-coverage/
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_sandboxes_source_tracking.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_sandboxes_source_tracking.htm

Workflow for Unlocked Packages

You can create and install an unlocked package directly from the Salesforce command line.

Review and complete the steps in Before You Create Unlocked Packages before starting this workflow.

The basic workflow includes these steps. See specific topics for details about each step.

1. Create a DX project.

sf project generate --output-dir expense-manager-workspace --name expenser-app

2. Authorize the Dev Hub org, and create a scratch org.

sf org login web --set-default-dev-hub --alias MyDevHub

When you perform this step, include the --set-default-dev-hub option. You can then omit the Dev Hub username when
running subsequent Salesforce CLI commands.

Tip: If you define an alias for each org you work with, it’s easy to switch between different orgs from the command line. You
can authorize different orgs as you iterate through the package development cycle.

3. Create a scratch org and develop the package. You can use VS Code and the Setup UI in the scratch org to build and retrieve the
pieces you want to include in your package. Navigate to the expenser-app directory, and then run this command.

sf org create scratch --definition-file config/project-scratch-def.json --alias MyTestOrg1
--duration-days 30

4. Verify that all package components are in the project directory where you want to create a package.

5. From the Salesforce DX project directory, create the package.

sf package create --name "Expense Manager" --path force-app
--package-type Unlocked

6. Review your sfdx-project.json file. The CLI automatically updates the project file to include the package directory and
creates an alias based on the package name.

{
"packageDirectories": [

{
"path": "force-app",
"default": true,
"package": "Expense Manager",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT"

}
],
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "59.0",
"packageAliases": {

"Expense Manager": "0Hoxxx"
}

}

197

Workflow for Unlocked PackagesUnlocked Packages

Notice the placeholder values for versionName and versionNumber.

Specify the features and org settings required for the metadata in your package using an external .json file, such as the scratch org
definition file. You can specify using the --definition-file flag with the sf package version create command,
or list the definition file in your sfdx-project.json file. See: Project Configuration File for Unlocked Packages

7. Create a package version. This example assumes the package metadata is in the force-app directory.

sf package version create --package "Expense Manager" --installation-key test1234 --wait
10

8. Install and test the package version in a scratch org. Use a different scratch org from the one you used in step three.

sf package install --package "Expense Manager@0.1.0-1" --target-org MyTestOrg1
--installation-key test1234 --wait 10 --publish-wait 10

9. After the package is installed, open the scratch org to view the package.

sf org open --target-org MyTestOrg1

Package versions are beta until you promote them to a managed-released state. See: Release an Unlocked Package.

Configure Unlocked Packages

You include an entry in the sfdx-project.json file for each package to specify its alias, version details, dependencies, features,
and org settings. From the command line, you can also set or change options, such as specifying an installation key, update the package
name, or add a description.

Project Configuration File for Unlocked Packages

The project configuration file is a blueprint for your project. The settings in the file create an outline of your package and determine
the package attributes and package contents.

Unlocked Packaging Keywords

A keyword is a variable that you can use to specify a package version number.

Package Installation Key

To ensure the security of the metadata in your package, you must specify an installation key when creating a package version.
Package creators provide the key to authorized subscribers so they can install the package. Package installers provide the key during
installation, whether installing the package from the CLI or from a browser. An installation key is the first step during installation.
The key ensures that no package information, such as the name or components, is disclosed until the correct installation key is
supplied.

Extract Dependency Information from Unlocked Packages

For an installed unlocked package, you can now run a simple SOQL query to extract its dependency information. You can also create
a script to automate the installation of unlocked packages with dependencies.

Understanding Namespaces

A namespace is a 1-15 character alphanumeric identifier that distinguishes your package and its contents from other packages in
your org.

Share Release Notes and Post-Install Instructions

Share details about what’s new and changed in a released unlocked package with your users.

Specify Unpackaged Metadata or Apex Access for Apex Tests (Unlocked Packages)

198

Configure Unlocked PackagesUnlocked Packages

Best Practices for Unlocked Packages

We suggest that you follow these best practices when working with unlocked packages.

Package IDs and Aliases for Unlocked Packages

During the package lifecycle, packages and package versions are identified by an ID or package alias. When you create a package or
package version, Salesforce CLI creates a package alias based on the package name, and stores that name in the
sfdx-project.json file. When you run CLI commands or write scripts to automate packaging workflows, it’s often easier to
reference the package alias, instead of the package ID or package version ID.

Frequently Used Unlocked Packaging Operations

Project Configuration File for Unlocked Packages
The project configuration file is a blueprint for your project. The settings in the file create an outline of your package and determine the
package attributes and package contents.

Here are the parameters you can specify in the project configuration file.

Default if Not SpecifiedRequired?Name

None. Assign permission sets and permission set licenses to the
user in context when your Apex tests run at package version
creation.

"apexTestAccess": {
"permissionSets": [

NoapexTestAccess

"Permission_Set_1",
"Permission_Set_2"
],
"permissionSetLicenses": [
"SalesConsoleUser"
]
}

See Specify Unpackaged Metadata or Apex Access for Apex Tests
(Unlocked Packages)

None. If your package has an associated branch, but your package
dependency is associated with a different branch, use this format.

"dependencies": [
{

Nobranch

"package": "pkgB",
"versionNumber":

"1.3.0.LATEST",
"branch": "featureC"
}
]

199

Project Configuration File for Unlocked PackagesUnlocked Packages

Default if Not SpecifiedRequired?Name

If your package has an associated branch, but your package
dependency doesn’t have an associated branch, use this format.

"dependencies": [
{
"package": "pkgB",
"versionNumber":

"1.3.0.LATEST",
"branch": ""
}
]

See Use Branches in Unlocked Packaging

true

Indicates the default package directory. Use the sf project
retrieve command to copy metadata from your scratch org
to your default package directory.

Yes, if you’ve
specified more than
one package
directory

default

There can be only one package directory in which the default is
set to true.

None. A reference to an external .json file used to specify the
features and org settings required for the metadata of your package,
such as the scratch org definition.

Example:

"definitionFile":
"config/project-scratch-def.json",

NodefinitionFile

None. Specify the dependencies on other packages.

To specify dependencies for unlocked packages within the same
Dev Hub, use either the package version alias or a combination of
the package name and the version number.

"dependencies": [
{

Nodependencies

"package": "MyPackageName@0.1.0.1"
}

]

"dependencies": [
{

"package": "MyPackageName",
"versionNumber": "0.1.0.LATEST"

}
]

200

Project Configuration File for Unlocked PackagesUnlocked Packages

Default if Not SpecifiedRequired?Name

To specify dependencies for unlocked packages outside of the Dev
Hub use:

"dependencies": [
{

"package": "OtherOrgPackage@1.2.0"
}

]

Note: You can use the LATEST keyword for the version
number to set the dependency.

To denote dependencies with package IDs instead of package
aliases, use:

• The 0Ho ID if you specify the package ID along with the
version number

• The 04t ID if you specify only the package version ID

If the package has more than one dependency, provide a
comma-separated list of packages in the order of installation. For
example, if a package depends on the package Expense Manager
- Util, which in turn depends on the package External Apex Library,
the package dependencies are:

"dependencies": [
{

"package" : "External Apex Library -
1.0.0.4"

},
{

"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"

}
]

See: Extract Dependency Information from Unlocked Packages

False. Setting this parameter to true ensures that user licenses
associated with profiles in unlocked packages are retained during

NoincludeProfileUserLicenses

package version creation. By default, unlocked packages remove
profile information not pertinent to the packaged metadata.

"packageDirectories": [
{
"package": "PackageA",
"path": "common",
"versionName": "ver 0.1",
"versionNumber":

"0.1.0.NEXT",
"default": false,

201

Project Configuration File for Unlocked PackagesUnlocked Packages

Default if Not SpecifiedRequired?Name

"includeProfileUserLicenses": true
}
]

None. A 1–15 character alphanumeric identifier that distinguishes
your package and its contents from packages of other developers.

nonamespace

The package name specified in the project json file.Yespackage

Salesforce CLI updates the project file with aliases when you create
a package or package version. You can also manually update this

YespackageAliases

section for existing packages or package versions. You can use the
alias instead of the cryptic package ID when running CLI sf
package commands.

If you don’t specify a path, Salesforce CLI uses a placeholder when
you create a package.

Yespath

None. A URL to post-install instructions for subscribers.NopostInstallUrl

None. A URL to release notes.NoreleaseNotesUrl

None.NoseedMetadata

Specify the path to your seedMetadata directory.

Seed metadata is available to standard value sets only. If your
package depends on standard value sets, you can specify a seed
metadata directory that contains the value sets.

Example:

"packageDirectories": [
{

"seedMetadata": {
"path":

"my-unpackaged-seed-directory"
}

},
]

None. See Specify Unpackaged Metadata or Apex Access for Apex
Tests (Unlocked Packages)

NounpackagedMetadata

None.NoversionDescription

If not specified, the CLI uses versionNumber as the version
name.

NoversionName

202

Project Configuration File for Unlocked PackagesUnlocked Packages

Default if Not SpecifiedRequired?Name

None. Version numbers are formatted as major.minor.patch.build.
For example, 1.2.1.8.

To automatically increment the build number to the next available
build for the package, use the keyword NEXT (1.2.1.NEXT).

YesversionNumber

When you specify a parameter using Salesforce CLI, it overrides the value listed in the project definition file.

The Salesforce DX project definition file is a JSON file located in the root directory of your project. Use the sf project generate
CLI command to generate a project file that you can build upon. Here’s how the parameters in packageDirectories appear.

{
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "47.0",
"packageDirectories": [

{
"path": "util",
"default": true,
"package": "Expense Manager - Util",
"versionName": "Winter ‘20",
"versionDescription": "Welcome to Winter 2020 Release of Expense Manager Util

Package",
"versionNumber": "4.7.0.NEXT",
"definitionFile": "config/scratch-org-def.json"

},
{

"path": "exp-core",
"default": false,
"package": "Expense Manager",
"versionName": "v 3.2",
"versionDescription": "Winter 2020 Release",
"versionNumber": "3.2.0.NEXT",
"postInstallUrl": "https://expenser.com/post-install-instructions.html",
"releaseNotesUrl": "https://expenser.com/winter-2020-release-notes.html",
"definitionFile": "config/scratch-org-def.json",
"dependencies": [

{
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.LATEST"

},
{

"package" : "External Apex Library - 1.0.0.4"
}

]
}

],
"packageAliases": {

"Expense Manager - Util": "0HoB00000004CFpKAM",
"External Apex Library@1.0.0.4": "04tB0000000IB1EIAW",

203

Project Configuration File for Unlocked PackagesUnlocked Packages

"Expense Manager": "0HoB00000004CFuKAM"}
}

What If I Don’t Want My Salesforce DX Project Automatically Updated?
In some circumstances, you don’t want to have automatic updates to the sfdx-project.json file. When you require more control,
use these environment variables to suppress automatic updates to the project file.

Set This Environment Variable to TrueFor This Command

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_CREATEsf package create

SFDX_PROJECT_AUTOUPDATE_DISABLE_FOR_PACKAGE_VERSION_CREATEsf package version create

Unlocked Packaging Keywords
A keyword is a variable that you can use to specify a package version number.

You can use keywords to automatically increment the value of the package build numbers, ancestor version numbers, set the package
dependency to the latest version, or the latest released and promoted version.

ExampleUse the Keyword

"dependencies": [
{

LATEST to specify the latest version of the package dependency
when you create a package version.

"package": "MyPackageName",
"versionNumber": "0.1.0.LATEST"

}
]

"versionNumber": "1.2.0.NEXT"
NEXT to increment the build number to the next available for the
package version.

If you don’t use NEXT, and you also forget to update the version
number in your sfdx-project.json file, the new package
version uses the same number as the previous package version.
Although we don’t enforce uniqueness on package version
numbers, every package version is assigned a unique subscriber
package version ID (starts with 04t).

"dependencies": [
{

RELEASED to specify the latest promoted and released version of
the package dependency when you create a package version.

"package": "pkgB",
"versionNumber": "2.1.0.RELEASED"
}

]

"packageDirectories": [
{

HIGHEST to automatically set the package ancestor to the highest
promoted and released package version number.

Use only with ancestor version or ancestor ID.

204

Unlocked Packaging KeywordsUnlocked Packages

ExampleUse the Keyword

"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "HIGHEST"
},

"packageDirectories": [
{

NONE in the ancestor version or ancestor ID field.

Ancestry defines package upgrade paths. If the package ancestor
is set to NONE, an existing customer can’t upgrade to that package
version.

"path": "util",
"package": "Expense Manager - Util",
"versionNumber": "4.7.0.NEXT",
"ancestorVersion": "NONE"
},

Package Installation Key
To ensure the security of the metadata in your package, you must specify an installation key when creating a package version. Package
creators provide the key to authorized subscribers so they can install the package. Package installers provide the key during installation,
whether installing the package from the CLI or from a browser. An installation key is the first step during installation. The key ensures
that no package information, such as the name or components, is disclosed until the correct installation key is supplied.

To set the installation key, add the --installation-key parameter to the command when you create the package version. This
command creates a package and protects it with the installation key.

sf package version create --package "Expense Manager" --installation-key "JSB7s8vXU93fI"

Supply the installation key when you install the package version in the target org.

sf package install --package "Expense Manager" --installation-key "JSB7s8vXU93fI”

Change the Installation Key for an Existing Package Version
You can change the installation key for an existing package version with the sf package version update command.

sfd package version update --package "Expense Manager@1.2.0-4" --installation-key
“HIF83kS8kS7C”

Create a Package Version Without an Installation Key
If you don’t require security measures to protect your package metadata, you can create a package version without an installation key.

sf package version create --package "Expense Manager" --directory common \
--tag 'Release 1.0.0' --installation-key-bypass

Check Whether a Package Version Requires an Installation Key
To determine whether a package version requires an installation key, use either the sf package version list or sf package
version report CLI command.

205

Package Installation KeyUnlocked Packages

Extract Dependency Information from Unlocked Packages
For an installed unlocked package, you can now run a simple SOQL query to extract its dependency information. You can also create a
script to automate the installation of unlocked packages with dependencies.

The SubscriberPackageVersion Tooling API object now provides dependency information. Using a SOQL query on SubscriberPackageVersion,
you can identify the packages on which your unlocked package has a dependency. You can get the (04t) IDs and the correct install order
for those packages.

Example: Package B has a dependency on package A. Package D depends on packages B and C. Here’s a sample
sfdx-project.json that you would have specified while creating a package version. Package D dependencies are noted
as packages A, B, and C.

{
"packageDirectories": [

{
"path": "pkg-a-workspace",
"package": "pkgA",
"versionName": "ver 4.9",
"versionNumber": "4.9.0.NEXT",
"default": true

},
{

"path": "pkg-b-workspace",
"package": "pkgB",
"versionName": "ver 3.17",
"versionNumber": "3.17.0.NEXT",
"default": false,
"dependencies": [

{
"package": "pkgA",
"versionNumber": "3.3.0.LATEST"

}
]

},
{

"path": "pkg-c-workspace",
"package": "pkgC",
"versionName": "ver 2.1",
"versionNumber": "2.1.0.NEXT",
"default": false

},
{

"path": "pkg-d-workspace",
"package": "pkgD",
"versionName": "ver 1.1",
"versionNumber": "1.1.0.NEXT",
"default": false,
"dependencies": [

{
"package": "pkgA",
"versionNumber": "3.3.0.LATEST"

},
{

"package": "pkgB",

206

Extract Dependency Information from Unlocked PackagesUnlocked Packages

"versionNumber": "3.12.0.LATEST"
},
{

"package": "pkgC",
"versionNumber": "2.1.0.LATEST"

}
]

}
],
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "44.0",
"packageAliases": {

"pkgA": "0HoB00000008Oq6KAE",
"pkgB": "0HoB00000008OqBKAU",
"pkgC": "0HoB00000008OqGKAU",
"pkgD": "0HoB00000008OqGKAQ"

}
}

Before installing pkgD (with ID=04txx000000082hAAA), use this SOQL query to determine its dependencies. The username is
typically the target subscriber org where the unlocked package is to be installed.

sf data query -u {USERNAME} -t
-q "SELECT Dependencies FROM SubscriberPackageVersion

WHERE Id='04txx000000082hAAA'" --json

You see this output when you run the query, with the (04t) IDs for pkgA, pkgB, and pkgC in that order.

"Dependencies":{"Ids":[
{"subscriberPackageVersionId":"04txx000000080vAAA"},
{"subscriberPackageVersionId":"04txx000000082XAAQ"},
{"subscriberPackageVersionId":"04txx0000000AiGAAU"}]}

Understanding Namespaces
A namespace is a 1-15 character alphanumeric identifier that distinguishes your package and its contents from other packages in your
org.

When you specify a package namespace, every component added to a package has the namespace prefixed to the component API
name. Let’s say you have a custom object called Insurance_Agent with the API name, Insurance_Agent__c. If you add this
component to a package associated with the Acme namespace, the API name becomes Acme__Insurance_Agent__c.

You can choose to create unlocked packages with or without a specific namespace. A namespace is assigned to a package at the time
that it’s created and can’t be changed.

