
B2B Commerce and D2C
Commerce Developer Guide

Version 60.0, Spring ’24

 @salesforcedocs
Last updated: January 12, 2024

https://twitter.com/salesforcedocs

© Copyright 2000–2024 Salesforce, Inc. All rights reserved. Salesforce is a registered trademark of Salesforce, Inc., as are other
names and marks. Other marks appearing herein may be trademarks of their respective owners.

CONTENTS

Chapter 1: B2B Commerce and D2C Commerce Developer Guide 1

B2B and D2C Commerce Data Model . 2
Cart Data Model . 4
Product and Catalog Data Model . 5
Product and Category Media Data Model . 6
Product Attributes Data Model . 6

Implementation Lifecycle: Personas . 7
Integrations . 8

Integration Architecture for B2B and D2C Stores (LWR) . 8
Integration Architecture for B2B Stores (Aura) . 10
Checkout Integration . 11
Shipping and Tax Integration . 12
Payment Integration . 15

Set Up Payment Processing . 20
Handle Currency Changes for Active Carts . 22
Commerce SFDX Environment Setup . 22

Install the SFDX CLI . 22
Install the Visual Studio Code Editor . 23
Get Salesforce Extensions for VS Code Editor . 23

Build Custom Components . 24
Lightning Web Components . 25
Storefront APIs . 30
Custom Payment Components . 51
Create a Custom Payment Component . 51
Create Commerce Einstein Recommendations Components . 53
Create a Custom Checkout Component for a B2B or B2C Store (LWR) 69

Custom Rules for Product Readiness . 84
B2B Commerce Checkout Flow (Aura) . 85

B2B Checkout Flows . 86
B2B Checkout Flow Tasks . 86
Create a B2B Commerce Org and Checkout Flow . 87
Configure a B2B Checkout Flow . 88
Configure B2B Checkout Flows to Create Managed Order Summaries 112
Import and Export Lightning B2B Commerce Order Summaries 114
B2B Legacy Checkout Reference . 125

CHAPTER 1 B2B Commerce and D2C Commerce Developer
Guide

Design a B2B Commerce or D2C Commerce solution that uses the power of Lightning Experience. Starting
with the Commerce Experience Builder template, create a customized platform where retailers,
wholesalers, distributors, and consumers can make purchases. Design your platform to meet your business
requirements and connect with all your third-party apps.

In this chapter ...

• B2B and D2C
Commerce Data
Model

• Implementation
Lifecycle: Personas

• Integrations

• Set Up Payment
Processing

• Handle Currency
Changes for Active
Carts

• Commerce SFDX
Environment Setup

• Build Custom
Components

• Custom Rules for
Product Readiness

• B2B Commerce
Checkout Flow (Aura)

1

B2B and D2C Commerce Data Model

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The Commerce store template is built on a pre-configured data model. The data model supports
standard and customizable business objects for a multitude of business relationships and
interoperability with B2B and B2C stores, Salesforce Order Management, and Service Cloud.

The Commerce data model connects the store objects. Default object relationships support a
full-featured B2B or B2C store experience.

Among the object relationships in the Commerce app data model are those that you use to quickly:

• Add product catalogs to provision your stores.

• Configure product variants (product size, shape, color, and so on), categories, bundles, and more.

• Select customer search capabilities and how your store displays results.

• Differentiate buyer groups and associate them with specific products and volume-discounted prices.

• Configure tax, shipping, and payment for cart checkout.

• Create promotional campaigns for targeted products.

Here’s a list of some of the default data model objects.

API NameDescriptionData Model Object

WebStoreA website where buyers and shoppers
complete wholesale and retail transactions.

Store

Includes the fields and properties that define
your store. For example, supported
currencies, languages, and price books.
Many fields are customizable.

WebCartRepresents an online shopping cart in a
store built with B2B or D2C Commerce on

Cart

Lightning, with total amounts for products,
shipping and handling, and taxes.

2

B2B and D2C Commerce Data ModelB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_webstore.htm?q=webstore
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_webcart.htm

API NameDescriptionData Model Object

ProductCatalogA catalog is a collection of the products that
you sell, organized into different categories.

Catalog

The Commerce Admin or Merchandiser uses
data import to set up the catalog.

ProductCategoryCategories and subcategories organize and
group products in your catalog and on your

Category

storefront. The Commerce Admin or
Merchandiser uses B2C data import to fill in
a default compact layout, which includes
name, catalog, category, search order, and
so on. Layout is customizable.

CommerceEntitlementPolicyEntitlement policies are simple entities that
bring together buyer groups and products.

Entitlement Policy

Filtered by BuyerGroup membership.
Includes CanViewPrice and CanViewProduct
fields, which are customizable.

Product2The items and services you sell. The
Commerce Admin or Merchandiser uses

Product

data import to fill in a default compact
layout, which includes a variety of
customizable fields (name, family, and so
on).

BuyerAccountThe buyer’s or shopper’s financial
information, including credit and order

Buyer Account

limits, some of which pertain only to B2B. A
B2C BuyerAccount is established when a
shopper self-registers.

BuyerGroupA group of buyers with the same assigned
entitlement policies, price books, and

Buyer Group

products. Buyer Group name and
description are customizable. For D2C stores,
one buyer group per store is created by
default during D2C data import.

BuyerGroupMemberAn individual buyer associated with a buyer
group.

Buyer Group Member

PriceBook2A price book contains price definitions for
a group of products. Typically added during

Price Book

setup with your store’s data import, but you
can add custom fields.

PricebookEntryA product entry (an association between a
Pricebook2 and Product2) in a price book.

Price Book Entry

3

B2B and D2C Commerce Data ModelB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productcatalog.htm?q=ProductCatalog
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productcategory.htm?q=ProductCategory
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_commerceentitlementpolicy.htm?q=CommerceEntitlementPolicy
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_product2.htm?q=Product2
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_buyeraccount.htm?q=BuyerAccount
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_buyergroup.htm?q=BuyerGroup
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_buyergroupmember.htm?q=BuyerGroup
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_pricebook2.htm?q=PriceBook2
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_pricebookentry.htm?q=PricebookEntry

Cart Data Model

The Cart data model connects objects used to support shopping cart and checkout functionality in a B2B or B2C store. This data
model includes objects used to process shipping, taxes, and promotions.

Product and Catalog Data Model

The Product and Catalog data model connects objects used to support product, catalog, and category organization in a B2B or B2C
store.

Product and Category Media Data Model

The Product and Category Media data model connects objects and relationships that support adding images and other attachments
to provide more information to customers.

Product Attributes Data Model

The Product Attributes data model connects objects and relationships that support product attribute definitions. These attributes
determine how products appear to the customer in places like the product details page and search.

Cart Data Model

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The Cart data model connects objects used to support shopping cart and checkout functionality
in a B2B or B2C store. This data model includes objects used to process shipping, taxes, and
promotions.

Commerce Cloud standard objects in the cart data model require at least one of the following
licenses: B2B Commerce, D2C Commerce, Salesforce Order Management, or Salesforce Payments.

• Cart (WebCart)

• Cart Adjustment Basis (WebCartAdjustmentBasis)

• Cart Adjustment Group (WebCartAdjustmentGroup)

• Cart Checkout Session (CartCheckoutSession)

• Cart Delivery Group (CartDeliveryGroup)

• Cart Item (CartItem)

• Cart Item Price Adjustment (CartItemPriceAdjustment)

4

Cart Data ModelB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_webcart.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_webcartadjustmentbasis.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_webcartadjustmentgroup.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_cartcheckoutsession.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_cartdeliverygroup.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_cartitem.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_cartitempriceadjustment.htm

• Cart Tax (CartTax)

• Cart Validation Output (CartValidationOutput)

• Payment Group (PaymentGroup)

• Payment Method (PaymentMethod)

• Store (WebStore)

Product and Catalog Data Model

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The Product and Catalog data model connects objects used to support product, catalog, and
category organization in a B2B or B2C store.

