
Utility Bar API Implementation
Guide

Salesforce, Spring ’24

 @salesforcedocs
Last updated: November 9, 2023

https://twitter.com/salesforcedocs

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Utility Bar API Implementation Guide . 1

What Is the Utility Bar? . 1
What Is a Utility? . 2
Defining a Utility Bar with JSON . 3
Utility Bar Syntax . 4
Log In to Workbench . 6
Create a Utility Bar . 6
Create a Lightning App . 7
Retrieve your Custom Applications Using the Metadata API . 7
Add Your Utility Bar to a Lightning App . 8
Deploy Changes to Your Org . 9
View the Recent Items Utility Bar in Lightning Experience . 9

UTILITY BAR API IMPLEMENTATION GUIDE

You can use the Tooling API and Metadata API to create a utility bar and add it to a Lightning app.

Tip: You can also set up and configure a utility bar using the Lightning App Wizard in the UI. For detailed information, see Add a
Utility Bar to Lightning Apps. in the Salesforce help.

IN THIS SECTION:

What Is the Utility Bar?

Lightning Experience allows you to add your components to prime real estate in any Lightning app so that your users have one-click
access to powerful productivity tools. Now, you can access those same productivity tools in a horizontal footer, called the utility bar.

What Is a Utility?

Utilities are Lightning components defined by a few characteristics. To be a utility, a Lightning component must implement
flexipage:availableForAllPageTypes, be added to a utility bar FlexiPage, and have utility-specific attributes defined.

Defining a Utility Bar with JSON

Creating a utility bar is similar to creating any other Lightning page. Unlike other Lightning pages, however, you cannot create or
edit utility bars in the Lightning App Builder.

Utility Bar Syntax

The JSON definition of a utility bar is similar to that of any other Lightning page.

Log In to Workbench

Use Workbench to make calls to the Tooling API and Metadata API.

Create a Utility Bar

Use the Tooling API in Workbench to create a utility bar FlexiPage.

Create a Lightning App

Create a Lightning app to add the utility bar to.

Retrieve your Custom Applications Using the Metadata API

Use the Metadata API to retrieve information about your org’s Lightning apps.

Add Your Utility Bar to a Lightning App

Add your utility bar to a Lightning app by including the utility bar’s FullName in the XML definition of the app.

Deploy Changes to Your Org

Use the Metadata API to deploy your updated package to your org.

View the Recent Items Utility Bar in Lightning Experience

What Is the Utility Bar?

Lightning Experience allows you to add your components to prime real estate in any Lightning app so that your users have one-click
access to powerful productivity tools. Now, you can access those same productivity tools in a horizontal footer, called the utility bar.

The utility bar in Lightning Experience combines the best features from home page components in Salesforce Classic and the footer in
Salesforce Classic console apps. The utility bar shows components in Lightning Experience so your users can easily access tools like
Lightning Voice and Notes.

1

https://help.salesforce.com/articleView?id=apps_lightning_utilities.htm&language=en_US
https://help.salesforce.com/articleView?id=apps_lightning_utilities.htm&language=en_US

The utility bar is implemented as a Lightning page with "type": "UtilityBar" and "pageTemplate":
"one:utilityBarTemplateDesktop".

The utility bar Lightning page includes a single region (1), and, like any other Lightning page, contains Lightning components (2). In this
case, these Lightning components are utilities. If this seems confusing right now, don’t worry. We’ll break it down as we go.

Note: A Lightning page region can contain up to 100 components.

What Is a Utility?

Utilities are Lightning components defined by a few characteristics. To be a utility, a Lightning component must implement
flexipage:availableForAllPageTypes, be added to a utility bar FlexiPage, and have utility-specific attributes defined.

When you add a component to the utility bar, you can define attributes that determine things like the utility’s height and width.

Other Lightning components that implement flexipage:availableForAllPageTypes have other attributes you must
define. For example, when you create a report chart component you have to provide a reportId, and decide whether to show the
refresh icon.

You can create a utility bar using custom Lightning components or out-of-the-box components. You can also easily adapt existing
custom Lightning components as utilities by updating them to implement flexipage:availableForAllPageTypes.