Use Namespace Packages IfUse No-Namespace Packages If

You’re new to packaging and you’re adopting packages in several
stages. Using a namespace prefix such as Acme__ can help you

You want to migrate metadata from your org’s monolith of
unpackaged metadata to unlocked packages. Creating a

identify what’s packaged and what’s still unpackaged metadata in
your production orgs

no-namespace package gives you more control over how you
organize and distribute parts of an application.

207

Understanding NamespacesUnlocked Packages

Use Namespace Packages IfUse No-Namespace Packages If

You have more than one development team. A namespace can
ensure your API names don’t collide with another team.

In general, working with a single namespace is easier, and you can
easily share code across packages that share a namespace.

You want to retain the API name of previously unpackaged
metadata elements.

Important: When creating a namespace, use something that’s useful and informative to users. However, don’t name a namespace
after a person (for example, by using a person's name, nickname, or private information).

When you work with namespaces, keep these considerations in mind.

• You can develop more than one unlocked package with the same namespace but you can associate each package with only a single
namespace.

• If you work with more than one namespace, we recommend that you set up one project for each namespace.

Create and Register Your Namespace

With unlocked packages, you can share a single namespace with multiple packages. Since sharing of code is much easier if your
package shares the same namespace, we recommend that if use namepaces, you use a single namespace for your namespaced
unlocked packages.

Avoid Namespace Collisions

Namespaces impact the combination of package types you can install in an org.

Namespace-Based Visibility for Apex Classes in Unlocked Packages

The @namespaceAccessible makes public Apex in a package available to other packages that use the same namespace.
Without this annotation, Apex classes, methods, interfaces, and properties defined in an unlocked package aren’t accessible to the
other packages with which they share a namespace. Apex that is declared global is always available across all namespaces, and
needs no annotation.

Create and Register Your Namespace
With unlocked packages, you can share a single namespace with multiple packages. Since sharing of code is much easier if your package
shares the same namespace, we recommend that if use namepaces, you use a single namespace for your namespaced unlocked packages.

To create a namespace:

1. Sign up for a new Developer Edition org.

2. In Setup, enter Package Manager in the Quick Find box, and select Package Manager.

3. In Namespace Settings, click Edit.

4. Enter a namespace and select Check Availability.

5. (Optional) Select a package to associate with this namespace , or select None, then click Review.

6. Review your selections, and then click Save.

To register a namespace:

1. To link the namespace that you created with your Dev Hub, use Namespace Registry. See Link a Namespace to a Dev Hub for details.

2. In the sfdx-project.json file, specify your namespace using the namespace attribute. When you create a new unlocked
package, the package is associated with the namespace specified in the sfdx-project.json file.

208

Understanding NamespacesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm

Avoid Namespace Collisions
Namespaces impact the combination of package types you can install in an org.

To understand how namespaces affect the types of packages you can install in a namespaced or no-namespace org, review this table.

First-generation
Managed Package
(1GP)

Second-generation
Managed Package
(2GP)

Namespaced
Unlocked Package

No-namespace
Unlocked Package

Installation Org

Pass.

If the namespace of the
1GP is different from the

Pass.

If the namespace of the
2GP is different from the

Pass.

If the namespace of the
unlocked package is

Fail.

You can’t install a
no-namespace unlocked

Org with a namespace

For example, a 1GP
packaging org, 1GP patch

namespace of the org,namespace of the org,different from thepackage in an org with a
namespace.

org, Developer Edition
org with namespace, or a
scratch org with
namespace

you can install one or
many packages.

Fail.

you can install one or
many packages.

namespace of the org,
you can install one or
many packages.

If the namespace of the
1GP is the same as the
namespace of the org,
you can’t install the 1GP
into the org.

Pass.

Can install one or many
1GP packages.

Pass.

Can install one or many
2GP packages.

Pass.

Can install one or many
namespaced unlocked
packages.

Pass.

Can install one or many
no-namespace unlocked
packages.

Org without a
namespace

To understand how namespaces affect the combination of packages that can be installed into one org, review this table.

First-generation Managed
Package (1GP) with
Namespace Y

Second-generation
Managed Package (2GP)
with Namespace Y

Unlocked Package with
Namespace Y

Namespace and Package
Type

Pass.

If each 1GP uses a unique
namespace, you can install

Pass.

If the 1GP and 2GP use a unique
namespace, you can install them
in the same org.

Pass.

If the 1GP and unlocked package
use unique namespaces, you
can install them in the same org.

First-generation Managed
Package (1GP) with
namespace X

multiple 1GP packages in the
same org.

Fail.

If the 1GP packages share a
namespace, you can’t install
them in the same org.

Fail.

If the 1GP and 2GP share a
namespace, you can’t install
them in the same org.

Fail.

If the 1GP and unlocked package
share a namespace, you can’t
install them in the same org.

First-generation Managed
Package (1GP) with
namespace Y

Pass.

If the 1GP packages use unique
namespaces, you can install

Pass.

You can install multiple 2GP
packages with unique

Pass.

You can install a 2GP and a
namespaced unlocked package

Second-generation Managed
Package (2GP) with
namespace X

209

Understanding NamespacesUnlocked Packages

First-generation Managed
Package (1GP) with
Namespace Y

Second-generation
Managed Package (2GP)
with Namespace Y

Unlocked Package with
Namespace Y

Namespace and Package
Type

multiple 1GP packages in the
same org.

namespaces, or the same
namespace.

in the same org. The packages
can share a namespace or use
unique namespaces.

Fail.

If the 1GP and 2GP share a
namespace, you can’t install
them in the same org.

Pass.

You can install multiple 2GP
packages with the same
namespace in the same org.

Pass.

You can install a 2GP and a
namespaced unlocked package
in the same org. The packages
can share a namespace or use
unique namespaces.

Second-generation Managed
Package (2GP) with
namespace Y

Namespace-Based Visibility for Apex Classes in Unlocked Packages
The @namespaceAccessible makes public Apex in a package available to other packages that use the same namespace. Without
this annotation, Apex classes, methods, interfaces, and properties defined in an unlocked package aren’t accessible to the other packages
with which they share a namespace. Apex that is declared global is always available across all namespaces, and needs no annotation.

Considerations for Apex Accessibility Across Packages

• A Lightning component outside the package can access a public Apex method installed from a no-namespace unlocked package.
The component can be installed from another package or created in the org. For accessing Apex methods, a no-namespace unlocked
package is treated the same as an unmanaged package.

• You can't use the @namespaceAccessible annotation for an @AuraEnabled Apex method.

• You can add or remove the @namespaceAccessible annotation at any time, even on managed and released Apex code.
Make sure that you don’t have dependent packages relying on the functionality of the annotation before adding or removing it.

• When adding or removing @namespaceAccessible Apex from a package, consider the impact to users with installed versions
of other packages that reference this package’s annotation. Before pushing a package upgrade, ensure that no user is running a
package version that would fail to fully compile when the upgrade is pushed.

This example shows an Apex class marked with the @namespaceAccessible annotation. The class is accessible to other packages
within the same namespace. The first constructor is also visible within the namespace, but the second constructor isn’t.

// A namespace-visible Apex class
@namespaceAccessible
public class MyClass {

private Boolean bypassFLS;

// A namespace-visible constructor that only allows secure use
@namespaceAccessible
public MyClass() {

bypassFLS = false;
}

// A package private constructor that allows use in trusted contexts,
// but only internal to the package
public MyClass (Boolean bypassFLS) {

this.bypassFLS = bypassFLS;

210

Understanding NamespacesUnlocked Packages

}
@namespaceAccessible
protected Boolean getBypassFLS() {

return bypassFLS;
}

}

Share Release Notes and Post-Install Instructions
Share details about what’s new and changed in a released unlocked package with your users.

Share details about what’s new and changed in an unlocked package with your users. You can specify a release notes URL to display on
the package detail page in the user’s org. And you can share instructions about using your package by specifying a post install URL. The
release notes and post install URLs display on the Installed Packages page in Setup, after a successful package installation. For users who
install packages using an installation URL, the package installer page displays a link to release notes. And users are redirected to your
post install URL following a successful package installation or upgrade.

Specify the postInstallUrl and releaseNotesUrl attributes in the packageDirectories section for the package.

"packageDirectories": [
{

"path": "expenser-schema",
"default": true,
"package": "Expense Schema",
"versionName": ""ver 0.3.2"",
"versionNumber": "0.3.2.NEXT",
"postInstallUrl": "https://expenser.com/post-install-instructions.html",
"releaseNotesUrl": "https://expenser.com/winter-2020-release-notes.html"
},
],
{
"namespace": "",
"sfdcLoginUrl": "https://login.salesforce.com",
"sourceApiVersion": "47.0",
"packageAliases": {

"Expenser Schema": "0HoB00000004CzHKAU",
"Expenser Schema@0.1.0-1": "04tB0000000719qIAA"

}
}

You can also use the --post-install-url and the --release-notes-url Salesforce CLI parameters with the sf
package version create command. The CLI parameters override the URLs specified in the sfdx-project.json file.

Specify Unpackaged Metadata or Apex Access for Apex Tests (Unlocked
Packages)

Specify Unpackaged Metadata for Package Version Creation Tests
Specify the path to the unpackaged metadata in your sfdx-project.json file.

211

Share Release Notes and Post-Install InstructionsUnlocked Packages

In this example, metadata in the my-unpackaged-directory is available for test runs during the package version creation of
the TV_unl package.

"packageDirectories": [
{

"path": "force-app",
"package": "TV_unl",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true,
"unpackagedMetadata": {

"path": "my-unpackaged-directory"
}

},
]

The unpackagedMetadata attribute is intended for metadata that isn’t part of your package. You can’t include the same metadata
in both an unpackaged directory and a packaged directory.

Manage Apex Access for Package Version Creation Tests
Sometimes the Apex tests that you write require a user to have certain permission sets or permission set licenses. Use the
apexTestAccess setting to assign permission sets and permission set licenses to the user in whose context your Apex tests get
run at package version creation.

"packageDirectories": [
{

"path": "force-app",
"package": "TV_unl",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": true,
"unpackagedMetadata": {

"path": "my-unpackaged-directory"
},
"apexTestAccess": {

"permissionSets": [
"Permission_Set_1",
"Permission_Set_2"

],
"permissionSetLicenses": [

"SalesConsoleUser"
]

}

},
]

Note: To assign user licenses, use the runAs Method. User licenses can't be assigned in the sfdx-project.json file.

Best Practices for Unlocked Packages
We suggest that you follow these best practices when working with unlocked packages.

212

Best Practices for Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_testing_tools_runas.htm

• We recommend that you work with only one Dev Hub, and enable Dev Hub in a production org.

• The Dev Hub org against which you run the sf package create command becomes the owner of the package. If the Dev
Hub org associated with a package expires or is deleted, its packages no longer work.

• Use care in deciding how to utilize namespaces. For most customers, we recommend working with no namespace or a single
namespace to avoid unnecessary complexity in managing components. If you’re test-driving unlocked packages, use a test namespace.

Use real namespaces only when you’re ready to embark on a development path headed for release in a production org.

Note: You can’t install a no-namespace, unlocked package into any org with a namespace (for example, a scratch org with
a namespace).

• Include the --tag option when you use the sf package version create and sf package version update
commands. This option helps you keep your version control system tags in sync with specific package versions.

• Create user-friendly aliases for packaging IDs, and include those aliases in your Salesforce DX project file and when running CLI
packaging commands. See: Package IDs and Aliases for Unlocked Packages.

Package IDs and Aliases for Unlocked Packages
During the package lifecycle, packages and package versions are identified by an ID or package alias. When you create a package or
package version, Salesforce CLI creates a package alias based on the package name, and stores that name in the sfdx-project.json
file. When you run CLI commands or write scripts to automate packaging workflows, it’s often easier to reference the package alias,
instead of the package ID or package version ID.

Package aliases are stored in the sfdx-project.json file as name-value pairs, in which the name is the alias and the value is the
ID. You can modify package aliases for existing packages and package versions in the project file.

At the command line, you also see IDs for things like package members (a component in a package) and requests (like a sf package
version create request).

Note: As a shortcut, the documentation sometimes refers to an ID by its three-character prefix. For example, a package version
ID always starts with 04t.

Here are the most commonly used IDs.

DescriptionShort ID NameID Example

Use this ID when contacting Salesforce for
packaging or security review support. To

Subscriber Package ID033J0000dAb27uxVRE

locate this ID for your package, run sf
package list --verbose against
the Dev Hub that owns the package.

Use this ID to install a package version.
Returned by sf package version
create.

Subscriber Package Version ID04t6A0000004eytQAA

Use this ID on the command line to create
a package version. Or enter it into the

Package ID0Hoxx00000000CqCAI

sfdx-project.json file and use the
directory name. Generated by sf
package create.

213

Package IDs and Aliases for Unlocked PackagesUnlocked Packages

DescriptionShort ID NameID Example

Use this ID to view the status and monitor
progress for a specific request to create a

Version Creation Request ID08cxx00000000BEAAY

package version such as sf package
version create report

Frequently Used Unlocked Packaging Operations
For a complete list of Salesforce CLI packaging commands, see: Salesforce Command Line Reference Guide.

What it DoesSalesforce CLI command

Creates a package. When you create a package, you specify its
package type and name, among other things.

sf package create

Creates a package version.sf package version create

Installs a package version in a scratch, sandbox, or production org.sf package install

Removes a package that has been installed in an org. This process
deletes the metadata and data associated with the package.

sf package uninstall

Changes the state of the package version from beta to the
managed-released state.

sf package version promote

Creates a scratch org.sf org create scratch

Opens an org in the browser.sf org open

How We Handle Profile Settings in Unlocked Packages

When you package a profile in an unlocked package or second-generation managed package, the build system inspects the contents
of the profile during package creation and preserves only the profile settings that are directly related to the metadata in the package.
The profile itself, and any profile settings unrelated to the package’s metadata are discarded from the package.

During package installation, the preserved profile settings are applied only to existing profiles in the subscriber org. The profile itself isn’t
installed in the subscriber org.

To control which profile settings are included, use the scopeProfiles parameter in the project configuration file.

Note: Packages that contain only profiles and no additional metadata aren’t allowed and fail during package version creation.

This installation option is available
via…

The packaged profile settings are
applied to...

When you select…

The System Administrator profile in the
subscriber org.

CRUD access to custom objects is granted
automatically to the System Administration
profile.

Install for Admins Only • The package installer page

• Salesforce CLI sf package
install command

214

Frequently Used Unlocked Packaging OperationsUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference/cli_reference.htm
https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev2gp_config_file.htm

This installation option is available
via…

The packaged profile settings are
applied to...

When you select…

The default behavior for CLI-based package
installs is to install for admins only.

The System Administrator profile and all
cloned profiles in the subscriber org.

CRUD access to custom objects is granted
automatically to the System Administration
profile, and all cloned profiles.

Install for All Users • The package installer page

• Salesforce CLI sf package
install command

To install for all users via the CLI, include the
security type parameter.

Standard profiles can’t be modified.
sf package install
--security-type AllUsers

Specific profiles in the subscriber org. This
selection lets the person installing your

Install for Specific Profiles • The package installer page

Not available for CLI-based package
installations.

package determine how to map the profile
settings you packaged to specific profiles in
their org.

To test the behavior of your packaged profile, install your package in a scratch org.

1. From Setup, enter Profile in the Quick Find box, and then locate and inspect the profiles you selected during package installation.

2. Check whether your profile settings have been applied to that profile.

Repeat this step for any other profile you expect to contain your profile settings. Don’t look for the profile name you created; we
apply profile settings to existing profiles in the subscriber org.

Whenever possible, use package permission sets instead of profile settings. Subscribers who install your package can easily assign your
permission set to their users.

Note: During a push upgrade, some profile settings related to Apex classes and field-level security aren’t automatically assigned
to the System Admin profile. To ensure that user access is set up correctly after a push upgrade, communicate with your customer.
Make sure they review and update their profile settings after a push upgrade.

Retain License Settings in Unlocked Packages
By default, license settings in profiles are removed during package creation. To retain these settings, specify the
includeProfileUserLicenses parameter in your sfdx-project.json file. In this scenario, the license settings are
retained and applied to the profiles in the subscriber org that are selected during package installation.

"packageDirectories": [
{

"package": "PackageA",
"path": "common",
"versionName": "ver 0.1",
"versionNumber": "0.1.0.NEXT",
"default": false,
includeProfileUserLicenses: true

215

How We Handle Profile Settings in Unlocked PackagesUnlocked Packages

https://help.salesforce.com/s/articleView?id=sf.standard_profiles.htm&language=en_US

}
]

Develop Unlocked Packages

A package is a top-level container that holds important details about the app or package: the package name, description, and associated
namespace.

You supply the package details in the package descriptor section of your sfdx-project.json project configuration file.

Create and Update an Unlocked Package

When you’re ready to test or share your package, use the sf package create command to create a package.

Create New Versions of an Unlocked Package

A package version is a fixed snapshot of the package contents and related metadata. The package version lets you manage changes
and track what’s different each time you release or deploy a specific set of changes.

Code Coverage for Unlocked Packages

Before you can promote and release an unlocked package, the Apex code must meet a minimum 75% code coverage requirement.
You can install package versions that don't meet code coverage requirements only in scratch orgs and sandboxes.