A product is assigned to a product category, and each product category is assigned to a product
catalog. A store can be associated with only one catalog, but a catalog can be associated with
multiple stores.

Commerce Cloud standard objects in the Product and Catalogs data model require at least one of
the following licenses: B2B Commerce, D2C Commerce.

• Product (Product2)

• Product Catalog (ProductCatalog)

• Product Category (ProductCategory)

• Product Category Product (ProductCategoryProduct)

• Sales Store (SalesStore)

• Sales Store Catalog (SalesStoreCatalog)

• Store (WebStore)

• Store Catalog (WebStoreCatalog)

5

Product and Catalog Data ModelB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_carttax.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_cartvalidationoutput.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_paymentgroup.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_paymentmethod.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_webstore.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_product2.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productcatalog.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productcategory.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productcategoryproduct.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_salesstorecatalog.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_webstore.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_webstorecatalog.htm

Product and Category Media Data Model

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The Product and Category Media data model connects objects and relationships that support adding
images and other attachments to provide more information to customers.

Commerce Cloud standard objects in the Product and Category Media data model require at least
one of the following licenses: B2B Commerce, D2C Commerce.

• Product (Product2)

• Product Category (ProductCategory)

• Product Media (ProductMedia)

• Product Category Media (ProductCategoryMedia)

• Electronic Media Use (ElectronicMediaUse)

• Electronic Media Group (ElectronicMediaGroup)

• Managed Content Info (ManagedContentInfo)

Product Attributes Data Model

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The Product Attributes data model connects objects and relationships that support product attribute
definitions. These attributes determine how products appear to the customer in places like the
product details page and search.

Commerce Cloud standard objects in the Product Attributes data model require at least one of the
following licenses: B2B Commerce, D2C Commerce.

6

Product and Category Media Data ModelB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_product2.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productcategory.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productmedia.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_electronicmediause.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_electronicmediagroup.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_managedcontentinfo.htm

• Product (Product2)

• ProductAttribute

• ProductAttributeSet

• ProductAttributeSetItem

• ProductAttributeSetProduct

Implementation Lifecycle: Personas

In Salesforce Commerce, implementation is a division of labor based on persona skill sets. The Commerce implementation lifecycle relies
on three personas: a developer, an org admin, and a store admin.

Ideally, each persona within the implementation lifecycle has a specialty and completes only certain tasks.

Developer Tasks
Use standard Apex development tools to implement B2B Buyer Experience APIs. Create custom Lightning Web Components to embed
payment, product recommendation, and other APIs. Implement or extend the global interfaces included in the Buyer Experience SDK.
Create packages and deploy to your org.

7

Implementation Lifecycle: PersonasB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_product2.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productattribute.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productattributeset.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productattributesetitem.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_productattributesetproduct.htm

Org and Store Admin Tasks
After your developer creates Apex implementations and packages them, deploy them into your Salesforce org. Configure the standard
Salesforce integrations so that they can execute properly.

Integrations

B2B and D2C Commerce integration points are embedded into the cart and checkout experience. The integration services work across
B2B and B2C stores.

Note: In the Winter ‘24 release, we introduced Commerce extensions for pricing, inventory, shipping, taxes, and other services.
While the checkout integrations framework is still supported, we recommend extensions over integrations because they offer
more targeted customizations for your B2B or B2C store. Plus, they’re available for more Commerce domains. See Get Started With
Salesforce Commerce Extensions.

Integration Architecture for B2B and D2C Stores (LWR)

A predefined set of flows simplifies package integration for tax, shipping, and payment providers for B2B and D2C stores created
with an LWR template. The integrations are embedded into the cart and checkout experience, triggered by shopper interactions
with the storefront UI.

Integration Architecture for B2B Stores (Aura)

Understand how the integration platform and the various components interact for a B2B store created with the Aura template.

Checkout Integration

Commerce checkout provides integration points to third-party services.

Shipping and Tax Integration

A single API call fetches both shipping and tax costs for cart items in B2B and D2C stores.

Payment Integration

The Commerce app payment architecture combines checkout APIs, the Salesforce Payment Gateway, and an integrated payment
package for B2B and B2C stores.

Integration Architecture for B2B and D2C Stores (LWR)

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

A predefined set of flows simplifies package integration for tax, shipping, and payment providers
for B2B and D2C stores created with an LWR template. The integrations are embedded into the cart
and checkout experience, triggered by shopper interactions with the storefront UI.

Note: In the Winter ‘24 release, we introduced Commerce extensions for pricing, inventory,
shipping, taxes, and other services. While the checkout integrations framework is still
supported, we recommend extensions over integrations because they offer more targeted
customizations for your B2B or B2C store. Plus, they’re available for more Commerce domains.
See Get Started With Salesforce Commerce Extensions.

B2B and B2C stores created with an LWR template support these third-party integration points and
flows.

• Shipping—Calculates and writes shipping costs per delivery group.

• Taxes—Calculates and adds tax prices for cart items.

8

IntegrationsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html
https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html
https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html

• Payment—Uses the Salesforce Payment Adapter framework to fetch tokens and authorizations (and manage exceptions, such as
fraud and insufficient credit) from service providers during checkout via a Payments Gateway. The integrated Salesforce Order
Management module handles additional services, including capture and refund.

Here’s how the various components work together to form the integration engine.

A predefined set of flows manages shipping, inventory, pricing, and tax integrations.

1. Cart and checkout processing—Entering a delivery address initiates shipping charges and tax calculation. Order placement triggers
payment processing. An integrated Salesforce Order Management component processes refund, capture, and more.

2. Connect REST API—Service for these discrete APIs. Shipping, tax, and payment integrations execute tasks asynchronously and are
distinct from the Salesforce B2B Checkout subflows implementation for a store built with the Aura template.

3. Task handler—The task handler is implemented as an MQ (Message Queue) handler and invoked by the queue manager when the
integration task is picked up for processing. The integration handler is responsible for delegating the task to the integration
implementation, which the Commerce Admin or Merchandiser specifies when setting up the store.

4. Handler factory—Responsible for creating an integration handler that maps to the implementation chosen by the Commerce Admin
during store setup.

5. Integration services—Using the store’s configured named credentials, a gateway conveys requests for third-party tax and shipping
calculations. The CCS (Core Commerce Services) Adapter and Service Salesforce Payment Adapter request and receive authorizations,
tokens, and exceptions from a third-party service via a Payments Gateway.

6. API responses—Successful results and exceptions with customer-facing help messages are returned to the shopper’s browser.

9

Integration Architecture for B2B and D2C Stores (LWR)B2B Commerce and D2C Commerce Developer Guide

Integration Architecture for B2B Stores (Aura)

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce

Understand how the integration platform and the various components interact for a B2B store
created with the Aura template.

Note: In the Winter ‘24 release, we introduced Commerce extensions for pricing, inventory,
shipping, taxes, and other services. While the checkout integrations framework is still
supported, we recommend extensions over integrations because they offer more targeted
customizations for your B2B or B2C store. Plus, they’re available for more Commerce domains.
See Get Started With Salesforce Commerce Extensions.

The diagram demonstrates how the B2B (Aura) components work together to form the integration
engine.

10

Integration Architecture for B2B Stores (Aura)B2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html

1. Checkout flow:— A managed checkout flow that processes cart shipping, inventory, pricing, and taxation integrations, and converts
the cart to an order. Install and deploy the B2B checkout flow, then customize the flow in Experience Builder and optionally Flow
Builder.

2. Cart processing —A predefined set of steps that process cart shipping, inventory, pricing, and tax integrations. Cart processing is
executed on select cart actions.