2

What Is a Utility?Utility Bar API Implementation Guide

This utility bar, built with out-of-the-box Lightning components, displays a report chart using flexipage:reportChart and a
list of recently viewed items using flexipage:recentItems.

Defining a Utility Bar with JSON

Creating a utility bar is similar to creating any other Lightning page. Unlike other Lightning pages, however, you cannot create or edit
utility bars in the Lightning App Builder.

3

Defining a Utility Bar with JSONUtility Bar API Implementation Guide

A utility bar is a Lightning page of a specific type and pageTemplate.

"type": "UtilityBar"
"pageTemplate": "one:utilityBarTemplateDesktop"

In Lightning Experience, Lightning pages—also known as FlexiPages—are custom layouts that let you design pages. Typically, you
create and edit Lightning pages in the Lightning App Builder.

Utility bar Lightning pages, however, aren’t available in the Lightning App Builder. To create a utility bar, use the Tooling API to POST a
JSON definition.

The REST endpoint for FlexiPage is /services/data/v38.0/tooling/sobjects/FlexiPage/. You can create a utility
bar and define its components at the same time. For this example, we’ll add a single Recent Items component,
flexipage:recentItems, to show how the process works. This recentItems component implements
flexipage:availableForAllPageTypes, which is a required interface for Lightning components added to a utility bar.

Utility Bar Syntax

The JSON definition of a utility bar is similar to that of any other Lightning page.

[other]: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

Once you understand the basic structure of a JSON utility bar definition, it’s easy to customize your own by adding out-of-the-box or
custom Lightning components.

Each utility in any utility bar is defined by five attributes.

• Height: Optional. The component’s height.

• Width: Optional. The component’s width

• Eager: Optional. Whether the component loads when the app loads. If false, the component loads when a user first opens it.

• Label: Required. The component’s label.

• Icon: Optional. The component’s icon. Supported values for this attribute are listed on the Salesforce Lightning Design System
website. Custom icons are not supported at this time.

This utility bar has one utility, recentItems, which displays a list of recently accessed records. You also have to define attributes
specific to the recentItems FlexiPage:

• ListItems: Required. An array of sObject types representing which types of record appear in the list of recent items.

• MaxRecords: Optional. The maximum number of records displayed.

{
"FullName": "recentItemsUtility",
"Metadata": {
"masterLabel": "Recent Items Utility Bar",
"pageTemplate": "one:utilityBarTemplateDesktop",
"type": "UtilityBar",
"description": "This utility bar displays a list of recently accessed records.",
"flexiPageRegions": [
{
"appendable": null,
"name": "utilityItems",
"type": "Region",
"componentInstances": [
{

4

Utility Bar SyntaxUtility Bar API Implementation Guide

https://www.lightningdesignsystem.com/icons/#utility
https://www.lightningdesignsystem.com/icons/#utility

"componentName": "flexipage:recentItems",
"componentInstanceProperties": [
{
"name": "entityNames",
"value": "['Account']"

},
{
"name": "maxRecords",
"value": "5"

},
{
"name": "icon",
"type": "decorator",
"value": "note"

},
{
"name": "label",
"type": "decorator",
"value": "Recent Items Utility"

},
{
"name": "width",
"type": "decorator",
"value": "425"

},
{
"name": "height",
"type": "decorator",
"value": "320"

}
]

}
]

}
]

}
}

Let’s look at this code line by line.

The first thing we define is a FullName, recentItemsUtility, which must be unique within your org. Next we define a
masterLabel and Description, which are the user-facing label and description, respectively, for this utility bar.

To specify that this FlexiPage is utility bar, we set "type": "UtilityBar" and "pageTemplate":
"one:utilityBarTemplateDesktop".

The next chunk of code, starting with "flexipageregions", defines a region within our FlexiPage. Utility bar FlexiPages only have
one region, which can contain multiple components. In this case we’re going to add one Lightning component, a
flexipage:recentItems component, to this region. In general, you can add as many Lightning components as you want to a
utility bar.