Release an Unlocked Package

Each new package version is marked as beta when its created. As you develop your package, you may create several package versions
before you create a version that is ready to be released and installed in production orgs.

Update an Unlocked Package Version

You can update most properties of a package version from the command line. For example, you can change the package version
name or description. One important exception is that you can’t change the release status.

Hard-Deleted Components in Unlocked Packages

When these components are removed from an unlocked package, they're hard deleted from the target install org during the package
upgrade.

Delete an Unlocked Package or Package Version

Use the sf package version delete and sf package delete to delete packages and package versions that you
no longer need.

View Package Details

View the details of previously created packages and package versions from the command line.

Create and Update an Unlocked Package
When you’re ready to test or share your package, use the sf package create command to create a package.

If you are using a namespace, specify the package namespace in the sfdx-project.json file. To learn more, see Understanding
Namespaces.

To create the package, change to the project directory. The name becomes the package alias, which is automatically added to the project
file. You can choose to designate an active Dev Hub org user to receive email notifications for Apex gacks, and install, upgrade, or uninstall
failures associated with your packages.

sf package create --name "Expenser App" --package-type Unlocked --path \
"expenser-main" --target-dev-hub my-hub --error-notification-username me@devhub.org

216

Develop Unlocked PackagesUnlocked Packages

The output is similar to this example.

sfdx-project.json has been updated.
Successfully created a package. 0HoB00000004CzHKAU
=== Ids
NAME VALUE
────────── ──────────────────
Package Id 0HoB00000004CzHKAU

Update the Package
To update the name, description, or the user to receive error notifications of an existing package, use this command.

sf package update --package "Expense App" --name "Expense Manager App" \
--description "New Description" --error-notification-username me2@devhub.org

Note: You can’t change the package namespace or package type after you create the package.

Create New Versions of an Unlocked Package
A package version is a fixed snapshot of the package contents and related metadata. The package version lets you manage changes and
track what’s different each time you release or deploy a specific set of changes.

Before you create a package version, first verify package details, such as the package name, dependencies, and major, minor, and patch
version numbers, in the sfdx-project.json file. Verify that the metadata you want to change or add in the new package version
is located in the package’s main directory.

How Many Package Versions Can I Create Per Day?
Run this command to see how many package versions you can create per day and how many you have remaining.

sf limits api display

Look for the Package2VersionCreates entry.

NAME REMAINING MAXIMUM
───────────────────────────────────── ───────── ─────────
Package2VersionCreates 23 50

Create a Package Version
Create the package version with this command. Specify the package alias or ID (0Ho). You can also include a scratch definition file that
contains a list of features and setting that the metadata of the package version depends on.

sf package version create --package "Expenser App" --installation-key “HIF83kS8kS7C” \
--definitionfile config/project-scratch-def.json --wait 10

Note: When creating a package version, specify a --wait time to run the command in non-asynchronous mode. If the package
version is created within that time, the sfdx-project.json file is automatically updated with the package version information.
If not, you must manually edit the project file.

217

Create New Versions of an Unlocked PackageUnlocked Packages

It can be a long-running process to create a package version, depending on the package size and other variables. You can easily view
the status and monitor progress.

sf package version create report --package-create-request-id 08cxx00000000YDAAY

The output shows details about the request.

=== Package Version Create Request
NAME VALUE
───────────────────────────── ────────────────────
Version Create Request Id 08cB00000004CBxIAM
Status InProgress
Package Id 0HoB00000004C9hKAE
Package Version Id 05iB0000000CaaNIAS
Subscriber Package Version Id 04tB0000000NOimIAG
Tag git commit id 08dcfsdf
Branch
CreatedDate 2018-05-08 09:48
Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NOimIAG

You can find the request ID (08c) in the initial output of sf package version create.

Depending on the size of the package and other variables, the create request can take several minutes. When you’ve more than one
pending request to create package versions, you can view a list of all requests with this command.

sf package version create list --created-last-days 0

Details for each request display as shown here (IDs and labels truncated).

=== Package Version Create Requests [3]
ID STATUS PACKAGE2 ID PKG2 VERSION ID SUB PKG2 VER ID TAG BRANCH CREATED DATE ===
08c... Error 0Ho...
08c... Success 0Ho... 05i... 04t... 2017-06-22 12:07
08c... Success 0Ho... 05i... 04t... 2017-06-23 14:55

Use Keyword NEXT to Ensure Package Version Numbers Are Unique
To ensure your version number is unique, use the keyword NEXT when you set the version number in your sfdx-project.json
file.

For example, "versionNumber": "1.2.0.NEXT".

If you don’t use NEXT, and you also forget to update the version number in your sfdx-project.json file, the new package
version uses the same number as the previous package version. Although we don’t enforce uniqueness on package version numbers,
every package version is assigned a unique subscriber package version ID (starts with 04t).

Simplify Unlocked Package Development by Creating and Specifying an Org Shape

If your package’s metadata depends on a complex set of features, settings, or licenses, it can be difficult to declaratively specify these
dependencies in a scratch org definition file. Instead, create an org shape of your production org, or another development org, and
specify that source org’s ID in your scratch org definition file. During package creation, we mimic the source org’s environment when
we build and validate your package’s metadata.

Use Branches in Unlocked Packaging

Development teams who use branches in their source control system (SCS), often build package versions based on the metadata
in a particular branch of code.

218

Create New Versions of an Unlocked PackageUnlocked Packages

Skip Validation to Quickly Iterate Unlocked Package Development

Iterate package development more efficiently by skipping validation of dependencies, package ancestors, and metadata during
package version creation. Skipping validation reduces the time it takes to create a new package version, but you can promote only
validated package versions to the released state.

Target a Specific Release for Your Unlocked Packages During Salesforce Release Transitions

During major Salesforce release transitions, you can specify preview or previous when creating a package version. Specifying
the release version for a package allows you to test upcoming features, run regression tests, and support customers regardless of
which Salesforce release their org is on. Previously, you could only create package versions that matched the Salesforce release your
Dev Hub org was on.

Simplify Unlocked Package Development by Creating and Specifying an Org Shape
If your package’s metadata depends on a complex set of features, settings, or licenses, it can be difficult to declaratively specify these
dependencies in a scratch org definition file. Instead, create an org shape of your production org, or another development org, and
specify that source org’s ID in your scratch org definition file. During package creation, we mimic the source org’s environment when
we build and validate your package’s metadata.

Before using this feature, get familiar with how Org Shape for Scratch Orgs works.

Then enable the scratch org setting in your source org, generate the org shape, and edit your scratch org definition file to include the
org name and 15-character source org ID.

{
"orgName": "Acme",
"sourceOrg": "00DB1230400Ifx5"

}

Use Branches in Unlocked Packaging
Development teams who use branches in their source control system (SCS), often build package versions based on the metadata in a
particular branch of code.

To identify which branch in your SCS a package version is based on, tag your package version with a branch name using --branch
attribute in this Salesforce CLI command.

sf package version create --branch featureA

You can specify any alphanumeric value up to 240 characters as the branch name.

You can also specify the branch name in the package directories section of the sfdx-project.json file.

"packageDirectories": [
{

"path": "util",
"default": true,
"package": "pkgA",
"versionName": "Spring ‘21",
"versionNumber": "4.7.0.NEXT",
"branch": "featureA"

}]

219

Create New Versions of an Unlocked PackageUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_enable_org_shape.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_shape_create_shape.htm

When you specify a branch, the package alias for that package version is automatically appended with the branch name. You can view
the package alias in the sfdx.project.json file.

"packageAliases": {
"pkgA@1.0.0.4-featureA":"04tB0000000IB1EIAW"}

Keep in mind that version numbers increment within each branch, and not across branches. For example, you could have two or more
beta package versions with the version number 1.3.0.1.

Package Version AliasBranch Name

pkgA@1.3.0-1-featureAfeatureA

pkgA@1.3.0-1-featureBfeatureB

pkgA@1.3.0-1Not specified

Although more than one beta package version can have the same version number, there can be only one promoted and released
package version for a given major.minor.patch package version.

Package Dependencies and Branches
By default, your package can have dependencies on other packages in the same branch. For package dependencies based on packages
in other branches, explicitly set the branch attribute in the sfdx.project.json file.

Use this formatTo specify a package dependency

"dependencies": [
{

Using the branch attribute

"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": "featureC"

}]

"dependencies": [
{

Using the most recent promoted and released version of package

"package": "pkgB",
"versionNumber": "2.1.0.RELEASED"

}]

"dependencies": [
{

If your package has an associated branch, but the dependent
package doesn’t have a branch

"package": "pkgB",
"versionNumber": "1.3.0.LATEST",
"branch": ""

}]

"dependencies": [
{

Using the package alias

220

Create New Versions of an Unlocked PackageUnlocked Packages

Use this formatTo specify a package dependency

"package": "pkgB@2.1.0-1-featureC"
}]

Skip Validation to Quickly Iterate Unlocked Package Development
Iterate package development more efficiently by skipping validation of dependencies, package ancestors, and metadata during package
version creation. Skipping validation reduces the time it takes to create a new package version, but you can promote only validated
package versions to the released state.

sf package version create --skip-validation

In Tooling API, use the SkipValidation field on the Package2VersionCreateRequest object.

Note: You can't specify both skip validation and code coverage, because code coverage is calculated during validation.

Target a Specific Release for Your Unlocked Packages During Salesforce Release
Transitions
During major Salesforce release transitions, you can specify preview or previous when creating a package version. Specifying
the release version for a package allows you to test upcoming features, run regression tests, and support customers regardless of which
Salesforce release their org is on. Previously, you could only create package versions that matched the Salesforce release your Dev Hub
org was on.

To create a package version based on a preview or previous Salesforce release version, create a scratch org definition file that includes
either:

{
"release": "previous"

}

or

{
"release": "preview"

}

In the sfdx-project.json file, set the sourceApiVersion to correspond with the release version of the package version
you’re creating. If you are targeting a previous release, any sourceApiVersion value below the current release is accepted.

Then when you create your package version, specify the scratch org definition file.

sf package version create --package pkgA --definition-file config/project-scratch-def.json

Preview start date is when sandbox instances are upgraded. Preview end date is when all instances are on the GA release.

Preview End DatePreview Start DateRelease Version

February 10, 2024January 7, 2024Spring ’24

June 15, 2024May 12, 2024Summer ’24

October 12, 2024September 8, 2024Winter ’25

221

Create New Versions of an Unlocked PackageUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_tooling.meta/api_tooling/tooling_api_objects_package2versioncreaterequest.htm

Code Coverage for Unlocked Packages
Before you can promote and release an unlocked package, the Apex code must meet a minimum 75% code coverage requirement. You
can install package versions that don't meet code coverage requirements only in scratch orgs and sandboxes.

Important: Unlocked package versions that were promoted to the released state before Winter ‘21 aren’t subject to code coverage
requirements.

To compute code coverage using Salesforce CLI, use the --code-coverage parameter when you run the sf package
version create command.

Package version creation can take longer to complete when code coverage is being computed, so consider when in the development
cycle to include the code coverage parameter. You can choose to skip code coverage, and you can skip all validation by specifying the
--skip-validation parameter. You can promote package versions only if they’re validated and meet code coverage requirements.

View code coverage information for a package version using sf package version list with the --verbose parameter,
or the sf package version report command in Salesforce CLI.

We don’t calculate code coverage for org-dependent unlocked packages.

Release an Unlocked Package
Each new package version is marked as beta when its created. As you develop your package, you may create several package versions
before you create a version that is ready to be released and installed in production orgs.

Before you promote the package version, ensure that the user permission, Promote a package version to released, is enabled in the
Dev Hub org associated with the package. Consider creating a permission set with this user permission, and then assign the permission
set to the appropriate user profiles.

When you’re ready to release, use sf package version promote.

sf package version promote --package "Expense Manager@1.3.0-7"

If the command is successful, a confirmation message appears.

Successfully promoted the package version, ID: 04tB0000000719qIAA to released.

After the update succeeds, view the package details.

sf package version report --package "Expense Manager@1.3.0.7"

Confirm that the value of the Released property is true.

=== Package Version
NAME VALUE
────────────────────────────── ───────────────────
Name ver 1.0
Alias Expense Manager-1.0.0.5
Package Version Id 05iB0000000CaahIAC
Package Id 0HoB0000000CabmKAC
Subscriber Package Version Id 04tB0000000NPbBIAW
Version 1.0.0.5
Description update version
Branch
Tag git commit id 08dcfsdf
Released true
Created Date 2018-05-08 09:48

222

Code Coverage for Unlocked PackagesUnlocked Packages

Installation URL
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000NPbBIAW

You can promote and release only once for each package version number, and you can’t undo this change.

Update an Unlocked Package Version
You can update most properties of a package version from the command line. For example, you can change the package version name
or description. One important exception is that you can’t change the release status.

If the most recent package version has been released, increment either the major, minor, or patch version number for the next package
version you create.

Package version numbers use the format major.minor.patch.build. For example, if you released package 1.0.0.2, you could use 1.1.0.0,
2.0.0.0, or 1.0.1.0 for the next package version.

Example:

sf package version update --package "Your Package Alias"

Hard-Deleted Components in Unlocked Packages
When these components are removed from an unlocked package, they're hard deleted from the target install org during the package
upgrade.

• AccountForecastSettings

• AcctMgrTargetSettings

• ActionableListDefinition

• ActionPlanTemplate

• AccountingFieldMapping

• AccountingModelConfig

• AdvAccountForecastSet

• AdvAcctForecastDimSource

• AdvAcctForecastPeriodGroup

• AIApplicationConfig

• AIUsecaseDefinition

• AnalyticSnapshot

• ApexClass

• ApexComponent

• ApexPage

• ApexTrigger

• ApplicationRecordTypeConfig

• ApplicationSubtypeDefinition

• AppointmentAssignmentPolicy

• AssessmentQuestion

• AssessmentQuestionSet

• AssistantContextItem

223

Update an Unlocked Package VersionUnlocked Packages

• AssistantSkillQuickAction

• AssistantSkillSobjectAction

• AssistantVersion

• AuraDefinitionBundle

• BatchCalcJobDefinition

• BatchProcessJobDefinition

• BenefitAction

• BldgEnrgyIntensityCnfg

• BrandingSet

• BriefcaseDefinition

• BusinessProcessGroup

• BusinessProcessTypeDefinition

• CareBenefitVerifySettings

• CareLimitType

• CareProviderSearchConfig

• CareRequestConfiguration

• ChannelObjectLinkingRule

• ClaimFinancialSettings

• ClauseCatgConfiguration

• CompactLayout

• ContractType

• ConversationVendorInfo

• CustomApplication

• CustomPageWebLink

• CustomPermission

• CustomTab

• Dashboard

• DecisionMatrixDefinition

• DecisionMatrixDefinitionVersion

• DecisionTable

• DecisionTableDatasetLink

• DisclosureDefinition

• DisclosureDefinitionVersion

• DisclosureType

• DiscoveryAIModel

• DiscoveryGoal

• Document

• DocumentGenerationSetting

• DocumentType

• EmailServicesFunction

224

Hard-Deleted Components in Unlocked PackagesUnlocked Packages

• EmailTemplate

• EmbeddedServiceBranding

• EmbeddedServiceConfig

• EmbeddedServiceLiveAgent

• EmbeddedServiceMenuSettings

• ESignatureConfig

• ESignatureEnvelopeConfig

• ExplainabilityActionDefinition

• ExplainabilityActionVersion

• ExplainabilityMsgTemplate

• ExpressionSetDefinition

• ExpressionSetDefinitionVersion

• ExpressionSetObjectAlias

• ExternalAIModel

• ExternalClientApplication

• ExtlClntAppMobileSettings

• ExtlClntAppOauthSettings

• ExternalDataSrcDescriptor

• ExternalServiceRegistration

• FeatureParameterBoolean

• FeatureParameterDate

• FeatureParameterInteger

• FieldRestrictionRule

• FieldServiceMobileExtension

• FlexiPage

• FuelType

• FuelTypeSustnUom

• GatewayProviderPaymentMethodType

• HomePageComponent

• HomePageLayout

• IdentityVerificationProcDef

• InstalledPackage

• IntegrationHubSettings

• IntegrationHubSettingsType

• IntegrationProviderDef

• Layout

• Letterhead

• LicenseDefinition

• LightningComponentBundle

• LightningExperienceTheme

225

Hard-Deleted Components in Unlocked PackagesUnlocked Packages

• LightningMessageChannel

• LightningOnboardingConfig

• ListView

• LiveChatAgentConfig

• LiveChatButton

• LiveChatSensitiveDataRule

• LocationUse

• LoyaltyProgramSetup

• MarketingAppExtActivity

• MarketingAppExtension

• MatchingRule

• MfgProgramTemplate

• MLDataDefinition

• MLPredictionDefinition

• NamedCredential

• NetworkBranding

• ObjectHierarchyRelationship

• OcrSampleDocument

• OcrTemplate

• OmniDataTransform

• OmniIntegrationProcedure

• OmniScript

• OmniUiCard

• PaymentGatewayProvider

• PermissionSet

• PermissionSetGroup

• PermissionSetLicense

• PipelineInspMetricConfig

• PlatformEventSubscriberConfig

• ProductAttributeSet

• ProductSpecificationTypeDefinition

• Profile

• QuickAction

• RecordAlertCategory

• RecordAlertDataSource

• RegisteredExternalService

• RelatedRecordAssocCriteria

• RelationshipGraphDefinition

• RemoteSiteSetting

• Report

226

Hard-Deleted Components in Unlocked PackagesUnlocked Packages

• ReportType

• RestrictionRule

• SalesAgreementSettings

• SchedulingRule

• SchedulingObjective

• ScoreCategory

• ServiceAISetupDefinition

• ServiceAISetupField

• ServiceProcess

• SharingReason

• SharingRecalculation

• SlackApp

• StaticResource

• StnryAssetEnvSrcCnfg

• SustainabilityUom

• SustnUomConversion

• SvcCatalogCategory

• SvcCatalogFulfillmentFlow

• SvcCatalogItemDef

• TimelineObjectDefinition

• UIObjectRelationConfig

• UserAccessPolicy

• UserLicense

• UserProfileSearchScope

• ValidationRule

• VehicleAssetEmssnSrcCnfg

• ViewDefinition

• VirtualVisitConfig

• WaveApplication

• WaveComponent

• WaveDashboard

• WaveDataflow

• WaveDataset

• WaveLens

• WaveRecipe

• WaveTemplateBundle

• WaveXmd

• WebLink

• WebStoreTemplate

• WorkflowAlert

227

Hard-Deleted Components in Unlocked PackagesUnlocked Packages

• WorkflowFieldUpdate

• WorkflowFlowAction

• WorkflowOutboundMessage

• WorkflowRule

• WorkflowTask

Delete an Unlocked Package or Package Version
Use the sf package version delete and sf package delete to delete packages and package versions that you no
longer need.