3. Async Cart API— A cart service that accepts the processing requests for shipping, inventory, price, and tax integrations. This service
executes tasks asynchronously and returns a jobId to the caller.

4. Queue manager— The Async Cart API offloads execution of cart integrations by placing a task on the message queue (MQ). The
queue manager is responsible for scheduling the future task execution, which provides the cart service a thread pool for potentially
longer running async tasks.

5. Task handler—The task handler is implemented as an MQ handler and invoked by the queue manager when the integration task
is picked up for processing. The integration handler is responsible for delegating the integration task to the integration implementation,
which the store admin specifies when setting up the store.

6. Handler factory—Responsible for creating an integration handler that maps to the implementation chosen by the store admin
when setting up the store.

7. Integration handler—Responsible for adapting the Java processing to Apex, managing the lifecycle, and customer code error
handling.

Checkout Integration
Commerce checkout provides integration points to third-party services.

Note: In the Winter ‘24 release, we introduced Commerce extensions for pricing, inventory, shipping, taxes, and other services.
While the checkout integrations framework is still supported, we recommend extensions over integrations because they offer
more targeted customizations for your B2B or B2C store. Plus, they’re available for more Commerce domains. See Get Started With
Salesforce Commerce Extensions.

Calls to the API services are triggered when shoppers click Checkout or revisit a checkout session from their browser. Store components
that embed the Checkout APIs are implemented in Lightning Web Runtime.

11

Checkout IntegrationB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html
https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html

Shipping and Tax Integration
A single API call fetches both shipping and tax costs for cart items in B2B and D2C stores.

Note: In the Winter ‘24 release, we introduced Commerce extensions for pricing, inventory, shipping, taxes, and other services.
While the checkout integrations framework is still supported, we recommend extensions over integrations because they offer
more targeted customizations for your B2B or B2C store. Plus, they’re available for more Commerce domains. See Get Started With
Salesforce Commerce Extensions.

Shipping and Tax API

Because shipping and tax providers require the same inputs to make their respective calculations, a single API call fetches both
shipping and tax costs for cart items.

Shipping Reference Package

A reference shipping integration package supports both B2B Commerce and D2C Commerce implementations. You can use it as a
template to create your own shipping calculation package.

Tax Reference Package

A reference tax integration package supports both B2B Commerce and D2C Commerce and implementations. You can use it as a
template to create your own tax calculation package.

12

Shipping and Tax IntegrationB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html
https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html

Shipping and Tax API

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

Because shipping and tax providers require the same inputs to make their respective calculations,
a single API call fetches both shipping and tax costs for cart items.

An asynchronous shipping cost and tax API call to service providers is triggered when a shopper
enters a shipping address.

Here’s the structure of RetrieveDeliveryMethod, the triggering shipping and tax calculation API call.

{
“id” : ID : // the cart delivery group id
“deliveryMethods” : DeliveryMethodCollectionRepresentation :
“deliveryAddress” : AddressRepresentation : // selected delivery address
“cartItems” : CartItemCollectionRepresentation :

}

Here’s a sample DeliveryGroupRepresentation.

{
“id”:”2Dg456789012345678AAA”,
"cartItems":{

Total: 1,
carItems:
[
{
"cartItemId":"0a9456789012345678AAA",
"productId":"01txx0000006i44AAA",
"name":"shower bar",
"listPrice":"29.95",

13

Shipping and Tax IntegrationB2B Commerce and D2C Commerce Developer Guide

"salesPrice":"20.00",
"totalTax":"1.85",
"totalAmount":"1",
"totalPrice":"31.80",
"totalAdjustmentAmount":"31.80"

}
]

},
"deliveryMethods":{
“total: 2”,
“items” :
[
{
"id":"2Dm456789012345678AAA",
"shippingFee":14.00,
"currencyCode":"USD",
"carrier":"UPS",
"classOfService":"Next Day Shipping",
“timeOfArrival” : “2020-11-05T13:15:30Z”
"selected":true

},
{
"id":"2Dm123789012345678EAA",
"shippingFee":9.00,
"currencyCode":"USD",
"carrier":"UPS",
"classOfService":"Three Day Shipping",
“timeOfArrival” : “2020-11-07T16:15:30Z”
"selected":false

}
]},

"shippingAddress":{
"AddressType":"Shipping",
"City":"Boston",
"Country":"USA",
"Id":"81Wxx0000000001EAA",
"IsPrimary":true,
"Name":"Home Address",
"PostalCode":"01234",
"State":"MA",
"Street":"1 Milk Street"

}
}

14

Shipping and Tax IntegrationB2B Commerce and D2C Commerce Developer Guide

Shipping Reference Package

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

A reference shipping integration package supports both B2B Commerce and D2C Commerce
implementations. You can use it as a template to create your own shipping calculation package.

Clone or download the Shipping Reference Integration Package package.

Tax Reference Package

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

A reference tax integration package supports both B2B Commerce and D2C Commerce and
implementations. You can use it as a template to create your own tax calculation package.

Clone or download the Tax Reference Integration Package package.

Payment Integration
The Commerce app payment architecture combines checkout APIs, the Salesforce Payment Gateway,
and an integrated payment package for B2B and B2C stores.

Note: In the Winter ‘24 release, we introduced Commerce extensions for pricing, inventory,
shipping, taxes, and other services. While the checkout integrations framework is still
supported, we recommend extensions over integrations because they offer more targeted
customizations for your B2B or B2C store. Plus, they’re available for more Commerce domains.
See Get Started With Salesforce Commerce Extensions.

Payment Architecture

The Salesforce Payment Adapter framework fetches tokens and authorizations from service providers during checkout.

Payment APIs

B2B and D2C Commerce implements a group of payment APIs to support tokenizing shopper credit cards without storing that
information natively.

Payment Gateway

The Commerce Payments Gateway parses key object fields for tokenization, authorization, capture, refund, and other checkout API
requests.

Payments Reference Packages

A reference payments integration package supports both B2B Commerce and D2C Commerce implementations. You can use it as
a template to create your own payments package.

15

Payment IntegrationB2B Commerce and D2C Commerce Developer Guide

https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/integrations
https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/integrations
https://developer.salesforce.com/docs/commerce/salesforce-commerce/guide/extensions.html

Payment Architecture

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The Salesforce Payment Adapter framework fetches tokens and authorizations from service providers
during checkout.

A shopper UI action triggers the SetPaymentMethod, which interacts with an integrated third-party
payment provider to reserve funds.

After the shopper reviews and approves the order, the PlaceOrder API completes the sale.

16

Payment IntegrationB2B Commerce and D2C Commerce Developer Guide

Integration packages for payment providers are interoperable across the B2B and D2C Commerce solution and Salesforce Order
Management.

17

Payment IntegrationB2B Commerce and D2C Commerce Developer Guide

Payment APIs

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

B2B and D2C Commerce implements a group of payment APIs to support tokenizing shopper credit
cards without storing that information natively.

Shopper actions trigger payment API calls to a third-party service provider via the Payment Adapter
framework. The APIs support tokenizing shopper credit cards so that no personal information is
stored natively. Together with the licensed Salesforce Order Management (SOM) or 1C OM, the
Payment Adapter framework exposes additional APIs. SOM manages the capture and refund flows
and provides an integrated customer order lifecycle, including fulfillment and service.

These APIs initiate payments processing.

• SetPaymentMethod tokenizes the shopper’s credit card and returns a token.

• PlaceOrder (returns Auth Code) validates the cart, reserves inventory, converts cart to order, authorizes payment, and activates the
order in SOM. The payment authorization reserves funds from the available credit of the credit card, but it’s not a payment. To the
shopper, it can display as pending.

After the transaction is tokenized and the order placed, any of these APIs and corresponding transactions can occur.