The last section of code, beginning with "componentInstances", defines the attributes specific to the utility bar, as well as
attributes specific to the recentItems Lightning component. Notice that we defined "entityNames" as an array that includes
only the Account object and "maxRecords" as 5, meaning that the utility will show a maximum of five recently viewed accounts.

5

Utility Bar SyntaxUtility Bar API Implementation Guide

Log In to Workbench

Use Workbench to make calls to the Tooling API and Metadata API.

You can’t create utility bar Lightning pages in the Lightning App Builder. Instead, use a JSON POST request to the Tooling API. Workbench
allows you to make API calls from a web browser with a simple and intuitive user interface.

1. Go to https://workbench.developerforce.com/login.php.

2. Choose your environment and API Version.

3. Click Login with Salesforce and enter your credentials.

Create a Utility Bar

Use the Tooling API in Workbench to create a utility bar FlexiPage.

[other]: Where possible, we changed noninclusive terms to align with our company value of Equality. We maintained certain
terms to avoid any effect on customer implementations.

1. In Workbench, click Utilities > REST Explorer.

2. Enter /services/data/v38.0/tooling/sobjects/FlexiPage/.

3. Copy the JSON definition of the Recent Items Utility into the Request Body:

{
"FullName": "recentItemsUtility",
"Metadata": {
"masterLabel": "Recent Items Utility Bar",
"pageTemplate": "one:utilityBarTemplateDesktop",
"type": "UtilityBar",
"description": "This utility bar displays a list of recently accessed records.",
"flexiPageRegions": [
{
"appendable": null,
"name": "utilityItems",
"type": "Region",
"componentInstances": [
{
"componentName": "flexipage:recentItems",
"componentInstanceProperties": [
{
"name": "entityNames",
"value": "['Account']"

},
{
"name": "maxRecords",
"value": "5"

},
{
"name": "icon",
"type": "decorator",
"value": "note"

},
{

6

Log In to WorkbenchUtility Bar API Implementation Guide

https://workbench.developerforce.com/login.php

"name": "label",
"type": "decorator",
"value": "Recent Items Utility"

},
{
"name": "width",
"type": "decorator",
"value": "425"

},
{
"name": "height",
"type": "decorator",
"value": "320"

}
]

}
]

}
]

}
}

4. Click Execute.

If you see a success: true message, you’ve successfully added the utility bar to your org. Next, add it to a Lightning app.

Create a Lightning App

Create a Lightning app to add the utility bar to.

When you create a Lightning app, it’s represented by a customApplication sObject in the Metadata API.

1. From the Home tab in Setup, enter App in the Quick Find box, then select App Manager.

2. Click New Lightning App, and walk through the New Lightning App wizard.

You can give your app a name, set its primary color, give it a logo, customize which items appear in the app’s navigation bar, and
assign the app to user profiles. Name the app My Lightning App, with the developer name My_Lightning_App.

Tip: The app description displays alongside the icon in the App Launcher. Make the description meaningful to your users.

Learn more about Lightning apps on Trailhead.

Now that you’ve created a Lightning app, use the Metadata API to add the recentItemsUtility to it.

Retrieve your Custom Applications Using the Metadata API

Use the Metadata API to retrieve information about your org’s Lightning apps.

The Metadata API has two types of calls, deploy and retrieve. A retrieve call returns data from your org, while a deploy call updates or
inserts data in your org.

Use a Metadata API retrieve call to get a list of custom applications in your org, and then add the Recent Items Utility Bar to a Lightning
app.

7

Create a Lightning AppUtility Bar API Implementation Guide

https://trailhead.salesforce.com/module/lightning_apps

1. In a text editor, copy and paste the following:

<?xml version='1.0' encoding='UTF-8'?>
<package xmlns="http://soap.sforce.com/2006/04/metadata">

<types>
<members>*</members>
<name>CustomApplication</name>

</types>
<version>38.0</version>

</package>

2. Save the file as package.xml.

The package file tells the Metadata API which objects you want to retrieve. This package.xml returns the XML definition of all
the Classic apps and Lightning apps in your org.

3. In Workbench, click Migration > Retrieve.

4. Click Choose File and select package.xml.

5. Click Next, then click Retrieve.

6. Wait for the page to refresh and look for success: true in the output. If the call succeeded, click Download ZIP File to save
the results.