To delete a package or package version, users need the Delete Second-Generation Packages user permission. Before you delete a package,
first delete all associated package versions.

Can I delete released packages and
package versions?

Can I delete beta packages and
package versions?

Package Type

NoYesSecond-Generation Managed Packages

YesYesUnlocked Packages

Considerations for Deleting a Package or Package Version

• Deletion is permanent.

• Attempts to install a deleted package version will fail.

• Before deleting, ensure that the package or package version isn’t referenced as a dependency.

Examples:

$ sf package delete -p "Your Package Alias"

$ sf package delete -p 0Ho...

$ sf package version delete -p "Your Package Version Alias"

$ sf package version delete -p 04t...

These CLI commands can’t be used with first-generation managed packages or package versions. To delete a first-generation managed
package, see View Package Details in the First-Generation Managed Packaging Developer Guide.

View Package Details
View the details of previously created packages and package versions from the command line.

To display a list of all packages in the Dev Hub org, use this command.

sf package list --target-dev-hub my-hub

You can view the namespace, package name, ID, and other details in the output.

Name Id Alias Description Type
─────────────── ────────────────── ────────────── ─────────── ─────────── ───────

228

Delete an Unlocked Package or Package VersionUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg1_dev.meta/pkg1_dev/isv_viewing_package_details.htm

Expenser App 0HoB00000004CzRKAU Expenser App Unlocked
Expenser Logic 0HoB00000004CzMKAU Expenser Logic Unlocked
Expenser Schema 0HoB00000004CzHKAU Expenser Schema Unlocked

Include optional parameters to filter the list results based on the modification date, creation date, and to order by specific fields or
package IDs. To limit the details, use --concise. To show expanded details, use --verbose.

To display a list of all package versions in the Dev Hub org, use this command.

sf package version list --target-dev-hub my-hub

You can view the namespace, version name, and other details in the output.

Package Name Namespace Version Sub Pkg Ver Id Alias
Installation Key Released
─────────────── ────────── ─────── ─────────────────── ───────────────────────
───────────────── ───────
Expenser Schema 0.1.0.1 04tB0000000719qIAA Expenser Schema@0.1.0-1 false

true
Expenser Schema 0.2.0.1 04tB000000071AjIAI Expenser Schema@0.2.0-1 false

true
Expenser Schema 0.3.0.1 04tB000000071AtIAI Expenser Schema@0.3.0-1 false

false
Expenser Schema 0.3.0.2 04tB000000071AyIAI Expenser Schema@0.3.0-2 false

true
Expenser Schema 0.3.1.1 04tB0000000KGU6IAO Expenser Schema@0.3.1-1 false

false
Expenser Schema 0.3.1.2 04tB0000000KGUBIA4 Expenser Schema@0.3.1-2 false

true
Expenser Schema 0.3.2.1 04tB0000000KGUQIA4 Expenser Schema@0.3.2-1 false

true
Expenser Logic 0.1.0.1 04tB0000000719vIAA Expenser Logic@0.1.0-1 false

true
Expenser App 0.1.0.1 04tB000000071A0IAI Expenser App@0.1.0-1 false

true

Push a Package Upgrade for Unlocked Packages

Push upgrades enable you to upgrade packages installed in subscriber orgs, without asking customers to install the upgrade themselves.
You can choose which orgs receive a push upgrade, what version the package is upgraded to, and when you want the upgrade to occur.
Push upgrades are particularly helpful If you need to push a change for a hot bug fix.

Use SOAP API to initiate the push upgrade, track the status of each job, and review error messages if any push upgrades fail. Here are
the objects that help with push upgrades.

Use This Object:To Do This:

MetadataPackageVersion SOAP APIRetrieve details about your package version.

PackageSubscriber SOAP APIRetrieve information about the subscriber org, such as the org ID
and the package version currently installed.

PackagePushRequest SOAP APISchedule a push upgrade, or check the status of the push upgrade.

229

Push a Package Upgrade for Unlocked PackagesUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_metadatapackageversion.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_packagesubscriber.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_packagepushrequest.htm

Use This Object:To Do This:

PackagePushJob SOAP APISpecify the org to receive the push upgrade. Create an individual
package push job for every org receiving the push upgrade.

PackagePushError SOAP APIReview any error messages associated with a push upgrade request.

Push Upgrade Considerations for Unlocked Packages

• You can include new and changed features, or remove features during a push upgrade.

• When a push upgrade is installed, the Apex in the package is complied.

• You can use push upgrades even if the package version requires a password.

Install an Unlocked Package

Install unlocked packages using the CLI or the browser. You can install package versions in a scratch org, sandbox org, DE org, or production
org.

Install Packages with the CLI

If you’re working with the Salesforce CLI, you can use the sf package install command to install packages in a scratch
org or target subscriber org.

Install Unlocked Packages from a URL

Install unlocked packages from the CLI or from a browser, similar to how you install managed packages.

Upgrade a Version of an Unlocked Package

Are you introducing metadata changes to an existing package? You can use the CLI to upgrade one package version to another.

Sample Script for Installing Unlocked Packages with Dependencies

Use this sample script as a basis to create your own script to install packages with dependencies. This script contains a query that
finds dependent packages and installs them in the correct dependency order.

Install Packages with the CLI
If you’re working with the Salesforce CLI, you can use the sf package install command to install packages in a scratch org or
target subscriber org.

Before you install a package to a scratch org, run this command to list all the packages and locate the ID or package alias.

sf package version list

Identify the version you want to install. Enter this command, supplying the package alias or package ID (starts with 04t).

sf package install --package "Expense Manager@1.2.0-12" --target-org jdoe@example.com

If you’ve already set the scratch org with a default username, enter just the package version ID.

sf package install --package "Expense Manager@1.2.0-12"

Note: If you’ve defined an alias (with the -a parameter), you can specify the alias instead of the username for --target-org.

230

Install an Unlocked PackageUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_packagepushjob.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_packagepusherror.htm

The CLI displays status messages regarding the installation.

Waiting for the subscriber package version install request to get processed. Status =
InProgress Successfully installed the subscriber package version: 04txx0000000FIuAAM.

Control Package Installation Timeouts
When you issue a sf package install command, it takes a few minutes for a package version to become available in the target
org and for installation to complete. To allow sufficient time for a successful install, use these parameters that represent mutually exclusive
timers.

• --publish-wait defines the maximum number of minutes that the command waits for the package version to be available
in the target org. The default is 0. If the package is not available in the target org in this time frame, the install is terminated.

Setting --publish-wait is useful when you create a new package version and then immediately try to install it to target orgs.

Note: If --publish-wait is set to 0, the package installation immediately fails, unless the package version is already
available in the target org.

• --wait defines the maximum number of minutes that the command waits for the installation to complete after the package is
available. The default is 0. When the --waitinterval ends, the install command completes, but the installation continues until it
either fails or succeeds. You can poll the status of the installation using sf package install report.

Note: The --wait timer takes effect after the time specified by --publish-wait has elapsed. If the
--publish-wait interval times out before the package is available in the target org, the --wait interval never starts.

For example, consider a package called Expense Manager that takes five minutes to become available on the target org, and 11 minutes
to install. The following command has publish-wait set to three minutes and wait set to 10 minutes. Because Expense Manager
requires more time than the set publish-wait interval, the installation is aborted at the end of the three minute publish-wait
interval.

sf package install --package "Expense Manager@1.2.0-12" --publish-wait 3 --wait 10

The following command has publish-wait set to six minutes and wait set to 10 minutes. If not already available, Expense
Manager takes five minutes to become available on the target org. The clock then starts ticking for the 10 minute wait time. At the
end of 10 minutes, the command completes because the wait time interval has elapsed, although the installation is not yet complete.
At this point, sf package install report indicates that the installation is in progress. After one more minute, the installation
completes and sf package install report indicates a successful installation.

sf package install --package "Expense Manager@1.2.0-12" --publish-wait 6 --wait 10

Install Unlocked Packages from a URL
Install unlocked packages from the CLI or from a browser, similar to how you install managed packages.

If you create packages from the CLI, you can derive an installation URL for the package by adding the subscriber package ID to your Dev
Hub URL. You can use this URL to test different deployment or installation scenarios.

For example, if the package version has the subscriber package ID, 04tB00000009oZ3JBI, add the ID as the value of apvId.

https://MyDomainName.lightning.force.com/packagingSetupUI/ipLanding.app?apvId=04tB00000009oZ3JBI

Anyone with the URL and a valid login to a Salesforce org can install the package.

To install the package:

1. In a browser, enter the installation URL.

231

Install Unlocked Packages from a URLUnlocked Packages

2. Enter your username and password for the Salesforce org in which you want to install the package, and then click Login.

3. If the package is protected by an installation key, enter the installation key.

4. For a default installation, click Install.

A message describes the progress. You receive a confirmation message when the installation is complete.

Upgrade a Version of an Unlocked Package
Are you introducing metadata changes to an existing package? You can use the CLI to upgrade one package version to another.

When you perform a package upgrade, here’s what to expect for metadata changes.

When you upgrade to a new package version, you choose whether to require successful compilation of all Apex in the org and package
(--apex-compile all), or only the Apex in the package (--apex-compile package).

• Metadata introduced in the new version is installed as part of the upgrade.

• If an upgraded component has the same API name as a component already in the target org, the component is overwritten with
the changes.

• If a component in the upgrade was deleted from the target org, the component is re-created during the upgrade.

• Metadata that was removed in the new package version is also removed from the target org as part of the upgrade. Removed
metadata is metadata not included in the current package version install, but present in the previous package version installed in
the target org. If metadata is removed before the upgrade occurs, the upgrade proceeds normally. Some examples where metadata
is deprecated and not deleted are:

– User-entered data in custom objects and fields are deprecated and not deleted. Admins can export such data if necessary.

– An object such as an Apex class is deprecated and not deleted if it is referenced in a Lightning component that is part of the
package.

• In API version 45.0 and later (Salesforce CLI version 45.0.9 or later), you can specify what happens to removed metadata during
package upgrade. Use the sf package install command’s -t | --upgrade-type parameter, specifying one of these
values:

– Delete specifies to delete all removed components, except for custom objects and custom fields, that don’t have dependencies.

– DeprecateOnly specifies that all removed components must be marked deprecated. The removed metadata exists in the
target org after package upgrade, but is shown in the UI as deprecated from the package. This option is useful when migrating
metadata from one package to another.

– Mixed (the default) specifies that some removed components are deleted, and other components are marked deprecated.
For more information on hard-deleted components, see Hard-Deleted Components in Unlocked Packages.

Note: For package installs into production orgs, or any org that has Apex Compile on Deploy enabled, the platform compiles all
Apex in the org after the package install or upgrade operation completes. This approach assures that package installs and upgrades
don’t impact the performance of an org, and is done even if --apex-compile package is specified.

Sample Script for Installing Unlocked Packages with Dependencies
Use this sample script as a basis to create your own script to install packages with dependencies. This script contains a query that finds
dependent packages and installs them in the correct dependency order.

232

Upgrade a Version of an Unlocked PackageUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_deploying.htm

Sample Script

Note: Be sure to replace the package version ID and scratch org user name with your own specific details.

#!/bin/bash

The execution of this script stops if a command or pipeline has an error.

For example, failure to install a dependent package will cause the script

to stop execution.

set -e

Specify a package version id (starts with 04t)

If you know the package alias but not the id, use sf package version list to find it.

PACKAGE=04tB0000000NmnHIAS

Specify the user name of the subscriber org.

USER_NAME=test-bvdfz3m9tqdf@example.com

Specify the timeout in minutes for package installation.

WAIT_TIME=15

echo "Retrieving dependencies for package Id: "$PACKAGE

Execute soql query to retrieve package dependencies in json format.

RESULT_JSON=`sf data query -u $USER_NAME -t -q "SELECT Dependencies FROM
SubscriberPackageVersion WHERE Id='$PACKAGE'" --json`

Parse the json string using python to test whether the result json contains a list of
ids or not.

DEPENDENCIES=`echo $RESULT_JSON | python -c 'import sys, json; print
json.load(sys.stdin)["result"]["records"][0]["Dependencies"]'`

If the parsed dependencies is None, the package has no dependencies. Otherwise, parse
the result into a list of ids.

Then loop through the ids to install each of the dependent packages.

233

Sample Script for Installing Unlocked Packages with
Dependencies

Unlocked Packages

if [["$DEPENDENCIES" != 'None']]; then

DEPENDENCIES=`echo $RESULT_JSON | python -c '

import sys, json

ids = json.load(sys.stdin)["result"]["records"][0]["Dependencies"]["ids"]

dependencies = []

for id in ids:

dependencies.append(id["subscriberPackageVersionId"])

print " ".join(dependencies)

'`

echo "The package you are installing depends on these packages (in correct dependency
order): "$DEPENDENCIES

for id in $DEPENDENCIES

do

echo "Installing dependent package: "$id

sf package install --package $id -u $USER_NAME -w $WAIT_TIME --publish-wait 10

done

else

echo "The package has no dependencies"

fi

After processing the dependencies, proceed to install the specified package.

echo "Installing package: "$PACKAGE

sf package install --package $PACKAGE -u $USER_NAME -w $WAIT_TIME --publish-wait 10

exit 0;

234

Sample Script for Installing Unlocked Packages with
Dependencies

Unlocked Packages

Migrate Deprecated Metadata from Unlocked Packages

You can deprecate metadata in an unlocked package, move that metadata to a new package, and then install the new package in your
production org.

As you create more unlocked packages, you can refactor your package and move metadata from one unlocked package to another
unlocked package if necessary.

To move production metadata from package A to package B, follow these steps.

1. Identify the metadata to be moved from package A to package B.

2. Remove the metadata from package A, create a version, and release the package.

3. Add the metadata to package B, create a version, and release the package.

4. In your production org, upgrade package A.

5. In your production org, install package B.

Your metadata is now a part of package B in your production org.

Uninstall an Unlocked Package

You can uninstall a package from an org using Salesforce CLI or from the Setup UI. When you uninstall unlocked packages, all components
in the package are deleted from the org.

To use the CLI to uninstall a package from the target org, authorize the Dev Hub org and run this command.

sf package uninstall --package "Expense Manager@2.3.0-5"

You can also uninstall a package from the web browser. Open the Salesforce org where you installed the package.

sf org open -u me@my.org

Then uninstall the package.

1. From Setup, enter Installed Packages in the Quick Find box, then select Installed Packages.

2. Click Uninstall next to the package that you want to remove.

3. Determine whether to save and export a copy of the package’s data, and then select the corresponding radio button.

4. Select Yes, I want to uninstall and click Uninstall.

Considerations on Uninstalling Packages
• If you’re uninstalling a package that includes a custom object, all components on that custom object are also deleted. Deleted items

include custom fields, validation rules, custom buttons, and links, workflow rules, and approval processes.

• You can’t uninstall a package whenever a component not included in the uninstall references any component in the package. For
example:

– When an installed package includes any component on a standard object that another component references, Salesforce prevents
you from uninstalling the package. An example is a package that includes a custom user field with a workflow rule that gets
triggered when the value of that field is a specific value. Uninstalling the package would prevent your workflow from working.

– When you’ve installed two unrelated packages that each include a custom object and one custom object component references
a component in the other, you can’t uninstall the package. An example is if you install an expense report app that includes a

235

Migrate Deprecated Metadata from Unlocked PackagesUnlocked Packages

custom user field and create a validation rule on another installed custom object that references that custom user field. However,
uninstalling the expense report app prevents the validation rule from working.

– When an installed folder contains components you added after installation, Salesforce prevents you from uninstalling the package.

– When an installed letterhead is used for an email template you added after installation, Salesforce prevents you from uninstalling
the package.