18

Payment IntegrationB2B Commerce and D2C Commerce Developer Guide

• Authorization reversals release the funds reserved by the payment authorization, removing them from pending transactions.

• Capture consumes the funds reserved by the payment authorization.

• Sale is a transaction type where Authorization and Capture are executed as part of a single request. If successful, the order is fulfilled
immediately.

• Void cancels the transfer of funds to the merchant account before settlement. When a payment is processed, funds are held. The
balance is deducted from the customer’s credit limit, but not yet transferred to the merchant account. At a later point, all transactions
are batched for settlement, and the funds are transferred to the merchant’s account. A transaction can be voided after purchase but
before settlement.

• Refund is a transaction request that transfers the amount from the merchant’s account to the customer’s account.

For more information on these APIs, see Commerce Connect REST Payment APIs.

Payment Gateway

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and B2B2C Commerce

The Commerce Payments Gateway parses key object fields for tokenization, authorization, capture,
refund, and other checkout API requests.

Payments Gateway uses the CommercePayments Apex namespace. For more information, see the
Apex Reference Guide.

The Commerce Payments Gateway parses key object fields passed by the UI Checkout components.
These fields include data to tokenize and authorize the payment request. For example, the Payments
Gateway requires a tokenize request to pass this information.

cardPaymentMethod: {
cardHolderName: <string>,
cardNumber: <string>,
expiryMonth: <string>,
expiryYear: <string>,
cvv: <string>

}
address: {

street: <string>,
city: <string>,
state: <string>,
postalCode: <string>,

19

Payment IntegrationB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_payments.htm?search_text=payment
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_namespace_commercepayments.htm

country: <string>
}

Authorization, capture, refund, and other requests also pass these objects. Review the Stripe adapter samples in the Payments Reference
Package to see how objects for transmission to Stripe are handled.

Examples for the Salesforce Payment Adapter include:

• tokenizeRequest → commercePayments.PaymentMethodTokenizationRequest

• authRequest → commercePayments.AuthorizationRequest

• captureRequest → commercePayments.CaptureRequest

• refundRequest → commercePayments.ReferencedRefundRequest

Payments Reference Packages

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

A reference payments integration package supports both B2B Commerce and D2C Commerce
implementations. You can use it as a template to create your own payments package.

Clone or download the package: Payments Reference Integration Package

This guide describes how to set up development environments and provides step-by-step procedures
for creating and deploying a payments package to your store.

Set Up Payment Processing

To collect credit card payment information in your B2B store using a synchronous payment gateway, create a payment gateway and
connect it to your checkout. Payment processing in the checkout flow is limited to payment authorization. The checkout flow doesn’t
collect or store payment information in the provided payment components. Payment authorization takes place between cart to order
and order activation to limit the chance of an error occurring before credit card authorization.

Create your store and configure checkout before you set up your payment system.

Note: B2B Checkout and payment APIs don’t support authorization cancellation. Payment authorization takes place between
cart to order and order activation to limit the chance of an error occurring before credit card authorization.

1. Create named credentials.

a. From Setup, in the Quick Find box, enter NamedCredential, and then select New Named Credential.

b. Enter the username, password, and URL for your payment gateway. These fields are dependent on your company’s external
payment system.

Example named credential

• Label: My Named Credential

• Name: My_Named_Credential

• URL: https://api-cert.payeezy.com or https://api.stripe.com

• Identity Type: Named Principal

• Authentication Protocol: Password Authentication

• Username: store@example.com

• Password: password123

c. Select Allow Merge Fields in HTTP Header.

20

Set Up Payment ProcessingB2B Commerce and D2C Commerce Developer Guide

https://github.com/forcedotcom/commerce-on-lightning/tree/main-2/examples/b2c/checkout/payment-gateway-integration
https://github.com/forcedotcom/commerce-on-lightning/tree/main-2/examples/b2c/checkout/payment-gateway-integration
https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/payment-gateway-integration
https://api-cert.payeezy.com/
https://api.stripe.com/

d. Save your changes.

2. Create a payment gateway adapter.

A payment gateway adapter connects your payment platform in Salesforce and an external payment gateway. The Apex class that
you create references your named credential.

You can create your own adapter using the code samples and instructions in Payment Gateway Adapters. For example implementations
associated with specific payment platforms, see Sample Payment Gateway Implementation for CommercePayments.

3. Create a payment gateway provider. See Set Up a Synchronous Payment Gateway Adapter.

PaymentGatewayProvider is an object that stores details about the payment gateway that Salesforce communicates with when
processing a transaction. It defines the connection to a payment gateway Apex adapter.

a. Fill in the fields using your payment gateway adapter information.

Example

• ApexAdapterId: <Payment Gateway Adapter ID from Step 2>

• DeveloperName: MyPaymentGatewayProvider

• IdempotencySupported: Yes

• Language: en_US

• MasterLabel: MyPaymentGatewayProvider

4. Create a payment gateway object.

The PaymentGateway object stores information that Salesforce uses to communicate with the payment gateway.

a. From the Commerce app, in the object finder, enter Payment Gateway and select Payment Gateway.

b. Click New.

c. Enter a name.

d. For Payment Gateway Provider, enter the ID of the payment gateway provider that you created in Step 3.

e. For Merchant Credentials, enter your named credential.

f. For Status, select Active.

g. Save your work.

5. Connect your payment gateway to your checkout using the integrated store service.

a. In the Commerce app navigation menu, select Stores, and select your store.

b. Under Manage Your Store, select Administration.

c. Select Store Integrations.

d. On the Card Payment Gateway tile, select Link Integration.

e. Choose the payment gateway that you created.

Test your payment gateway to make sure that it’s working as expected. If you have trouble, check the Payment Gateway logs in your
Commerce app. The PaymentGatewayLogs object creates records for every payment attempt and provides information when errors
occur.

21

Set Up Payment ProcessingB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_commercepayments_adapter_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_commercepayments_ref_github_repo.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_commercepayments_sync_adapter_setup.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_paymentgatewayprovider.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.object_reference.meta/object_reference/sforce_api_objects_paymentgateway.htm

Handle Currency Changes for Active Carts

Commerce carts don’t automatically support currency changes. If your store supports multiple currencies, we recommend that you
make the currency picker inactive when a customer places an item in the cart. However, you can create a custom process to handle
currency changes when items are in the cart.

1. Create a secondary cart in the new currency. See Commerce Webstore Carts.

2. Add items from the previous cart to the new cart. Make sure that products and price books are set up correctly in each currency that
your store supports. See Commerce Webstore Cart Items and Commerce Webstore Cart Items, Batch.

3. Delete the previous cart. See Commerce Webstore Cart.

4. Make the secondary cart the primary cart. See Commerce Webstore Cart, Make Primary.

Commerce SFDX Environment Setup

Salesforce recommends the Salesforce Developer Experience (SFDX) environment for building Lightning web components (LWC), and
for custom tax, shipping, and payment integration packages and extensions. SFDX provides easy access to Salesforce extensions and
GitHub repositories containing LWC templates and reference packages. SFDX also integrates with Salesforce CLI, the Visual Studio Code
editor with the Salesforce Extension Pack, and plug-ins to quickly deploy packages and components to scratch orgs and stores.

Install the SFDX CLI

The Salesforce DX (SFDX) CLI synchronizes your source code between the Salesforce orgs that you deploy to and your version control
system.

Install the Visual Studio Code Editor

The free Visual Studio (VS) Code editor is an ideal development environment for creating, debugging, and deploying Salesforce
Lightning web components and integration packages and extensions.

Get Salesforce Extensions for VS Code Editor

The VS Code editor provides access to Salesforce extensions that support creating integration packages and custom components
for B2B and B2C stores created with an LWR template. The extensions include features for working with scratch orgs, sandboxes,
and DE orgs, Lightning web components (LWC), and more.