Add Your Utility Bar to a Lightning App

Add your utility bar to a Lightning app by including the utility bar’s FullName in the XML definition of the app.

1. Unzip the .zip file you downloaded. It should have a name similar to retrieve_09SR00000000QjpMAE.zip.

2. Navigate to the applications folder, and open My_Lightning_App.app in a text editor.

3. Copy and paste <utilityBar>recentItemsUtility</utilityBar> into the second-to-last line of code, right above
</CustomApplication>. It should look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<CustomApplication xmlns="http://soap.sforce.com/2006/04/metadata">

<brand>
<headerColor>#FD30D8</headerColor>

</brand>
<description>My Lightning App</description>
<formFactors>Large</formFactors>
<label>A Lightning App with a utility bar.</label>
<navType>Standard</navType>
<tab>standard-Account</tab>
<tab>standard-Case</tab>
<tab>standard-Product2</tab>
<tab>standard-Order</tab>
<tab>standard-Opportunity</tab>
<tab>standard-ContentNote</tab>
<tab>standard-OtherUserProfile</tab>
<tab>standard-Lead</tab>
<tab>standard-AppLauncher</tab>
<uiType>Lightning</uiType>
<utilityBar>recentItemsUtility</utilityBar>

</CustomApplication>

8

Add Your Utility Bar to a Lightning AppUtility Bar API Implementation Guide

This line of XML ties the utility bar you created earlier, recentItemsUtility, to the customApplication sObject you chose. This sObject
represents a Lightning app in your org.

4. Save My_Lightning_App.app, and zip the unpackaged directory. The name of the file doesn’t matter, so leave it as
unpackaged.zip.

Important: If you are on macOS, create the .zip file from Terminal. In Terminal, navigate to the directory of the folder you’d
like to compress, and enter zip -r unpackaged.zip nameOfFolder, where nameOfFolder is the folder
you’re compressing.

If you create a .zip file from Finder, macOS changes the file structure and your compressed package will be invalid.

Although you can add the same utility bar to multiple Lightning apps, we recommend assigning a utility bar to only one app. A utility
bar assigned to multiple Lightning apps is shared. If you update a utility bar assigned to multiple apps, it changes across those apps.

Deploy Changes to Your Org

Use the Metadata API to deploy your updated package to your org.

1. In Workbench, click Migration > Deploy.

2. Click Choose File and choose unpackaged.zip, the .zip file you created.

3. Select Rollback on Error and choose an option from the Test Level dropdown.

4. Click Next, then click Deploy.

5. Wait for the page to refresh—this might take a few seconds—and look for success: true.

And that’s it! Now you can log in to your org to check it out.

View the Recent Items Utility Bar in Lightning Experience

In Lightning Experience, click the App Launcher and select the Lightning app you created earlier. Check that the utility bar appears at
the bottom of the app, and open the Recent Items Utility.

9

Deploy Changes to Your OrgUtility Bar API Implementation Guide

To ensure that the list of recently accessed items is populated, open a few Account record detail pages. When you open the utility, you
see a list of recently viewed Accounts.

10

View the Recent Items Utility Bar in Lightning ExperienceUtility Bar API Implementation Guide

To see more utilities in action, install the Discount Calculator package. To install the package, log in to Salesforce, then open a separate
tab or window and navigate to https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000HDKU.

This package includes a custom utility bar with several utilities built from out-of-the-box Lightning components, and one, Discount
Calculator, built with a custom Lightning component.

11

View the Recent Items Utility Bar in Lightning ExperienceUtility Bar API Implementation Guide

https://login.salesforce.com/packaging/installPackage.apexp?p0=04tB0000000HDKU

	Utility Bar API Implementation Guide
	What Is the Utility Bar?
	What Is a Utility?
	Defining a Utility Bar with JSON
	Utility Bar Syntax
	Log In to Workbench
	Create a Utility Bar
	Create a Lightning App
	Retrieve your Custom Applications Using the Metadata API
	Add Your Utility Bar to a Lightning App
	Deploy Changes to Your Org
	View the Recent Items Utility Bar in Lightning Experience