– When an installed package includes a custom field that’s referenced by Einstein Prediction Builder or Case Classification, Salesforce
prevents you from uninstalling the package. Before uninstalling the package, edit the prediction in Prediction Builder or Case
Classification so that it no longer references the custom field.

• You can’t uninstall a package that removes all active business and person account record types. Activate at least one other business
or person account record type, and try again.

• You can’t uninstall a package if a background job is updating a field added by the package, such as an update to a roll-up summary
field. Wait until the background job finishes, and try again.

Transfer an Unlocked Package to a Different Dev Hub

You can transfer the ownership of an unlocked package from one Dev Hub org to another.

Note: This package transfer feature is available only to unlocked packages and second-generation managed packages. Dev Hub
orgs aren’t used with first-generation managed packages or unmanaged packages, so this feature doesn’t apply to those package
types.

Request a Package Transfer to a Different Dev Hub
Start by logging a case with Salesforce Customer Support, and provide the following details:

Subject: Unlocked Package Transfer to a different Dev Hub

Description:

In the description, list:

• Subscriber package ID of the package you’re transferring. This ID starts with 033.

To verify the 033 ID of your package, run the sf package list command with the -–verbose flag on the source Dev
Hub org.

• Dev Hub org ID for the source org.

• Dev Hub org ID for the destination org. The destination Dev Hub org can’t be a Developer Edition org or a trial org.

• (Optional) Namespace of the package being transferred. If the package is a no-namespace unlocked package, skip this step.

• Acknowledge that you’ve reviewed and completed the steps listed in the Prepare to Transfer Your Package section,
including linking your namespace to the destination Dev Hub, and clearing your Apex Error Notification User.

If you’re transferring more than one package, file a separate case for each package.

After your case has been reviewed and approved, someone from Salesforce Customer Support will contact you to arrange a time to
initiate the package transfer.

Note: For security reasons, package transfers between a Dev Hub located in Government Cloud and a Dev Hub located outside
Government Cloud aren’t permitted.

236

Transfer an Unlocked Package to a Different Dev HubUnlocked Packages

Prepare to Transfer Your Package
Here’s how you can help ensure a smooth package transfer.

• If the package you’re transferring has a namespace, keep the namespace linked to the source Dev Hub. Before the package transfer,
the namespace must be linked to both the source and destination Dev Hub orgs.

• Before the package transfer process is initiated, ensure all push upgrades or package version creation processes have completed.

• Delete package versions that are no longer needed.

• If specified, clear the package’s Error Notification User using the sf package update
--error-notification-username= command. If you’re transferring the package to a Dev Hub org you own, you can
set the Error Notification User to a user in the destination Dev Hub after the package transfer is complete. Note: Specifying
--error-notification-username= with no value after the equals sign clears any previously set username.

During the Package Transfer Process
All push upgrades or package version creation processes must be complete before the package transfer process is initiated. Salesforce
Customer Support will alert you about the date the package transfer will occur.

After the Package Transfer Is Complete
Run sf package list and verify that the package is no longer associated with your Dev Hub.

Impact of Package Transfers on Package IDs

After package transfer is complete
…

ID starts withID Type

This ID remains the same.033Subscriber Package ID

This ID remains the same.04tSubscriber Package Version ID

The transferred package receives a new and
unique package ID.

0HoPackage ID

Update Your Package Project File
Before you create new packages or package versions on your Dev Hub, update your sfdx-project.json file and remove all
references to the transferred package from the package directory and package alias sections.

If you have packages in your Dev Hub that depend on the package that you’re transferring, update the package dependency section in
your sfdx-project.json file to explicitly specify the 04t ID of the transferred package that you depend on.

For example, if you transferred pkgA to a different Dev Hub, and your sfdx-project.json file lists the package dependency like
this.

"dependencies": [
{

"package": "pkgA"
"versionNumber": "2.0.0.LATEST"

237

Transfer an Unlocked Package to a Different Dev HubUnlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.pkg2_dev.meta/pkg2_dev/sfdx_dev_dev2gp_create_namespace.htm

}
]

Update the dependency to either specify the 04t ID of pkgA.

"dependencies": [
{

"package": "04tB0000000UzH5IAK"
}

]

Or specify the dependency using a package alias.

"dependencies": [
{

"package": "pkgA2.0.0-1"
}

"packageAliases": {
"pkgA2.0.0-1": "04tB0000000UzH5IAK"

}
]

What Package History Is Transferred?
When a package is transferred, all package versions, and all lines of ancestry are transferred. Upgrade paths aren’t affected.

Regardless of whether the package transfer occurred between two Dev Hub orgs you own, or the package was transferred externally to
a Dev Hub you don’t own, we transfer the package version history.

We transfer:

• Package name, namespace, type, and IDs. One exception is that the transferred package gets a new 0Ho ID.

• Package version info. This includes all the info that is typically displayed when you run the sf package version list or
sf package version report command.

We don’t transfer:

• Push upgrade history.

• Package version create requests.

• The username of the Dev Hub user who received Apex and other types of error notifications. This optional user is set using
--error-notification-username.

Take Ownership of an Unlocked Package Transferred from a Different Dev Hub

You can take ownership of an unlocked package that is transferred from another Dev Hug org.

Take Ownership of an Unlocked Package Transferred from a Different Dev
Hub
You can take ownership of an unlocked package that is transferred from another Dev Hug org.

To initiate a package transfer from your Dev Hub org, see Transfer an Unlocked Package to a Different Dev Hub.

Note: For security reasons, package transfers between a Dev Hub located in Government Cloud and a Dev Hub located outside
Government Cloud aren’t permitted.

238

Take Ownership of an Unlocked Package Transferred from
a Different Dev Hub

Unlocked Packages

Receive a Package Transfer
Link the namespace of the package you’re receiving to your Dev Hub org. See Link a Namespace to a Dev Hub Org in the Salesforce DX
Developer Guide. If the package isn’t associated with a namespace, skip this step.

After the Package Transfer Is Complete
After the package transfer is complete, you’ll be notified by Salesforce Customer Support.

To verify that the transferred package is associated with your Dev Hub, run sf package list.

Impact of Package Transfers on Package IDs

After package transfer is complete
…

ID starts withID Type

This ID remains the same.033Subscriber Package ID

This ID remains the same.04tSubscriber Package Version ID

The transferred package receives a new and
unique package ID.

0HoPackage ID

Update Your Package Project File
Open and review the contents of the sfdx-project.json file associated with the transferred package.

Open and review the contents of any scratch org definition files associated with the transferred package. Definition files help in setting
up your scratch orgs during development. Use the –definition-file parameter to specify a definition file when you create a
new package version.

If the package directories section lists additional packages that weren’t transferred to you, remove those references from the
sfdx-project.json file.

Next, review the package alias section of the sfdx-project.json file, and remove any references to package aliases that aren’t
associated with the package that was transferred.

Update the package alias of the transferred package to specify its 0Ho package ID.

Before You Create a New Package Version
Similar to how you go about creating new package versions, you must update the sfdx-project.json file, and update the
version number.

To designate a Dev Hub user to receive email notifications for unhandled Apex exceptions, and install, upgrade, or uninstall failures
associated with your package, run the sf package update command, and use the --error-notification-username
parameter.

What Package History Is Transferred?
We transfer:

• Package name, namespace, type, and IDs. One exception is that the transferred package gets a new 0Ho ID.

239

Take Ownership of an Unlocked Package Transferred from
a Different Dev Hub

Unlocked Packages

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_reg_namespace.htm

• Package version info. This includes all the info that is typically displayed when you run the sf package version list or
sf package version report command.

We don’t transfer:

• Push upgrade history.

• Package version create requests.

• The username of the Dev Hub user who received Apex and other types of error notifications.

240

Take Ownership of an Unlocked Package Transferred from
a Different Dev Hub

Unlocked Packages

CHAPTER 12 Continuous Integration

Continuous integration (CI) is a software development practice in which developers regularly integrate
their code changes into a source code repository. To ensure that the new code does not introduce bugs,
automated builds and tests run before or after developers check in their changes.

In this chapter ...

• Continuous
Integration Using
CircleCI Many third-party CI tools are available for you to choose from. Salesforce DX easily integrates into these

tools so that you can set up continuous integration for your Salesforce applications.

SEE ALSO:

Salesforce Help: Install and Configure DevOps Center

Salesforce Help: Manage and Release Changes Easily and Collaboratively with DevOps Center

• Continuous
Integration Using
Jenkins

• Continuous
Integration with
Travis CI

• Sample CI Repos for
Org Development
Model

• Sample CI Repos for
Package
Development Model

241

https://help.salesforce.com/s/articleView?id=sf.devops_center_setup.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.devops_center_overview.htm&language=en_US

Continuous Integration Using CircleCI

CircleCI is a commonly used integration tool that integrates with your existing version control system to push incremental updates to
the environments you specify. CircleCI can be used as a cloud-based or on-premise tool. These instructions demonstrate how to use
GitHub, CircleCI, and your Dev Hub org for continuous integration.

Configure Your Environment for CircleCI

Before integrating your existing CircleCI framework, configure your Dev Hub org and CircleCI project.

Connect CircleCI to Your DevHub

Authorize CircleCI to push content to your Dev Hub via a connected app.

SEE ALSO:

CircleCI

The sfdx-circleci-package Github Repo

The sfdx-circleci-org Github Repo

Configure Your Environment for CircleCI
Before integrating your existing CircleCI framework, configure your Dev Hub org and CircleCI project.

1. Set up your GitHub repository with CircleCI. You can follow the sign-up steps on the CircleCI website to access your code on GitHub.

2. Install the Salesforce CLI, if you haven’t already.

3. Follow Authorize an Org Using the JWT Flow for your Dev Hub org, if you haven’t already.

4. Encrypt your server key.

a. First, generate a key and initialization vector (iv) to encrypt your server.key file locally. CircleCI uses the key and iv to decrypt
your server key in the build environment.

Run the following command in the directory containing your server.key file. For the <passphrase> value, enter a
word of your own choosing to create a unique key.

openssl enc -aes-256-cbc -k <passphrase> -P -md sha1 -nosalt

The key and iv value display in the output.

key=****24B2
iv =****DA58

b. Note the key and iv values, you need them later.

c. Encrypt the server.key file using the newly generated key and iv values. Run the following command in the directory
containing your server.key file, replacing <key> and <iv> with the values from the previous step.

openssl enc -nosalt -aes-256-cbc -in server.key -out server.key.enc -base64 -K <key>
-iv <iv>

Note: Use the key and iv values only once, and don't use them to encrypt more than the server.key. While you can
reuse this pair to encrypt other things, it is considered a security violation to do so.

242

Continuous Integration Using CircleCIContinuous Integration

http://www.circleci.com/
https://github.com/forcedotcom/sfdx-circleci-package
https://github.com/forcedotcom/sfdx-circleci-org
https://circleci.com/docs/2.0/
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm

You generate a new key and iv value every time you run the command in step a. In other words, you can't regenerate the same
pair. If you lose these values you must generate new ones and encrypt again.

Next, you’ll store the key, iv, and contents of server.key.enc as protected environment variables in the CircleCI UI. These values
are considered secret, so take the appropriate precautions to protect them.

Connect CircleCI to Your DevHub
Authorize CircleCI to push content to your Dev Hub via a connected app.

1. Make sure that you have Salesforce CLI installed. Check by running sf version and confirm that you see version information.
If you don't have it installed, see Install Salesforce CLI.

2. Confirm you can perform a JWT-based authorization from the directory containing your server.key file. Run the following
command from the directory containing your server.key (replace <your_consumer_key> and <your_username>
values where indicated).

sf org login jwt --client-id <your_consumer_key> --jwt-key-file server.key --username
<your_username> --set-default-dev-hub

3. Fork the sfdx-circleci repo into your GitHub account using the Fork link at the top of the page.

4. Create a local directory for this project and clone your forked repo locally into the new directory. Replace <git_username>
with your own GitHub username.

git clone https://github.com/<git_username>/sfdx-circleci.git

5. Retrieve the generated consumer key from your JWT-Based Authorization connected app. From Setup, in the Quick Find box, enter
App, and then select App Manager. Select View in the row-menu next to the connected app.

6. In the CircleCI UI, you see a project named sfdx-circleci. In the project settings, store the consumer key in a CircleCI environment
variable named HUB_CONSUMER_KEY. For more information, see the CircleCI documentation Setting an Environment Variable
in a Project.

7. Store the username that you use to access your Dev Hub in a CircleCI environment variable named HUB_SFDX_USER using the
CircleCI UI.

8. Store the key and iv values from Encrypt Your Server Key in CircleCI environment variables named DECRYPTION_KEYand
DECRYPTION_IV, respectively. When you finish setting the environment variables, your project screen looks like the following
image.

243

Connect CircleCI to Your DevHubContinuous Integration

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup/sfdx_setup_install_cli.htm#sfdx_setup_install_cli
http://help.github.com/fork-a-repo/
https://github.com/forcedotcom/sfdx-circleci
https://circleci.com/docs/2.0/env-vars/#setting-an-environment-variable-in-a-project
https://circleci.com/docs/2.0/env-vars/#setting-an-environment-variable-in-a-project

Note: In the directory containing your server.key file, use the command rm server.key to remove the
server.key. Never store keys or certificates in a public place.

You’re ready to go! Now when you commit and push a change, your change kicks off a CircleCI build.

Contributing to the Repository

If you find any issues or opportunities for improving this repository, fix them! Feel free to contribute to this project, fork this repository,
and then change the content. After you make your changes, share them with the community by sending a pull request. See How to
send pull requests for more information about contributing to GitHub projects.

Reporting Issues

If you find any issues with this demo that you can't fix, feel free to report them in the issues section of this repository.

Continuous Integration Using Jenkins

Jenkins is an open-source, extensible automation server for implementing continuous integration and continuous delivery. You can
easily integrate Salesforce DX into the Jenkins framework to automate testing of Salesforce applications against scratch orgs.

To integrate Jenkins, we assume:

• You are familiar with how Jenkins works. You can configure and use Jenkins in many ways. We focus on integrating Salesforce DX
into Jenkins multibranch pipelines.

• The computer on which the Jenkins server is running has access to your version control system and to the repository that contains
your Salesforce application.

Configure Your Environment for Jenkins

Before integrating your Dev Hub and scratch orgs into your existing Jenkins framework, configure your Jenkins environment. Our
example assumes that you’re working in a package development model.

244

Continuous Integration Using JenkinsContinuous Integration

http://help.github.com/fork-a-repo/
http://help.github.com/send-pull-requests/
http://help.github.com/send-pull-requests/
https://github.com/forcedotcom/sfdx-circleci/issues

Jenkinsfile Walkthrough

The sample Jenkinsfile shows how to integrate your Dev Hub and scratch orgs into a Jenkins job. The sample uses Jenkins Multibranch
Pipelines. Every Jenkins setup is different. This walkthrough describes one of the ways to automate testing of your Salesforce
applications. The walkthrough highlights Salesforce CLI commands to create a scratch org, upload your code, and run your tests.

Sample Jenkinsfile

A Jenkinsfile is a text file that contains the definition of a Jenkins Pipeline. This Jenkinsfile shows how to integrate
Salesforce CLI commands to automate testing of your Salesforce applications using scratch orgs.

SEE ALSO:

Jenkins

Pipeline-as-code with Multibranch Workflows in Jenkins

Configure Your Environment for Jenkins
Before integrating your Dev Hub and scratch orgs into your existing Jenkins framework, configure your Jenkins environment. Our example
assumes that you’re working in a package development model.

1. In your Dev Hub org, create a connected app as described by the JWT-based authorization flow. This step includes obtaining or
creating a private key and digital certificate.

Make note of your consumer key (sometimes called a client ID) when you save the connected app. You need the consumer key to
set up your Jenkins environment. Also have available the private key file used to sign the digital certificate.

2. On the computer that’s running the Jenkins server, do the following.

a. Download and install Salesforce CLI.

b. Store the private key file as a Jenkins Secret File using the Jenkins Admin Credentials interface. Make note of the new entry’s ID.

You later reference this Credentials entry in your Jenkinsfile.

c. Set the following variables in your Jenkins environment.

• SF_USERNAME—The username for the Dev Hub org, such as juliet.capulet@myenvhub.com.

• SF_INSTANCE_URL—The login URL of the Salesforce instance that hosts the Dev Hub org. The default is
https://login.salesforce.com. We recommend that you update this value to the My Domain login URL for the Dev Hub org.
You can find an org’s My Domain login URL on the My Domain page in Setup.

• SF_CONSUMER_KEY—The consumer key that was returned after you created a connected app in your Dev Hub org.

• SERVER_KEY_CREDENTALS_ID—The credentials ID for the private key file that you stored in the Jenkins Admin Credentials
interface.

• PACKAGE_NAME-The name of your package, such as My Package.

• PACKAGE_VERSION-The version of your package, which starts with 04t.

• TEST_LEVEL-The test level for your package, such as RunLocalTests.

The names for these environment variables are just suggestions. You can use any name as long as you specify it in the
Jenkinsfile.

You can also optionally set the SF_AUTOUPDATE_DISABLE variable to true to disable auto-update of Salesforce CLI. CLI
auto-update can interfere with the execution of a Jenkins job.