Install the SFDX CLI

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The Salesforce DX (SFDX) CLI synchronizes your source code between the Salesforce orgs that you
deploy to and your version control system.

Install the CLI. See Install the Salesforce SFDX CLI.

To confirm installation, open a command or terminal window and enter sfdx.

22

Handle Currency Changes for Active CartsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_carts.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items_batch.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_make_primary.htm
https://developer.salesforce.com/docs/component-library/documentation/en/lwc/lwc.get_started_cli

Install the Visual Studio Code Editor

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The free Visual Studio (VS) Code editor is an ideal development environment for creating, debugging,
and deploying Salesforce Lightning web components and integration packages and extensions.

The free VS Code editor is open-source and optimized for cloud and web coding. The project folder
combines, compiles, and displays the output of the HTML, JavaScript, and CSS files for your
component.

• Install the open source Visual Studio Code editor.

Get Salesforce Extensions for VS Code Editor

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

The VS Code editor provides access to Salesforce extensions that support creating integration
packages and custom components for B2B and B2C stores created with an LWR template. The
extensions include features for working with scratch orgs, sandboxes, and DE orgs, Lightning web
components (LWC), and more.

For more information, see the Salesforce Extensions for VS Code Overview.

1. Open the VS Code app.

2. Navigate to View > Extensions.

3. In the search field, enter Salesforce.

4. To install the package, click Salesforce Extension Pack (v. 51.4.0 or later).

5. To confirm installation in the VS Code Editor, open the Command Palette by pressing Ctrl+Shift+P (Windows) or Cmd+Shift+P
(macOS) and enter sfdx.

Confirmation looks like this:

The Salesforce Extension Pack includes:

• Salesforce SFDX CLI integration for VS Code

• ESLint JavaScript integration for VS Code

• LWC for VS Code, which uses the VS Code HTML server to provide code-editing features for the LWC program model, including
syntax highlighting, code completion, and file outlining

To display a list of the installed extensions, click the Extensions icon in the left navigation pane or press Ctrl+Shift+X (Windows) or
Cmd+Shift+X (macOS) and scroll to view them all.

23

Install the Visual Studio Code EditorB2B Commerce and D2C Commerce Developer Guide

https://code.visualstudio.com/download
https://developer.salesforce.com/tools/vscode/

For an overview, see Salesforce Extensions for LWC

Build Custom Components

In addition to the Commerce App standard components, you can add custom components to your B2B or D2C store created with an
LWR template.

Lightning Web Components

Custom Lightning web components (LWC) are easy to build, and they perform well in the web browser that hosts your B2B or D2C
store created with an LWR template.

Storefront APIs

B2B and B2C stores built with LWR templates support Storefront APIs that help you build custom Lightning Web Components (LWCs)
including headers, footers, and banners. Storefront APIs connect LWCs with data and execute processes, like adding a product to a
wishlist or a cart, or applying a coupon to an order. Storefront APIs simplify LWC creation and help integrate components into larger
page contexts.

24

Build Custom ComponentsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/tools/vscode/en/lwc/writing

Custom Payment Components

You can integrate a client-side payment capability as a Lightning web component in your B2B or B2C store created with an LWR
template. Registered and guest buyers interact with the component during checkout to make direct or proxied calls to process the
payment with an external provider.

Create a Custom Payment Component

Use the same credit card payment methods and order processing across stores by creating a custom payment component for your
B2B or B2C store created with an LWR template.

Create Commerce Einstein Recommendations Components

Use Commerce Einstein Activity Tracking and Product Recommendations APIs to create custom components for your Salesforce
Commerce B2C and B2B storefronts.

Create a Custom Checkout Component for a B2B or B2C Store (LWR)

You can create custom checkout components to extend the default checkout processing for a B2B or B2C store created with an LWR
template.

Lightning Web Components
Custom Lightning web components (LWC) are easy to build, and they perform well in the web browser that hosts your B2B or D2C store
created with an LWR template.

Build a Lightning web component by using HTML, JavaScript, and CSS. HTML provides the structure. JavaScript defines the core business
logic, event handling, API calls to fetch page data, and related metadata. CSS provides the look, feel, and animation. Then deploy the
component to Experience Builder with Commerce metadata. From start to finish, including deploying the component to your store, an
SFDX project framework and related utilities assist you.

Note: Your LWR-based B2B or D2C store has dozens of standard Lightning web components. Before building a custom component,
review the already-built LWCs described in LWR Store Components or, to view all the components available in your store template,
see View All Components.

Create an SFDX Project for the Custom Component

Create a Salesforce Developer Experience (SFDX) project to store your custom component files.

Authorize an Org for an SFDX Project

To streamline deployment, authorize the org that SFDX deploys custom objects to.

Create a Sample Lightning Web Component

Create a sample custom component to deploy from SFDX to an authorized org. You can then reuse content from this Lightning web
component file structure.

Deploy a Custom Component

Deploy a Lightning web component to use it on pages in your B2B or D2C store built with an LWR template.

Add a Custom Component to Your Store

Add a component to the canvas of your B2B or D2C store created with an LWR template. Optionally edit its properties.

Public Commerce LWR Library

Accelerate the development process with ready-to-use Lightning web components that help you customize your Commerce
storefronts.

25

Lightning Web ComponentsB2B Commerce and D2C Commerce Developer Guide

https://help.salesforce.com/s/articleView?id=sf.comm_components.htm&language=en_US
https://help.salesforce.com/s/articleView?id=sf.comm_view_comps.htm&language=en_US

Create an SFDX Project for the Custom Component

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

Create a Salesforce Developer Experience (SFDX) project to store your custom component files.

1. In the Visual Studio Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows)
or Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Create Project.

4. Click Enter.

5. Name the project, for example, HelloWorldLightningWebComponent, and click
Enter.

6. Select a folder to store the project.

7. Click Create Project.

Authorize an Org for an SFDX Project

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

To streamline deployment, authorize the org that SFDX deploys custom objects to.

1. In the Visual Studio Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows)
or Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Authorize an Org

4. Choose the Project Default (org URL in your project.json file), or a Production, Sandbox, or Custom org login URL.
SFDX opens the Salesforce login portal to your org in a separate browser window.

5. Log in using your admin credentials.

6. If you’re prompted to allow access, click Allow.
After you authenticate in the browser, the CLI remembers your credentials. The success message looks like this:

26

Lightning Web ComponentsB2B Commerce and D2C Commerce Developer Guide

Create a Sample Lightning Web Component

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

Create a sample custom component to deploy from SFDX to an authorized org. You can then reuse
content from this Lightning web component file structure.

Note: To display your LWR component in Experience Builder, you must specify target
configuration values in the .js-meta.xml file. You can also make component properties editable
in Experience Builder.

1. In the Visual Studio Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows)
or Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Create Lightning Web Component.

Don’t select SFDX: Create Lightning Component, which creates an Aura component.

4. Name the component, for example helloWorld.

5. To accept the default force-app/main/default/lwc location, press Enter.

6. To view the new files in Visual Studio Code Explorer, press Enter.

7. Open the HTML file (for example, helloWorld.html), and write or copy and paste the HTML code for your project.

8. Save the file.

9. Open the JavaScript file (for example, helloWorld.js), and write or copy and paste the JavaScript code for your project.

10. Save the file.

11. Open the XML file (for example, helloWorld.js-meta.xml), and write or copy and paste the XML code for your project.

12. In the XML file, define the component design configuration values for Experience Builder.

DescriptionOption

For a custom drag-and-drop component on an LWR page in Experience Builder
(appears in the Components panel).

lightningCommunity__Page

For a custom page layout component in an LWR site in Experience Builder
(appears in the Page Layout Window).

lightningCommunity__Page_Layout

For a custom theme layout in an LWR site in Experience Builder (appears in
Settings in the Theme area).

lightningCommunity__Theme_Layout

Enables editable component properties when the component is selected in
Experience Builder. Supported property attribute types include integer, string,
boolean, picklist, and color.

lightningCommunity__Default

a. To make your component usable in Experience Builder, set isExposed to true, and
define lightningCommunity__Page, lightningCommunity__Page_Layout,
or lightningCommunity__Theme_Layout in targets.

27

Lightning Web ComponentsB2B Commerce and D2C Commerce Developer Guide

b. To include properties that are editable when the component is selected in Experience Builder,
define lightningCommunity__Default in targets and define the properties in targetConfigs.

Example: The snippet specifies a custom component for an LWR page in Experience Builder and also enables component property
editing.

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentHelloWorld xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>59.0</apiVersion>
<isExposed>true</isExposed>
<targets>

<target>lightningCommunity__Page</target>
<target>lightningCommunity__Default</target>

</targets>
</LightningComponentHelloWorld>

Deploy a Custom Component

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

Deploy a Lightning web component to use it on pages in your B2B or D2C store built with an LWR
template.

1. From the component project directory in Visual Studio Code, right-click the default folder under
force-app/main, and select SFDX: Deploy Source to Org.

2. On the Output tab of the integrated terminal, view the results of your deployment. SFDX displays a deployment status notice that
includes an exit code, such as “SFDX: Deploy Source to Org ... ended with exit code 0.” Exit code 0 means that the command ran
successfully.

28

Lightning Web ComponentsB2B Commerce and D2C Commerce Developer Guide

Add a Custom Component to Your Store

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

Add a component to the canvas of your B2B or D2C store created with an LWR template. Optionally
edit its properties.

Note: Before placing a custom component, assign a custom theme layout to the page in
Experience Builder.

1. In the Visual Studio Code editor, open the Command Palette by pressing Ctrl+Shift+P (Windows)
or Cmd+Shift+P (macOS).

2. Enter SFDX.

3. Select SFDX: Open Default Org.

Your store opens in a separate browser.

4. In the left Navigation panel, click Components.

The custom component displays under Components > Custom Components.

5. From the Custom area of the Lightning Components list, drag your Lightning web component to the page canvas.

6. To edit the component properties, select the component on the page canvas, and enter changes in the component property editor.

To include properties that are editable when the component is selected in Experience Builder, open the .js-meta.xml file and
add lightningCommunity__Default in targets and then define the properties in targetConfigs.

Public Commerce LWR Library
Accelerate the development process with ready-to-use Lightning web components that help you customize your Commerce storefronts.

The Public Commerce LWR Library in GitHub is an open repository of components that look and function like the product components
available in Experience Builder. Clone and customize these public components to streamline your workflow and build outstanding
Commerce storefronts.

The library is organized as an SFDX (Salesforce DX) project, and the components in this library are continually updated.

Contents include:

• Buttons, links, and windows with styling options

29

Lightning Web ComponentsB2B Commerce and D2C Commerce Developer Guide

• Product Detail Page (PDP) items such as pricing displays, discount tiers, product variant selectors, and pricing quantity rules

• Add to Cart and item quantity selector controls

• Search results and filters

The PDP and search components in the reference library employ a versatile API to update data in component properties. These
Builder-supported component APIs use expressions and data binding to achieve continuous data flows. The expressions and data
bindings serve as input for @api properties in the reference LWCs.

SEE ALSO:

Public Commerce LWR Library GitHub Repository

Storefront APIs

EDITIONS

Available in: Lightning
communities accessed
through Lightning
Experience in Enterprise,
Unlimited, and Developer
editions.

B2B and B2C stores built with LWR templates support Storefront APIs that help you build custom
Lightning Web Components (LWCs) including headers, footers, and banners. Storefront APIs connect
LWCs with data and execute processes, like adding a product to a wishlist or a cart, or applying a
coupon to an order. Storefront APIs simplify LWC creation and help integrate components into
larger page contexts.

Implementing components with Storefront APIs delivers distinct advantages over those relying on
platform UI APIs and Aura controllers:

• Security - Storefront APIs automatically apply guardrails, such as buyer entitlement, that protect
transactions and personalize customer journeys, with minimum risk.

• Performance and Scalability - Storefront APIs ensure that the same data is not requested and retrieved multiple times. Optimized to
use multiple cache layers (browser, CDN, server), Storefront APIs retrieve information efficiently. Storefront Actions, for example, are
designed to fetch data from the nearest available source.

• Convenience - Storefront APIs aggregate data from multiple sources and objects, like catalogs, or price books, and can execute
business logic (fetch a product price, determine promotion eligibility).

• UI Cohesiveness - Components that implement Storefront APIs help ensure a consistent, cohesive customer experience. Cart
components that use Wire Adapters, for example, achieve real-time reactivity: adding an item to a cart automatically updates the
cart icon in the header.

The Storefront APIs fetch and display data for Commerce, Platform, and CMS products and include Imperative APIs, Wire Adapters, and
Storefront Actions. Each of these differ in how and when they retrieve data for your component. A State Management layer provides
access to hosted data via REST APIs and also coordinates operations that engage and update builder components. For example, when
a buyer adds a product to the cart via a Storefront API, the State Management layer assures that this updates the list of cart items and
the cart status icon. Taken together, the Storefront APIs provide a comprehensive framework for a dynamic shopping experience.

• Imperative APIs are process-oriented functions that, for example, call a Connect API method (POST, PUT, PATCH) to update data and
return an outcome. Imperative calls typically retrieve hosted data when triggered by a page load or button click. Imperative APIs
prompt updates to related entities including Wire Adapters, all orchestrated via State Management.

30

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://github.com/forcedotcom/commerce-on-lightning-components

• Wire Adapters specify a GET method to call and retrieve data from a hosted data source. The adapter automatically updates properties
in the LWC when hosted source data changes. When the LWC loads or updates, it executes the adapter call and retrieves the data
in real time. For more information, see Understand the Wire Service.

• Storefront Actions are events, such as adding an item to a cart or using a filter to search on a product variant, that trigger updates
to closely-related LWCs. Unlike actual backend API endpoint communication, Storefront Actions react to UI clicks more responsively,
by making changes to related page-level components in chain-of-sequence fashion within a proximate scope. When a customer
clicks a quantity selector component, for example, a createCartItemsLoadAction refreshes the quantity displayed in the
cart. Tight data binding ensures that the triggered operation gets and sets data from the closest source. That said, Storefront Actions
can result in calls (via Wire Adapters or Imperative APIs) to Rest API endpoints

These tables provide information about custom component Imperative APIs and adapters.

Imperative APIs

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

Einstein
Recommendations
API

Triggers the addToCart
activity when a shopper
adds a product to the
cart.

If you replace the
Product Detail Purchase

55.0Commerce
trackAddProductToCart(

product:
Product
): void

commerce/activitiesApi

Options component
with a custom
component, implement
the addToCart activity
to ensure that
Commerce Einstein
Recommendations use
cases generate results
based on shopper or
buyer view behavior.

Einstein
Recommendations
API

Triggers the clickReco
activity when a
recommended product
is clicked and the

55.0Commerce
trackClickReco(

recommenderName:

commerce/activitiesApi

customer is taken tostring,\\The
the product detail
page.

Implement this activity
when building a

name of the
recommender
recoUUID:

string,\\A
string

custom Commercerepresenting
Einsteinthe unique ID
recommendations
component.

for this
recommendation
response
product:

31

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/platform/lwc/guide/data-wire-service-about.html
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

Product\\An
object with
an
18-character
product ID
that
represents
the product
that the
customer
clicked
sku:

'sku123'
});\\(Optional)
A unique
stock keeping
unit
identifier
for the
product
): void

Einstein
Recommendations
API

Triggers the
viewProduct activity
when a shopper views
a Product Detail page.