3. Set up your Salesforce DX project so that you can create a scratch org.

245

Configure Your Environment for JenkinsContinuous Integration

https://jenkins.io/
https://jenkins.io/blog/2015/12/03/pipeline-as-code-with-multibranch-workflows-in-jenkins/
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Binding+Plugin

4. (Optional) Install the Custom Tools Plugin into your Jenkins console, and create a custom tool that references Salesforce CLI. The
Jenkins walkthrough assumes that you created a custom tool named toolbelt in the /usr/local/bin directory, which is the
directory in which Salesforce CLI is installed.

SEE ALSO:

Authorize an Org Using the JWT Flow

Salesforce CLI Setup Guide

Jenkins: Credentials Binding Plugin

Project Setup

Jenkinsfile Walkthrough
The sample Jenkinsfile shows how to integrate your Dev Hub and scratch orgs into a Jenkins job. The sample uses Jenkins Multibranch
Pipelines. Every Jenkins setup is different. This walkthrough describes one of the ways to automate testing of your Salesforce applications.
The walkthrough highlights Salesforce CLI commands to create a scratch org, upload your code, and run your tests.

This walkthrough relies on the sfdx-jenkins-package Jenkinsfile. We assume that you’re familiar with the structure of the Jenkinsfile,
Jenkins Pipeline DSL, and the Groovy programming language. This walkthrough demonstrates implementing a Jenkins pipeline using
Salesforce CLI and scratch orgs. See the CLI Command Reference regarding the commands used.

This workflow most closely corresponds to Jenkinsfile stages.

• Define Variables

• Check Out the Source Code

• Wrap All Stages in a withCredentials Command

• Wrap All Stages in a withEnv Command

• Authorize Your Dev Hub Org and Create a Scratch Org

• Push Source and Assign a Permission Set

• Run Apex Tests

• Delete the Scratch Org

• Create a Package

• Create a Scratch Org and Display Info

• Install Package, Run Unit Tests, and Delete Scratch Org

Define Variables
Use the def keyword to define the variables required by Salesforce CLI commands. Assign each variable the corresponding environment
variable that you previously set in your Jenkins environment.

def SF_CONSUMER_KEY=env.SF_CONSUMER_KEY
def SERVER_KEY_CREDENTALS_ID=env.SERVER_KEY_CREDENTALS_ID
def TEST_LEVEL='RunLocalTests'
def PACKAGE_NAME='0Ho1U000000CaUzSAK'
def PACKAGE_VERSION
def SF_INSTANCE_URL = env.SF_INSTANCE_URL ?: "https://MyDomainName.my.salesforce.com"

Define the SF_USERNAME variable, but don’t set its value. You do that later.

def SF_USERNAME

246

Jenkinsfile WalkthroughContinuous Integration

https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_setup.meta/sfdx_setup
https://wiki.jenkins-ci.org/display/JENKINS/Credentials+Binding+Plugin
https://github.com/forcedotcom/sfdx-jenkins-package/blob/master/Jenkinsfile

Although not required, we assume that you used the Jenkins Global Tool Configuration to create the toolbelt custom tool that
points to the CLI installation directory. In your Jenkinsfile, use the tool command to set the value of the toolbelt variable to
this custom tool.

def toolbelt = tool 'toolbelt'

You can now reference the Salesforce CLI executable in the Jenkinsfile using ${toolbelt}/sf.

Check Out the Source Code
Before testing your code, get the appropriate version or branch from your version control system (VCS) repository. In this example, we
use the checkout scm Jenkins command. We assume that the Jenkins administrator has already configured the environment to
access the correct VCS repository and check out the correct branch.

stage('checkout source') {
// when running in multi-branch job, one must issue this command
checkout scm

}

Wrap All Stages in a withCredentials Command
You previously stored the JWT private key file as a Jenkins Secret File using the Credentials interface. Therefore, you must use the
withCredentials command in the body of the Jenkinsfile to access the secret file. The withCredentials command
lets you name a credential entry, which is then extracted from the credential store and provided to the enclosed code through a variable.
When using withCredentials, put all stages within its code block.

This example stores the credential ID for the JWT key file in the variable SERVER_KEY_CREDENTALS_ID. You defined the
SERVER_KEY_CREDENTALS_ID earlier and set it to its corresponding environment variable. The withCredentials command
fetches the contents of the secret file from the credential store and places the contents in a temporary location. The location is stored
in the variable server_key_file. You use the server_key_file variable with the org login jwt command to specify
the private key securely.

withCredentials([file(credentialsId: SERVER_KEY_CREDENTALS_ID, variable: 'server_key_file')])

all stages will go here
}

Wrap All Stages in a withEnv Command
When running Jenkins jobs, it’s helpful to understand where files are being stored. There are two main directories to be mindful of: the
workspace directory and the home directory. The workspace directory is unique to each job while the home directory is the same for
all jobs.

The withCredentials command stores the JWT key file in the Jenkins workspace during the job. However, Salesforce CLI auth
commands store authentication files in the home directory; these authentication files persist outside of the duration of the job.

This setup isn’t a problem when you run a single job but can cause problems when you run multiple jobs. So, what happens if you run
multiple jobs using the same Dev Hub or other Salesforce user? When the CLI tries to connect to the Dev Hub as the user you authenticated,
it fails to refresh the token. Why? The CLI tries to use a JWT key file that no longer exists in the other workspace, regardless of the
withCredentials for the current job.

If you set the home directory to match the workspace directory using withEnv, the authentication files are unique for each job.
Creating unique auth files per job is also more secure because each job has access only to the auth files it creates.

247

Jenkinsfile WalkthroughContinuous Integration

When using withEnv, put all stages within its code block,

withEnv(["HOME=${env.WORKSPACE}"]) {
all stages will go here

}

Note: If you don’t use a pipeline or you run commands outside of a pipeline stage, add a home environment specification to your
script: export HOME=$WORKSPACE.

Authorize Your Dev Hub Org and Create a Scratch Org
This sfdx-jenkins-package example uses two stages: one stage to authorize the Dev Hub org and another stage to create a
scratch org.

// ---
// Authorize the Dev Hub org with JWT key and give it an alias.
// ---

stage('Authorize DevHub') {
rc = command "${toolbelt}/sf org login jwt --instance-url ${SF_INSTANCE_URL} --client-id

${SF_CONSUMER_KEY} --username ${SF_USERNAME} --jwt-key-file ${server_key_file}
--set-default-dev-hub --alias HubOrg"

if (rc != 0) {
error 'Salesforce dev hub org authorization failed.'

}
}

// ---
// Create new scratch org to test your code.
// ---

stage('Create Test Scratch Org') {
rc = command "${toolbelt}/sf org create scratch --target-dev-hub HubOrg --set-default

--definition-file config/project-scratch-def.json --alias ciorg --wait 10 --duration-days
1"

if (rc != 0) {
error 'Salesforce test scratch org creation failed.'

}
}

Use org login jwt to authorize your Dev Hub org.

You’re required to run this step only one time, but we suggest you add it to your Jenkinsfile and authorize each time you run
the Jenkins job. This way you’re always sure that the Jenkins job isn’t aborted due to lack of authorization. There’s typically little harm in
authorizing multiple times, but keep in mind that the API call limit for your scratch org’s edition still applies.

Use the flags of the org login jwt command to provide information about the Dev Hub org that you’re authorizing. The values
for the --client-id, --username, and --instance-url flags are the SF_CONSUMER_KEY, HubOrg, and SF_INSTANCE_URL
environment variables you previously defined, respectively. The value of the --jwt-key-file flag is the server_key_file
variable that you set in the previous section using the withCredentials command. The --set-default-dev-hub flag
specifies that this HubOrg is the default Dev Hub org for creating scratch orgs.

Note: It’s a best practice to have a unique authentication file for each Jenkins job using the withEnv wrapper. But it’s possible
to authorize a Dev Hub on your Jenkins machine instead. The advantage is that your authentication is set centrally on your machine

248

Jenkinsfile WalkthroughContinuous Integration

for any Jenkins job you run. The disadvantage is security: Every job has access to all authenticated users whether you want them
to or not.

If you do want to auth to your Dev Hub on your Jenkins machine, follow these steps:

• On the Jenkins machine as the Jenkins user, authorize to your Dev Hub using any of the org login commands.

• In your Jenkinsfile, remove the withCredentials, withEnv, and org login jwt statements.

Use the org create scratch CLI command to create a scratch org. In the example, the CLI command uses the
config/project-scratch-def.json file (relative to the project directory) to create the scratch org. The --json flag
specifies the output as JSON format. The --set-default flag sets the new scratch org as the default.

The Groovy code that parses the JSON output of the org create scratch command extracts the username that was auto-generated
as part of the org creation. This username, stored in the SF_USERNAME variable, is used with the CLI commands that push source, assign
a permission set, and so on.

Push Source and Assign a Permission Set
Let’s populate your new scratch org with metadata. This example uses the project deploy start command to deploy your
source to the org. The source includes all the pieces that make up your Salesforce application: Apex classes and test classes, permission
sets, layouts, triggers, custom objects, and so on.

// ---
// Push source to test scratch org.
// ---

stage('Push To Test Scratch Org') {
rc = command "${toolbelt}/sf project deploy start --target-org ciorg"
if (rc != 0) {

error 'Salesforce push to test scratch org failed.'
}

}

Recall the SF_USERNAME variable that contains the auto-generated username that was output by the org create scratch
command in an earlier stage. The code uses this variable as the argument to the --target-org flag to specify the username for
the new scratch org.

The project deploy start command deploys all the Salesforce-related files that it finds in your project. Add a .forceignore
file to your repository to list the files that you don’t want pushed to the org.

Run Apex Tests
Now that your source code and test source are pushed to the scratch org, run the apex run test command to run Apex tests.

// ---
// Run unit tests in test scratch org.
// ---

stage('Run Tests In Test Scratch Org') {
rc = command "${toolbelt}/sf apex run test --target-org ciorg --wait 10 --result-format

tap --code-coverage --test-level ${TEST_LEVEL}"
if (rc != 0) {

error 'Salesforce unit test run in test scratch org failed.'

249

Jenkinsfile WalkthroughContinuous Integration

}
}

You can specify various flags to the apex run test CLI command. In the example:

• The --test-level ${TEST_LEVEL} flag runs all tests in the scratch org, except tests that originate from installed managed
packages. You can also specify RunLocalTests to run only local tests, RunSpecifiedTests to run only certain Apex tests
or suites or RunAllTestsInOrg to run all tests in the org.

• The --result-format tap flag specifies that the command output is in Test Anything Protocol (TAP) format. The test results
that are written to a file are still in JUnit and JSON formats.

• The --target-org ciorg flag specifies the username for accessing the scratch org (the value in SF_USERNAME).

The apex run test command writes its test results in JUnit format.

Delete the Scratch Org
Salesforce reserves the right to delete a scratch org a specified number of days after it was created. You can also create a stage in your
pipeline that uses org delete scratch to explicitly delete your scratch org when the tests complete. This cleanup ensures better
management of your resources.

// ---
// Delete package install scratch org.
// ---

stage('Delete Package Install Scratch Org') {
rc = command "${toolbelt}/sf org delete scratch --target-org installorg --no-prompt"
if (rc != 0) {

error 'Salesforce package install scratch org deletion failed.'
}

}

Create a Package
Now, let’s create a package. If you’re new to packaging, you can think about a package as a container that you fill with metadata. It
contains a set of related features, customizations, and schema. You use packages to move metadata from one Salesforce org to another.
After you create a package, add metadata and create a new package version.

// ---
// Create package version.
// ---

stage('Create Package Version') {
if (isUnix()) {

output = sh returnStdout: true, script: "${toolbelt}/sf package version create
--package ${PACKAGE_NAME} --installation-key-bypass --wait 10 --json --target-dev-hub
HubOrg"

} else {
output = bat(returnStdout: true, script: "${toolbelt}/sf package version create

--package ${PACKAGE_NAME} --installation-key-bypass --wait 10 --json --target-dev-hub
HubOrg").trim()

output = output.readLines().drop(1).join(" ")
}

250

Jenkinsfile WalkthroughContinuous Integration

// Wait 5 minutes for package replication.
sleep 300

def jsonSlurper = new JsonSlurperClassic()
def response = jsonSlurper.parseText(output)

PACKAGE_VERSION = response.result.SubscriberPackageVersionId

response = null

echo ${PACKAGE_VERSION}
}

Create a Scratch Org and Display Info
Remember when you created a scratch org earlier? Now let’s create a scratch org to install your package into, and display info about
that scratch org.

// ---
// Create new scratch org to install package to.
// ---

stage('Create Package Install Scratch Org') {
rc = command "${toolbelt}/sf org create scratch --target-dev-hub HubOrg --set-default

--definition-file config/project-scratch-def.json --alias installorg --wait 10
--duration-days 1"

if (rc != 0) {
error 'Salesforce package install scratch org creation failed.'

}
}

// ---
// Display install scratch org info.
// ---

stage('Display Install Scratch Org') {
rc = command "${toolbelt}/sf org display --target-org installorg"
if (rc != 0) {

error 'Salesforce install scratch org display failed.'
}

}

Install Package, Run Unit Tests, and Delete Scratch Org
To finish up, install your package in your scratch org, run unit tests, then delete the scratch org. That’s it!

// ---
// Install package in scratch org.
// ---

stage('Install Package In Scratch Org') {

251

Jenkinsfile WalkthroughContinuous Integration

rc = command "${toolbelt}/sf package install --package ${PACKAGE_VERSION} --target-org
installorg --wait 10"

if (rc != 0) {
error 'Salesforce package install failed.'

}
}

// ---
// Run unit tests in package install scratch org.
// ---

stage('Run Tests In Package Install Scratch Org') {
rc = command "${toolbelt}/sf apex run test --target-org installorg --result-format tap

--code-coverage --test-level ${TEST_LEVEL} --wait 10"
if (rc != 0) {

error 'Salesforce unit test run in pacakge install scratch org failed.'
}

}

// ---
// Delete package install scratch org.
// ---

stage('Delete Package Install Scratch Org') {
rc = command "${toolbelt}/sf org delete scratch --target-org installorg --no-prompt"
if (rc != 0) {

error 'Salesforce package install scratch org deletion failed.'
}

}

SEE ALSO:

Sample Jenkinsfile

Pipeline-as-code with Multibranch Workflows in Jenkins

TAP: Test Anything Protocol

Configure Your Environment for Jenkins

Salesforce CLI Command Reference

Sample Jenkinsfile
A Jenkinsfile is a text file that contains the definition of a Jenkins Pipeline. This Jenkinsfile shows how to integrate Salesforce
CLI commands to automate testing of your Salesforce applications using scratch orgs.

The Jenkinsfile Walkthrough topic uses this sfdx-jenkins-package Jenkinsfile as an example.

#!groovy

import groovy.json.JsonSlurperClassic

node {

252

Sample JenkinsfileContinuous Integration

https://jenkins.io/blog/2015/12/03/pipeline-as-code-with-multibranch-workflows-in-jenkins/
https://testanything.org/
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_cli_reference.meta/sfdx_cli_reference
https://github.com/forcedotcom/sfdx-jenkins-package/blob/master/Jenkinsfile

def SF_CONSUMER_KEY=env.SF_CONSUMER_KEY
def SF_USERNAME=env.SF_USERNAME
def SERVER_KEY_CREDENTALS_ID=env.SERVER_KEY_CREDENTALS_ID
def TEST_LEVEL='RunLocalTests'
def PACKAGE_NAME='0Ho1U000000CaUzSAK'
def PACKAGE_VERSION
def SF_INSTANCE_URL = env.SF_INSTANCE_URL ?: "https://login.salesforce.com"

def toolbelt = tool 'toolbelt'

// ---
// Check out code from source control.
// ---

stage('checkout source') {
checkout scm

}

// ---
// Run all the enclosed stages with access to the Salesforce
// JWT key credentials.
// ---

withEnv(["HOME=${env.WORKSPACE}"]) {

withCredentials([file(credentialsId: SERVER_KEY_CREDENTALS_ID, variable:
'server_key_file')]) {

// ---
// Authorize the Dev Hub org with JWT key and give it an alias.
// ---

stage('Authorize DevHub') {
rc = command "${toolbelt}/sf org login jwt --instance-url ${SF_INSTANCE_URL}

--client-id ${SF_CONSUMER_KEY} --username ${SF_USERNAME} --jwt-key-file ${server_key_file}
--set-default-dev-hub --alias HubOrg"

if (rc != 0) {
error 'Salesforce dev hub org authorization failed.'

}
}

// ---
// Create new scratch org to test your code.
// ---

stage('Create Test Scratch Org') {
rc = command "${toolbelt}/sf org create scratch --target-dev-hub HubOrg

--set-default --definition-file config/project-scratch-def.json --alias ciorg --wait 10
--duration-days 1"

if (rc != 0) {

253

Sample JenkinsfileContinuous Integration

error 'Salesforce test scratch org creation failed.'
}

}

// ---
// Display test scratch org info.
// ---

stage('Display Test Scratch Org') {
rc = command "${toolbelt}/sf org display --target-org ciorg"
if (rc != 0) {

error 'Salesforce test scratch org display failed.'
}

}

// ---
// Push source to test scratch org.
// ---

stage('Push To Test Scratch Org') {
rc = command "${toolbelt}/sf project deploy start --target-org ciorg"
if (rc != 0) {

error 'Salesforce push to test scratch org failed.'
}

}

// ---
// Run unit tests in test scratch org.
// ---

stage('Run Tests In Test Scratch Org') {
rc = command "${toolbelt}/sf apex run test --target-org ciorg --wait 10

--result-format tap --code-coverage --test-level ${TEST_LEVEL}"
if (rc != 0) {

error 'Salesforce unit test run in test scratch org failed.'
}

}

// ---
// Delete test scratch org.
// ---

stage('Delete Test Scratch Org') {
rc = command "${toolbelt}/sf org delete scratch --target-org installorg

--no-prompt"
if (rc != 0) {

error 'Salesforce test scratch org deletion failed.'
}

}

254

Sample JenkinsfileContinuous Integration

// ---
// Create package version.
// ---

stage('Create Package Version') {
if (isUnix()) {

output = sh returnStdout: true, script: "${toolbelt}/sf package version
create --package ${PACKAGE_NAME} --installation-key-bypass --wait 10 --json --target-dev-hub
HubOrg"

} else {
output = bat(returnStdout: true, script: "${toolbelt}/sf package version

create --package ${PACKAGE_NAME} --installation-key-bypass --wait 10 --json --target-dev-hub
HubOrg").trim()

output = output.readLines().drop(1).join(" ")
}

// Wait 5 minutes for package replication.
sleep 300

def jsonSlurper = new JsonSlurperClassic()
def response = jsonSlurper.parseText(output)

PACKAGE_VERSION = response.result.SubscriberPackageVersionId

response = null

echo ${PACKAGE_VERSION}
}

// ---
// Create new scratch org to install package to.
// ---

stage('Create Package Install Scratch Org') {
rc = command "${toolbelt}/sf org create scratch --target-dev-hub HubOrg

--set-default --definition-file config/project-scratch-def.json --alias installorg --wait
10 --duration-days 1"

if (rc != 0) {
error 'Salesforce package install scratch org creation failed.'

}
}

// ---
// Display install scratch org info.
// ---

stage('Display Install Scratch Org') {
rc = command "${toolbelt}/sf org display --target-org installorg"
if (rc != 0) {

error 'Salesforce install scratch org display failed.'
}

255

Sample JenkinsfileContinuous Integration

}

// ---
// Install package in scratch org.
// ---

stage('Install Package In Scratch Org') {
rc = command "${toolbelt}/sf package install --package ${PACKAGE_VERSION}

--target-org installorg --wait 10"
if (rc != 0) {

error 'Salesforce package install failed.'
}

}

// ---
// Run unit tests in package install scratch org.
// ---

stage('Run Tests In Package Install Scratch Org') {
rc = command "${toolbelt}/sf apex run test --target-org installorg

--result-format tap --code-coverage --test-level ${TEST_LEVEL} --wait 10"
if (rc != 0) {

error 'Salesforce unit test run in pacakge install scratch org failed.'

}
}

// ---
// Delete package install scratch org.
// ---

stage('Delete Package Install Scratch Org') {
rc = command "${toolbelt}/sf org delete scratch --target-org installorg

--no-prompt"
if (rc != 0) {

error 'Salesforce package install scratch org deletion failed.'
}

}
}

}
}

def command(script) {
if (isUnix()) {

return sh(returnStatus: true, script: script);
} else {

return bat(returnStatus: true, script: script);

256

Sample JenkinsfileContinuous Integration

}
}

SEE ALSO:

Jenkinsfile Walkthrough

Continuous Integration with Travis CI

Travis CI is a cloud-based continuous integration (CI) service for building and testing software projects hosted on GitHub.

For help with setting up Travis CI, see:

• Sample Travis CI repo for Org Development model

• Sample Travis CI repo for Package Development model

SEE ALSO:

sfdx-travisci Sample GitHub Repo

Travis CI

Sample CI Repos for Org Development Model

Get started quickly with CI by cloning a sample repository from your vendor of choice. Each repo has a sample configuration file and a
comprehensive README.md with step-by-step information.

These sample repositories support the org development model. This model uses Salesforce CLI, a source control system, and sandboxes
during the application life cycle. To determine if this model is right for you, head over and earn your badge by completing the Org
Development Model module.

Link to GitHub RepositoryVendor

https://github.com/forcedotcom/sfdx-appveyor-orgAppVeyor

https://github.com/forcedotcom/sfdx-bamboo-orgBamboo

https://github.com/forcedotcom/sfdx-bitbucket-orgBitbucket

https://github.com/forcedotcom/sfdx-circleci-orgCircleCI

https://github.com/forcedotcom/sfdx-gitlab-orgGitLab

https://github.com/forcedotcom/sfdx-jenkins-orgJenkins

https://github.com/forcedotcom/sfdx-travisci-orgTravisCI

Sample CI Repos for Package Development Model

Get started quickly with CI by cloning a sample repository from your vendor of choice. Each repo has a sample configuration file and a
comprehensive README.md with step-by-step information.

257

Continuous Integration with Travis CIContinuous Integration

https://github.com/forcedotcom/sfdx-travisci-org
https://github.com/forcedotcom/sfdx-travisci-package
https://github.com/forcedotcom/sfdx-travisci
https://travis-ci.org/
https://trailhead.salesforce.com/content/learn/modules/org-development-model
https://trailhead.salesforce.com/content/learn/modules/org-development-model
https://github.com/forcedotcom/sfdx-appveyor-org
https://github.com/forcedotcom/sfdx-bamboo-org
https://github.com/forcedotcom/sfdx-bitbucket-org
https://github.com/forcedotcom/sfdx-circleci-org
https://github.com/forcedotcom/sfdx-gitlab-org
https://github.com/forcedotcom/sfdx-jenkins-org
https://github.com/forcedotcom/sfdx-travisci-org

These sample repositories support the package development model. This model uses Salesforce CLI, a source control system, scratch
orgs for development, and sandboxes for testing and staging. To determine if this model is right for you, head over and earn your badge
by completing the Package Development Model module.

Link to GitHub RepositoryVendor

https://github.com/forcedotcom/sfdx-appveyor-packageAppVeyor

https://github.com/forcedotcom/sfdx-bamboo-packageBamboo

https://github.com/forcedotcom/sfdx-bitbucket-packageBitbucket

https://github.com/forcedotcom/sfdx-circleci-packageCircleCI

https://github.com/forcedotcom/sfdx-gitlab-package

CI/CD template for Salesforce/Apex apps:

GitLab

https://gitlab.com/sfdx/sfdx-cicd-template

https://github.com/forcedotcom/sfdx-jenkins-packageJenkins

https://github.com/forcedotcom/sfdx-travisci-packageTravisCI

258

Sample CI Repos for Package Development ModelContinuous Integration

https://trailhead.salesforce.com/content/learn/modules/sfdx_dev_model
https://github.com/forcedotcom/sfdx-appveyor-package
https://github.com/forcedotcom/sfdx-bamboo-package
https://github.com/forcedotcom/sfdx-bitbucket-package
https://github.com/forcedotcom/sfdx-circleci-package
https://github.com/forcedotcom/sfdx-gitlab-package
https://gitlab.com/sfdx/sfdx-cicd-template
https://github.com/forcedotcom/sfdx-jenkins-package
https://github.com/forcedotcom/sfdx-travisci-package

CHAPTER 13 Troubleshoot Salesforce DX

Here are some tips to help you troubleshoot issues.

SEE ALSO:

Salesforce Trailblazer Community

In this chapter ...

• CLI Version
Information

• Error: No default dev
hub found

• Unable to Work After
Failed Org
Authorization

• Error: The consumer
key is already taken

259

https://success.salesforce.com/_ui/core/chatter/groups/GroupProfilePage?g=0F93A000000HTp1

CLI Version Information

Use these commands to view version information about Salesforce CLI.

sf plugins --core // Version of the CLI and all installed plug-ins
sf --version // CLI version

Error: No default dev hub found

You see this error when you try to create a scratch org due to an authorization issue.

Let’s say you successfully authorize a Dev Hub org using the --set-default-dev-hub flag. The username associated with the
org is your default Dev Hub username. You then successfully create a scratch org without using the --target-dev-hub flag. But
when you try to create a scratch org another time using the same CLI command, you get this error:

Error (1): No default dev hub found. Use -v or --target-dev-hub to specify an environment.

What happened?

Answer: You’re no longer in the directory where you ran the authorization command. The directory from which you use the
--set-default-dev-hub flag matters.

If you run the authorization command from the root of your project directory, the target-dev-hub config variable is set locally.
The value applies only when you run the command from the same project directory. If you change to a different directory and run org
create scratch, the local setting of the default Dev Hub org no longer applies and you get an error.

Solve the problem by doing one of the following.

• Set target-dev-hub globally so that you can run org create scratch from any directory.

sf config set target-dev-hub=<devhubusername> --global

• Run org create scratch from the same project directory where you authorized your Dev Hub org.

• Use the --target-dev-hub flag with org create scratch to run it from any directory.

sf target-dev-hub --definition-file <file> --target-dev-hub <devhubusername> --alias
my-scratch-org

• To check whether you’ve set configuration values globally or locally, use this command and check the Location column.

sf config list

SEE ALSO:

How Salesforce Developer Experience Changes the Way You Work

Unable to Work After Failed Org Authorization

Sometimes you try to authorize a Dev Hub org or a scratch org using the Salesforce CLI or an IDE, but you don’t successfully log in to
the org. The port remains open for the stray authorization process, and you can’t use the CLI or IDE. To proceed, end the process manually.

260

CLI Version InformationTroubleshoot Salesforce DX

macOS or Linux
To recover from a failed org authorization on macOS or Linux, use a terminal to kill the process running on port 1717.

1. From a terminal, run:

lsof -i tcp:1717

2. In the results, find the ID for the process that’s using the port.

3. Run:

kill -9 <the process ID>

Windows
To recover from a failed org authorization on Windows, use the Task Manager to end the Node process.

1. Press Ctrl+Alt+Delete, then click Task Manager.

2. Select the Process tab.

3. Find the process named Node.

Note: If you’re a Node.js developer, you can have several running processes with this name.

4. Select the process that you want to end, and then click End Process.

Error: The consumer key is already taken

Let’s say you run project retrieve start on an org in which you’ve created a connected app. When you try to deploy the
retrieved source to a different org, the deploy fails with the error The consumer key is already taken. What happened?

Connected apps include a consumer key that a website or app uses to identify itself to Salesforce. Consumer keys must be unique across
the entire Salesforce ecosystem. When you try to deploy the retrieved (and unchanged) source file associated with the connected app
to a new org, the deploy fails due to duplicate consumer keys.

You have a few options to work around this problem.

• Remove the connected app source file from your project before you deploy your source to the new org. As a result, the connected
app isn’t created. The connected app source file is named something like
force-app/main/default/connectedApps/MyConnApp.connectedApp-meta.xml.

• Update the file for the connected app and change the value of the <consumerKey> element to a unique value. Here’s a snippet
of a sample connected app file that shows the <consumerKey> element.

<?xml version="1.0" encoding="UTF-8"?>
<ConnectedApp xmlns="http://soap.sforce.com/2006/04/metadata">

<contactEmail>john@doecompany.com</contactEmail>
<contactPhone>5556789</contactPhone>
<label>MyConnApp</label>
<oauthConfig>

<callbackUrl>http://localhost:1717/OauthRedirect</callbackUrl>
<consumerKey>3MVG9PG9sFc71i9n55UWbx2</consumerKey>

261

Error: The consumer key is already takenTroubleshoot Salesforce DX

<isAdminApproved>false</isAdminApproved>
...

SEE ALSO:

Salesforce Help: Connected Apps

262

Error: The consumer key is already takenTroubleshoot Salesforce DX

https://help.salesforce.com/s/articleView?id=sf.connected_app_overview.htm&type=5&language=en_US

CHAPTER 14 Limitations for Salesforce DX

Here are some known issues you could run into while using Salesforce DX.

For the latest known issues, visit the Trailblazer Community’s Known Issues page.

Salesforce CLI

Authorization Fails If Using auth:web:login with Client Secret
Description: If you run auth:web:login with a client ID and client secret, you can’t use
Salesforce CLI to issue commands to the scratch org because the authorization file isn’t properly
created.

Workaround: Use the web-based flow without client ID and client secret, or use the JWT-based
flow to authorize to the org. See Authorization in the Salesforce DX Developer Guide for instructions
on Dev Hub and scratch org authorization methods.

Windows Defender Suspends CLI Installation
Description: When you are installing the Salesforce CLI on Windows, you see a Windows Defender
warning. This message is expected because we updated the installer’s code signing certificate.

Workaround: To ignore this message, click Run anyway.

Can’t Import Record Types Using the Salesforce CLI
Description: We don't support RecordType when running the data:tree:import command.

Workaround: None.

263

https://success.salesforce.com/issues_index?tag=Salesforce%20DX
https://developer.salesforce.com/docs/atlas.en-us.248.0.sfdx_dev.meta/sfdx_dev/sfdx_dev_auth.htm

Limited Support for Shell Environments on Windows
Description: Salesforce CLI is tested on the Command Prompt (cmd.exe) and Powershell. There
are known issues in the Cygwin and Min-GW environments, and with Windows Subsystem for Linux
(WSL). These environments might be tested and supported in a future release. For now, use a
supported shell instead.

Workaround: None.

The force:apex:test:run Command Doesn’t Finish Executing
Description: In certain situations, the force:apex:test:run command doesn’t finish
executing. Examples of these situations include a compile error in the Apex test or an Apex test
triggering a pre-compile when another is in progress.

Workaround: Stop the command execution by typing control-C. If the command is part of a
continuous integration (CI) job, try setting the environment variable
SFDX_PRECOMPILE_DISABLE=true.

Dev Hub and Scratch Orgs

Salesforce CLI Sometimes Doesn’t Recognize Scratch Orgs with Communities
Description: Sometimes, but not in all cases, the Salesforce CLI doesn’t acknowledge the creation
of scratch orgs with the Communities feature. You can’t open the scratch org using the CLI, even
though the scratch org is listed in Dev Hub.

Workaround: You can try this workaround, although it doesn’t fix the issue in all cases. Delete the
scratch org in Dev Hub, then create a new scratch org using the CLI. Deleting and recreating scratch
orgs counts against your daily scratch org limits.

Error Occurs If You Pull a Community and Deploy It
Description: The error occurs because the scratch org doesn’t have the required guest license.

Workaround: In your scratch org definition file, if you specify the Communities feature, also specify
the Sites feature.

Source Management

ERROR: No Results Found for force:source:status After Deleting a Custom Label
Description: The force:source:status command returns a No Results Found
error after you delete a custom label in a scratch org.

Workaround: Option #1: If you have only one or two scratch orgs and you can easily identify the
affected scratch org by its generated username, use this workaround. In the Your DX
project/.sfdx/org directory, delete only the folder of the affected scratch org.

Option #2: If you have several scratch orgs associated with your DX project and you don’t know
which scratch org’s local data to delete, use this workaround. Delete the Your DX
project/.sfdx/org directory. This directory contains source tracking information for all

scratch orgs related to the project. When you run the next source-tracking command for this or
another scratch org (source:push, source:pull, or source:status), the CLI reconstructs
the source tracking information for that org.

After you delete the directory (after option #1 or option #2), run force:source:status again.

264

Limitations for Salesforce DX

ERROR: Entity of type 'RecordType' named 'Account.PersonAccount' cannot be found
Description: Although you can turn on Person Accounts in your scratch org by adding the feature
to your scratch org definition, running source:push or source:pull results in an error,

Workaround: None.

force:source:convert Doesn’t Add Post-Install Scripts to package.xml
Description: If you run force:source:convert, package.xml does not include the post
install script.

Workaround: To fix this issue, choose one of these methods:

• Manually add the <postInstallClass> element to the package.xml in the metadata
directory that force:source:convert produces

• Manually add the element to the package in the release org or org to which you are deploying
the package.

Must Manually Enable Feed Tracking in an Object's Metadata File
Description: If you enable feed tracking on a standard or custom object, then run
force:source:pull, feed tracking doesn't get enabled.

Workaround: In your Salesforce DX project, manually enable feed tracking on the standard or
custom object in its metadata file (-meta.xml) by adding
<enableFeeds>true</enableFeeds>.

Unable to Push Lookup Filters to a Scratch Org
Description: When you execute the force:source:push command to push the source of
a relationship field that has a lookup filter, you sometimes get the following error:

duplicate value found: <unknown> duplicates value on record with
id: <unknown> at line num, col num.

Workaround: None.

Deployment

Compile on Deploy Can Increase Deployment Times in Scratch Orgs
Description: If your deployment times for Apex code are slow, your scratch org might have the
enableCompileOnDeploy setting set to true.

Workaround:To turn it off, set it to false (the default) or delete the setting from the scratch org
definition.

{
"orgName": "ekapner Company",
"edition": "Developer",
"features": [],
"settings": {
"lightningExperienceSettings": {

"enableS1DesktopEnabled": true
},
"apexSettings": {

"enableCompileOnDeploy": false
}

}
}

265

Limitations for Salesforce DX

Managed First-Generation Packages

When You Install a Package in a Scratch Org, No Tests Are Performed
Description: If you include tests as part of your continuous integration process, those tests don’t
run when you install a package in a scratch org.