Don’t fire if a product is
displayed via a

55.0Commerce
trackViewProduct({

id:
'01t000000000000001',\\
The product
that the
customer

commerce/activitiesApi

recommendation,
viewed. An

search result, or any
other means.

object with
an
18-character If you replace the

Product Detail Purchaseproduct ID
sku: Options component

'sku123'
with a custom

});\\(Optional)
component, implementA unique
the viewProductstock keeping
activity to ensure thatunit
Commerce Einsteinidentifier
Recommendations usefor the

product cases generate results
based on shopper or
buyer view behavior.

32

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

Einstein
Recommendations
API

Triggers the viewReco
activity when a
recommendation is
displayed to the
customer.

Implement this activity
when building a

55.0Commerce
trackViewReco(

recommenderName:
string,\\The
name of the
recommender.
recoUUID:

commerce/activitiesApi

custom Commercestring,\\A
Einsteinstring
recommendations
component.

representing
the unique ID
for this If you calculate a

recommendation but
recommendation
response

don’t show it to theproducts:
customer—forProducts,\\The
example, it doesn’tproducts
have as many results asdisplayed to
you like—don’t fire this
activity.

the customer.
A list of
one or more
18-character
product IDs
sku:

SKU):\\(Optional)
A unique
stock keeping
unit
identifier
for the
product
void

Commerce
Webstore Cart
Items

Adds an item to a cart.57.0Commerce
addItemToCart(productId:
string,
quantity:

commerce/cartApi

number) :
Promise<Record<string,
unknown>>

Commerce
Webstore Cart
Items

Adds multiple items to
the cart.

57.0Commerce
addItemsToCart(payload:

AddItemsToCartActionPayload)

commerce/cartApi

:
Promise<Record<string,
unknown>>

33

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/commerce/einstein-api/references/einstein-recommendations?meta=Summary
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

Commerce
Webstore Cart
Items

Applies a coupon to the
cart.

57.0Commerce
applyCouponToCart(couponCode:
string) :
Promise<Record<string,
unknown>>

commerce/cartApi

Commerce
Webstore Cart
Items

Deletes an applied
coupon from the cart.

57.0Commerce
deleteCouponFromCart(couponId:
string) :
Promise<Record<string,
unknown>>

commerce/cartApi

Commerce
Webstore Cart
Items

Deletes an
active/current cart.

57.0Commerce
deleteCurrentCart()
:
Promise<Record<string,
unknown>>

commerce/cartApi

Commerce
Webstore Cart
Items

Deletes an item from
the cart.

57.0Commerce
deleteItemFromCart(itemId:
string) :
Promise<Record<string,
unknown>>

commerce/cartApi

Commerce
Webstore Cart
Items

Refreshes the cart
summary.

58.0Commerce
refreshCartSummary()
:
Promise<Record<string,
unknown>>

commerce/cartApi

Commerce
Webstore Cart
Items

Sets the isProcessing
status field of the cart
to the provided
processing state.

58.0Commerce
updateCartStatusProcessing(status:
boolean) :
Promise<void>>

commerce/cartApi

Commerce
Webstore Cart
Items

Updates the item
quantity in the cart.

57.0Commerce
updateItemInCart(itemId:
string,
quantity:

commerce/cartApi

number) :
Promise<Record<string,
unknown>>

Commerce
Webstore
Checkout

Authorizes a tokenized
payment for a checkout
session.

56.0Commerce
authorizePayment(checkoutId,

tokenResponse.token,

commerce/checkoutApi

billingAddress):

Promise<PaymentAuthorizationResponse>

34

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

Commerce
Webstore
Checkout

Returns true if the
supplied checkout
status is complete and
will accept additional
parameters

60.0Commerce
checkoutStatusIsReady(checkoutStatus:

CheckoutStatus
|
undefined):
boolean

commerce/checkoutApi

Commerce
Webstore
Checkout

Creates a contact point
address record.

This API doesn’t affect
the checkout session.

56.0Commerce
createContactPointAddress(address:
Address):
Promise<Address>

commerce/checkoutApi

Commerce
Webstore
Checkout

Loads the checkout
session or error and
saves it in the store for
access by the wire
adapter.

57.0Commerce
loadCheckout():

Promise<CheckoutInformation>

commerce/checkoutApi

Commerce
Webstore
Checkout

Publishes an updated
checkout session state
to the store so changes
can be propagated by

57.0Commerce
notifyCheckout(state:

CheckoutInformation
| Error |

commerce/checkoutApi

the wire adapter to
subscribed listeners.

Passing an Error
replaces the checkout

null):
Promise<CheckoutInformation
| Error |
null>

state and checkout ID
with the error state.

Passing null clears the
published data cache.
Returns the passed in
data unmodified.

Commerce
Webstore
Checkout

Calls notifyCheckout
with supplied data.

Additionally, when
state indicates an async

57.0Commerce
notifyAndPollCheckout(state:

CheckoutInformation
| Error |
null):

commerce/checkoutApi

computation in
Promise<CheckoutInformation progress (httpStatus is
| Error |
null>

202), it calls
loadCheckout to poll
until async tasks
complete.

35

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

Automatically triggers
a cart summary refresh
if needed.

Commerce
Webstore
Checkout

Handles a variety of
payment operations,
including getting the
metadata that the

57.0Commerce
paymentClientRequest(paymentsData:

PaymentsData)

Promise<PaymentsData>

commerce/checkoutApi

component needs from
a third-party API,
initiating a payment
session, and making
3DS authentication
confirmations.

Commerce
Webstore
Checkout

Finalizes the order,
completing the active
checkout session.

56.0Commerce
placeOrder():

Promise<OrderConfirmation>

commerce/checkoutApi

Commerce
Webstore
Checkout

Sends a client-side
authorization result to
the server.

56.0Commerce
postAuthorizePayment(checkoutId:
string,
paymentToken:

commerce/checkoutApi

string,
billingAddress?:
Address):
Promise<PaymentAuthorizationResponse>

Commerce
Webstore
Checkout

Restarts an active
checkout process.

Before you use this API,
clear all cached

56.0Commerce
restartCheckout():

Promise<void>

commerce/checkoutApi

checkout and address
data to prepare for a
new “active” session.
Clear cache is required
anytime the previous
checkout session
becomes invalid.
Attempts to use other
checkout APIs after the
previous session
become invalid and fail
until the restart is
called.

36

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

Commerce
Webstore
Checkout

Sends a simple
purchase order number
to the server.

57Commerce
simplePurchaseOrderPayment(checkoutId:
string,
tokenResponseToken:

commerce/checkoutApi

string,
billingAddress:
Address):
Promise<PaymentAuthorizationResponse>

Commerce
Webstore
Checkout

Updates the guest
contact information in
the active checkout
session.

56.0Commerce
updateContactInformation(contactInfo:

ContactInfo):

Promise<void>

commerce/checkoutApi

Commerce
Webstore
Checkout

Updates an existing
contact point address
record.

This API doesn’t affect
the checkout session.

56.0Commerce
updateContactPointAddress(address:
Address):
Promise<Address>

commerce/checkoutApi

Commerce
Webstore
Checkout

Updates the delivery
method for the default
delivery group in the
active checkout session,

56.0Commerce
updateDeliveryMethod(deliveryMethodId:
string):
Promise<void>

commerce/checkoutApi

and updates the cart
summary.

Commerce
Webstore
Checkout

Updates the cached
guest email value that’s
shared between
components.

This API doesn’t affect
the checkout session.

56.0Commerce
updateGuestEmail(guestEmail:
string |
undefined):
Promise<void>

commerce/checkoutApi

Commerce
Webstore
Checkout

Updates the shipping
address for the default
delivery group in the
active checkout session.