Workaround: You can manually execute tests after the package is installed.

New Terminology in CLI for Managed Package Password
Description: When you use the CLI to add an installation key to a package version or to install a
key-protected package version, the parameter name of the key is --installationkey. When
you view a managed package version in the Salesforce user interface, the same package attribute
is called “Password”. In the API, the corresponding field name, “password”, is unchanged.

Workaround: None.

Managed Second-Generation Packages

Unable to Specify a Patch Version for Managed Packages
Description: The four-part package version number includes a patch segment, defined as
major.minor.patch.build. However, you can’t create a patch for a second-generation managed
package. Package creation fails if you set a patch number in the package descriptor. We plan to
provide this functionality for managed packages in the Winter ’20 release.

Workaround: Always set the patch segment of the version number, to 0. For example, 1.2.0.1 is
valid but 1.2.1.1 is not.

Protected Custom Metadata and Custom Settings are Visible to Developers in a Scratch Org If
Installed Packages Share a Namespace

Description: Use caution when you store secrets in your second-generation packages using protected
custom metadata or protected custom settings. You can create multiple second-generation packages
with the same namespace. However, when you install these packages in a scratch org, these secrets
are visible to any of your developers that are working in a scratch org with a shared namespace. In
the future, we might add a “package-protected” keyword to prevent access to package secrets in
these situations.

Workaround: None.

Unlocked Packages

Protected Custom Metadata and Custom Settings are Visible to Developers in a Scratch Org If
Installed Packages Share a Namespace

Description: Use caution when you store secrets in your unlocked packages using protected custom
metadata or protected custom settings. You can create multiple unlocked packages with the same
namespace. However, when you install these packages in a scratch org, these secrets are visible to
any of your developers that are working in a scratch org with a shared namespace. In the future, we
might add a “package-protected” keyword to prevent access to package secrets in these situations.

Workaround: None.

266

Limitations for Salesforce DX

	How Salesforce Developer Experience Changes the Way You Work
	Use a Sample Repo to Get Started
	Create an Application
	Migrate or Import Existing Source
	Release Notes

	Enable Dev Hub Features in Your Org
	Free Limited Access License
	Enable Unlocked and Second-Generation Managed Packaging
	Enable Source Tracking in Sandboxes
	Enable Einstein Features
	Enable Language Extension Packages (Beta)
	Add Salesforce DX Users
	Add a Developer User to Your Dev Hub Org
	Add a System Administrator or Standard User to Your Dev Hub Org
	Permission Set for Salesforce DX Users

	Project Setup
	Sample Repository on GitHub
	Create a Salesforce DX Project
	Salesforce DX Project Structure and Source Format
	How to Exclude Source When Syncing
	Create a Salesforce DX Project from Existing Source
	Convert Files in Metadata Format to Source Format
	Salesforce DX Usernames and Orgs
	Link a Namespace to a Dev Hub Org
	Salesforce DX Project Configuration
	Multiple Package Directories
	Replace Strings in Code Before Deploying

	Authorization
	Authorize an Org Using a Browser
	Authorize an Org Using the JWT Flow
	Authorize a Scratch Org Using the JWT Flow

	Create a Private Key and Self-Signed Digital Certificate
	Create a Connected App in Your Org
	Use the Default Connected App Securely
	Use an Existing Access Token
	Authorization Information for an Org
	Log Out of an Org

	Metadata Coverage
	Scratch Orgs
	Supported Scratch Org Editions and Allocations
	Build Your Own Scratch Org Definition File
	Scratch Org Features
	AccountInspection
	AccountingSubledgerGrowthEdition
	AccountingSubledgerStarterEdition
	AccountingSubledgerUser
	AddCustomApps:<value>
	AddCustomObjects:<value>
	AddCustomRelationships:<value>
	AddCustomTabs:<value>
	AddDataComCRMRecordCredit:<value>
	AddInsightsQueryLimit:<value>
	AdditionalFieldHistory:<value>
	AdmissionsConnectUser
	AdvisorLinkFeature
	AdvisorLinkPathwaysFeature
	AIAttribution
	AnalyticsAdminPerms
	AnalyticsAppEmbedded
	API
	ArcGraphCommunity
	Assessments
	AssetScheduling:<value>
	AssociationEngine
	AuthorApex
	B2BCommerce
	B2BLoyaltyManagement
	B2CCommerceGMV
	B2CLoyaltyManagement
	B2CLoyaltyManagementPlus
	BatchManagement
	BigObjectsBulkAPI
	Briefcase
	BudgetManagement
	BusinessRulesEngine
	CacheOnlyKeys
	CalloutSizeMB:<value>
	CampaignInfluence2
	CascadeDelete
	CaseClassification
	CaseWrapUp
	ChangeDataCapture
	Chatbot
	ChatterEmailFooterLogo
	ChatterEmailFooterText
	ChatterEmailSenderName
	CloneApplication
	CMSMaxContType
	CMSMaxNodesPerContType
	CMSUnlimitedUse
	Communities
	ConAppPluginExecuteAsUser
	ConcStreamingClients:<value>
	ConnectedAppCustomNotifSubscription
	ConnectedAppToolingAPI
	ConsentEventStream
	ConsolePersistenceInterval:<value>
	ContactsToMultipleAccounts
	ContractApprovals
	ContractManagement
	ContractMgmtInd
	CPQ
	CustomFieldDataTranslation
	CustomNotificationType
	DataComDnbAccounts
	DataComFullClean
	DataMaskUser
	DataProcessingEngine
	DebugApex
	DecisionTable
	DefaultWorkflowUser
	DeferSharingCalc
	DevelopmentWave
	DeviceTrackingEnabled
	DevOpsCenter
	DisableManageIdConfAPI
	DisclosureFramework
	Division
	DocGen
	DocGenDesigner
	DocGenInd
	DocumentChecklist
	DocumentReaderPageLimit
	DSARPortability
	DurableClassicStreamingAPI
	DurableGenericStreamingAPI
	DynamicClientCreationLimit
	EAndUDigitalSales
	EAndUSelfServicePortal
	EAOutputConnectors
	EASyncOut
	EdPredictionM3Threshold
	EdPredictionTimeout
	EdPredictionTimeoutBulk
	EdPredictionTimeoutByomBulk
	EducationCloud: <value>
	EinsteinAnalyticsPlus
	EinsteinArticleRecommendations
	EinsteinBuilderFree
	EinsteinDocReader
	EinsteinRecommendationBuilder
	EinsteinRecommendationBuilderMetadata
	EinsteinSearch
	EinsteinVisits
	EinsteinVisitsED
	EmbeddedLoginForIE
	EmpPublishRateLimit:<value>
	EnablePRM
	EnableManageIdConfUI
	EnableSetPasswordInApi
	EncryptionStatisticsInterval:<value>
	EncryptionSyncInterval:<value>
	EnergyAndUtilitiesCloud
	Entitlements
	EventLogFile
	EntityTranslation
	ExpressionSetMaxExecPerHour
	ExternalIdentityLogin
	FieldAuditTrail
	FieldService:<value>
	FieldServiceAppointmentAssistantUser:<value>
	FieldServiceDispatcherUser:<value>
	FieldServiceLastMileUser:<value>
	FieldServiceMobileExtension
	FieldServiceMobileUser:<value>
	FieldServiceSchedulingUser:<value>
	FinanceLogging
	FinancialServicesCommunityUser:<value>
	FinancialServicesInsuranceUser:<value>
	FinancialServicesUser:<value>
	FlowSites
	ForceComPlatform
	ForecastEnableCustomField
	FSCAlertFramework
	FSCServiceProcess
	Fundraising
	GenericStreaming
	GenStreamingEventsPerDay:<value>
	Grantmaking
	HealthCloudAddOn
	HealthCloudEOLOverride
	HealthCloudForCmty
	HealthCloudMedicationReconciliation
	HealthCloudPNMAddOn
	HealthCloudUser
	HighVelocitySales
	HoursBetweenCoverageJob:<value>
	IdentityProvisioningFeatures
	IgnoreQueryParamWhitelist
	IndustriesActionPlan
	IndustriesBranchManagement
	IndustriesCompliantDataSharing
	IndustriesMfgTargets
	IndustriesManufacturingCmty
	IndustriesMfgAccountForecast
	InsightsPlatform
	InsuranceCalculationUser
	InsuranceClaimMgmt
	InsurancePolicyAdmin
	IntelligentDocumentReader
	Interaction
	IoT
	JigsawUser
	Knowledge
	LegacyLiveAgentRouting
	LightningSalesConsole
	LightningScheduler
	LightningServiceConsole
	LiveAgent
	LiveMessage
	LongLayoutSectionTitles
	LoyaltyAnalytics
	LoyaltyEngine
	LoyaltyManagementStarter
	LoyaltyMaximumPartners:<value>
	LoyaltyMaximumPrograms:<value>
	LoyaltyMaxOrderLinePerHour:<value>
	LoyaltyMaxProcExecPerHour:<value>
	LoyaltyMaxTransactions:<value>
	LoyaltyMaxTrxnJournals:<value>
	Macros
	MarketingUser
	MaxActiveDPEDefs:<value>
	MaxApexCodeSize:<value>
	MaxAudTypeCriterionPerAud
	MaxCustomLabels:<value>
	MaxDatasetLinksPerDT:<value>
	MaxDataSourcesPerDPE:<value>
	MaxDecisionTableAllowed:<value>
	MaxFavoritesAllowed:<value>
	MaxFieldsPerNode:<value>
	MaxInputColumnsPerDT:<value>
	MaxLoyaltyProcessRules:<value>
	MaxNodesPerDPE:<value>
	MaxNoOfLexThemesAllowed:<value>
	MaxOutputColumnsPerDT:<value>
	MaxSourceObjectPerDSL:<value>
	MaxStreamingTopics:<value>
	MaxUserNavItemsAllowed:<value>
	MaxUserStreamingChannels:<value>
	MaxWritebacksPerDPE:<value>
	MedVisDescriptorLimit:<value>
	MinKeyRotationInterval
	MobileExtMaxFileSizeMB:<value>
	MobileSecurity
	MultiLevelMasterDetail
	MutualAuthentication
	MyTrailhead
	NonprofitCloudCaseManagementUser
	NumPlatformEvents:<value>
	ObjectLinking
	OrderManagement
	OrderSaveLogicEnabled
	OrderSaveBehaviorBoth
	OutboundMessageHTTPSession
	OutcomeManagement
	PardotScFeaturesCampaignInfluence
	PersonAccounts
	PipelineInspection
	PlatformCache
	PlatformConnect:<value>
	PlatformEncryption
	PlatformEventsPerDay:<value>
	ProcessBuilder
	ProductsAndSchedules
	ProductCatalogManagementAddOn
	ProductCatalogManagementViewerAddOn
	ProductCatalogManagementPCAddOn
	ProgramManagement
	ProviderFreePlatformCache
	PublicSectorAccess
	PublicSectorApplicationUsageCreditsAddOn
	PublicSectorSiteTemplate
	RecordTypes
	RefreshOnInvalidSession
	RevSubscriptionManagement
	S1ClientComponentCacheSize
	SalesCloudEinstein
	SalesforceContentUser
	SalesforceFeedbackManagementStarter
	SalesforceIdentityForCommunities
	SalesUser
	SAML20SingleLogout
	SCIMProtocol
	SecurityEventEnabled
	SentimentInsightsFeature
	ServiceCatalog
	ServiceCloud
	ServiceCloudVoicePartnerTelephony
	ServiceUser
	SessionIdInLogEnabled
	SFDOInsightsDataIntegrityUser
	SharedActivities
	Sites
	SocialCustomerService
	StateAndCountryPicklist
	StreamingAPI
	StreamingEventsPerDay:<value>
	SubPerStreamingChannel:<value>
	SubPerStreamingTopic:<value>
	SurveyAdvancedFeatures
	SustainabilityCloud
	SustainabilityApp
	TCRMforSustainability
	TimelineConditionsLimit
	TimelineEventLimit
	TimelineRecordTypeLimit
	TimeSheetTemplateSettings
	TransactionFinalizers
	WaveMaxCurrency
	WavePlatform
	Workflow
	WorkflowFlowActionFeature
	WorkplaceCommandCenterUser
	WorkThanksPref

	Scratch Org Settings

	Create a Scratch Org Based on an Org Shape
	Enable Org Shape for Scratch Orgs
	Org Shape Permissions
	Create and Manage Org Shapes
	Scratch Org Definition for Org Shape
	Troubleshoot Org Shape

	Create Scratch Orgs
	Scratch Org Snapshots (Beta)
	Get Started with Scratch Org Snapshots (Beta)
	Enable Scratch Org Snapshots in the Dev Hub Org (Beta)
	Assign Scratch Org Snapshots User Permissions and Licenses (Beta)

	Salesforce CLI Snapshot Commands (Beta)
	Create a Scratch Org Snapshot (Beta)
	Create a Snapshot for Use with Namespaced Scratch Orgs (Beta)
	Create a Scratch Org Based on a Snapshot (Beta)
	Manage and Maintain Your Snapshots (Beta)

	Select the Salesforce Release for a Scratch Org
	Deploy Source From Your Project to the Scratch Org
	Retrieve Source from the Scratch Org to Your Project
	Scratch Org Users
	Create a Scratch Org User
	User Definition File for Customizing a Scratch Org User
	Generate or Change a Password for a Scratch Org User

	Manage Scratch Orgs from the Dev Hub Org
	Scratch Org Error Codes

	Sandboxes
	Authorize Your Production Org
	Create a Sandbox Definition File
	Create, Clone, or Delete a Sandbox

	Track Changes Between Your Project and Org
	Manage Source Tracking for Your org
	Preview Changes Identified by Source Tracking
	Deploy and Retrieve Changes Identified by Source Tracking
	Retrieve Changes to Profiles with Source Tracking

	Resolve Conflicts Between Your Local Project and Org
	Get Change Information by Querying the SourceMember Object
	Best Practices
	Performance Considerations of Source Tracking

	Development
	Develop Against Any Org
	Assign a Permission Set
	Ways to Add Data to Your Org
	Example: Export and Import Data Between Orgs

	Create Lightning Apps and Aura Components
	Create Lightning Web Components
	Create an Apex Class
	Create an Apex Trigger
	Create a Custom Object
	Execute Anonymous Apex
	Run Apex Tests
	Debug Apex
	Generate and View Apex Debug Logs

	Build and Release Your App
	Build and Release Your App with Metadata API
	Develop and Test Changes Locally
	Build and Test the Release Artifact
	Test the Release Artifact in a Staging Environment
	Release Your App to Production
	Cancel a Metadata Deployment

	Unlocked Packages
	What’s an Unlocked Package?
	Package-Based Development Model
	Before You Create Unlocked Packages
	Know Your Orgs
	Create Org-Dependent Unlocked Packages
	Workflow for Unlocked Packages
	Configure Unlocked Packages
	Project Configuration File for Unlocked Packages
	Unlocked Packaging Keywords
	Package Installation Key
	Extract Dependency Information from Unlocked Packages
	Understanding Namespaces
	Create and Register Your Namespace
	Avoid Namespace Collisions
	Namespace-Based Visibility for Apex Classes in Unlocked Packages

	Share Release Notes and Post-Install Instructions
	Specify Unpackaged Metadata or Apex Access for Apex Tests (Unlocked Packages)
	Best Practices for Unlocked Packages
	Package IDs and Aliases for Unlocked Packages
	Frequently Used Unlocked Packaging Operations

	How We Handle Profile Settings in Unlocked Packages
	Develop Unlocked Packages
	Create and Update an Unlocked Package
	Create New Versions of an Unlocked Package
	Simplify Unlocked Package Development by Creating and Specifying an Org Shape
	Use Branches in Unlocked Packaging
	Skip Validation to Quickly Iterate Unlocked Package Development
	Target a Specific Release for Your Unlocked Packages During Salesforce Release Transitions

	Code Coverage for Unlocked Packages
	Release an Unlocked Package
	Update an Unlocked Package Version
	Hard-Deleted Components in Unlocked Packages
	Delete an Unlocked Package or Package Version
	View Package Details

	Push a Package Upgrade for Unlocked Packages
	Install an Unlocked Package
	Install Packages with the CLI
	Install Unlocked Packages from a URL
	Upgrade a Version of an Unlocked Package
	Sample Script for Installing Unlocked Packages with Dependencies

	Migrate Deprecated Metadata from Unlocked Packages
	Uninstall an Unlocked Package
	Transfer an Unlocked Package to a Different Dev Hub
	Take Ownership of an Unlocked Package Transferred from a Different Dev Hub

	Continuous Integration
	Continuous Integration Using CircleCI
	Configure Your Environment for CircleCI
	Connect CircleCI to Your DevHub

	Continuous Integration Using Jenkins
	Configure Your Environment for Jenkins
	Jenkinsfile Walkthrough
	Sample Jenkinsfile

	Continuous Integration with Travis CI
	Sample CI Repos for Org Development Model
	Sample CI Repos for Package Development Model

	Troubleshoot Salesforce DX
	CLI Version Information
	Error: No default dev hub found
	Unable to Work After Failed Org Authorization
	Error: The consumer key is already taken

	Limitations for Salesforce DX