56.0Commerce
updateShippingAddress(deliveryGroup:

DeliveryGroup):

Promise<void>

commerce/checkoutApi

Commerce
Webstore
Checkout

Returns a resolved
promise immediately if
the checkout status is
complete. Otherwise,

57.0Commerce
waitForCheckout():

Promise<CheckoutInformation>

commerce/checkoutApi

the returned promise

37

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

resolves after the
checkout status
becomes complete or
errors.

Commerce
Webstore

Get
application-context-specific
data.

53.0Commerce
getAppContext():

Promise<AppContext>

commerce/contextApi

Application
Context

Commerce
Webstore

Get
session-context-specific
data.

53.0Commerce
getSessionContext():

Promise<SessionContext>

commerce/contextApi

Application
Context

Commerce
Webstore Account
Address

Create an account
address.

54.0Commerce
createMyAccountAddress(

address:

commerce/myAccountApi

MyAccountAddress
):
Promise<MyAccountAddress>

Commerce
Webstore Account
Address

Delete an account
address.

54.0Commerce
deleteMyAccountAddress(

addressId:

commerce/myAccountApi

string
):
Promise<void>

Commerce
Webstore Account
Address

Update an account
address.

54.0Commerce
updateMyAccountAddress(

address:

commerce/myAccountApi

MyAccountAddress
):
Promise<MyAccountAddress>

Commerce
Webstore Account
Address

Reset a password.
resetPassword(

username:

commerce/myAccountApi

string
):
Promise<Response>

Commerce
Webstore Account
Address

Update an existing
account profile.

59.0Commerce
updateMyAccountProfile(profile:

MyAccountProfileRequestOptions):

commerce/myAccountApi

38

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_application_context.htm?q=application%20context
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_application_context.htm?q=application%20context
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_application_context.htm?q=application%20context
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_application_context.htm?q=application%20context
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_application_context.htm?q=application%20context
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_application_context.htm?q=application%20context
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_application_context.htm?q=application%20context
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_application_context.htm?q=application%20context
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_accounts_addresses_address.htm?q=Account%20address%20api

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

Promise<MyAccountProfileResponse>

Commerce
Checkout Order

57.0Commerce
startReOrder(options:

commerce/orderApi

OrderActionAddToCartRequestOptions):

Promise<OrderActionAddToCartData>

CMS ContentUpdates the property
to be updated in

54.0CMS
contentBodyModify['propertyOfContentType']
= 'new

experience/cmsEditorApi

content form. Thenvalue';
calls back after the form
is updated.

updateContent({

contentBody:
contentBodyModify
}).then(() =>
{
});

B2B and D2C
Commerce
Resources

Sets the account name
and id in session
storage.

57Commerce
effectiveAccount.update(
'Sample
Account Id' ,

experience/effectiveAccountApi

'Sample
Account Name'
); // To set
the
effective
account Id
and account
name in
session
storage.

const
accountId =
effectiveAccount.accountId
// To read
the effective
account Id
from session
storage.

const
accountName =

effectiveAccount.accountName

39

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_responses_checkout_order.htm?q=order%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_responses_checkout_order.htm?q=order%20api
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_contents_content.htm?q=CMS+update
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_contents_content.htm?q=CMS+update
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_contents_content.htm?q=CMS+update
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_contents_content.htm?q=CMS+update

Associated
Endpoint

DescriptionAPI VersionProductName/InterfaceNamespace/Bundle

// To read
the effective
account name
from session
storage.
});

Wire Adapters in the Commerce Namespace

Associated
Endpoint

DescriptionAPI VersionProductAdapterNamespace/Bundle

Commerce Webstore
Cart Coupons

Retrieves cart
coupon information,
loads cart coupons.

55.0CommerceCartCouponsAdaptercommerce/cartApi

Commerce Webstore
Cart Items

Fetches and loads
cart items, supports
sorting.

53.0CommerceCartItemsAdaptercommerce/cartApi

Commerce Webstore
Cart Promotions

Retrieves and loads
cart-level and item
promotion

55.0CommerceCartPromotionsAdaptercommerce/cartApi

information when
eligible items are
added or updated.

Commerce Webstore
Cart

Fetches current cart
totals data from
rollup calculators for

53.0CommerceCartSummaryAdaptercommerce/cartApi

CartBadge,
CartSummary,
Checkout, and other
components.

Commerce Webstore
Cart

Retrieves status
information about a
cart, including

58.0CommerceCartStatusAdaptercommerce/cartApi

whether a cart is
processing, whether
a cart is ready for
checkout, and
whether guest cart
or checkout access is
enabled.

40

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_carts_cart_coupons.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_carts_cart_coupons.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_promotions.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_promotions.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart.htm

Associated
Endpoint

DescriptionAPI VersionProductAdapterNamespace/Bundle

Commerce Webstore
Checkout

Uses multiple calls to
aggregate results for
the get-address-list

56.0CommerceCheckoutAddressAdaptercommerce/checkoutApi

API. This adapter is a
deeper
get-address-list API
wrapper.

Commerce Webstore
Checkout

Retrieves guest email
info value from the
store.

56.0CommerceCheckoutGuestEmailAdaptercommerce/checkoutApi

Commerce Webstore
Checkout

Retrieves data from
CheckoutStore,
guest email info

56.0CommerceCheckoutInformationAdaptercommerce/checkoutApi

value from the store,
the deliveryGroup,
and the first
shippingInstructions
in the store. Called
one time at startup
and then whenever
the data store
updates.

Application ContextRetrieves app
context data from

53.0CommerceAppContextAdaptercommerce/contextApi

the AppContext
store. If data hasn’t
been loaded, the
adapter calls the
application context
API.

Session ContextRetrieves session
context data from

53.0CommerceSessionContextAdaptercommerce/contextApi

the SessionContext
store. If data hasn’t
been loaded, the
adapter calls the
session context API.

Commerce Webstore
Order Summary

Called when a buyer
views the order
summary of an

57.0CommerceOrderAdaptercommerce/orderApi

order. Retrieves an
order summary,
including fields,

41

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_responses_application_context.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_responses_session_context.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary.htm

Associated
Endpoint

DescriptionAPI VersionProductAdapterNamespace/Bundle

based on the
effective account ID.

Commerce Webstore
Order Summaries

Called when a buyer
views their order
history page.

57.0CommerceOrdersAdaptercommerce/orderApi

Retrieves order
summaries,
including fields, for
the buyer associated
with the storefront.

Commerce Webstore
Order Summary,
Adjustments

Called when a buyer
views the order
summary of an
order. Retrieves

57.0CommerceOrdersAdjustmentsAdaptercommerce/orderApi

adjustments for an
order summary.

Commerce Webstore
Order Delivery
Groups

Called when a buyer
views the order
summary of an
order. Retrieves an
order delivery group.

57.0CommerceOrderDeliveryGroupsAdaptercommerce/orderApi

Commerce Webstore
Order Items

Called when a buyer
views the order
summary of an

57.0CommerceOrderItemsAdaptercommerce/orderApi

order. Retrieves
order items,
including fields.

Commerce Webstore
Order Items,
Adjustments

Called when a buyer
views the order
summary of an
order. Retrieves

57.0CommerceOrderItemsAdjustmentsAdaptercommerce/orderApi

adjustments for
order items.

Commerce Webstore
Order Summary
Lookup

Retrieves details
about an
OrderSummary for a
guest shopper or a
registered buyer

58.0CommerceOrderSummaryLookupAdaptercommerce/orderApi

Commerce Webstore
Product

Called when the
product is loaded.
Retrieves product

53.0CommerceProductAdaptercommerce/productApi

42

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summaries.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summaries.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summaries_adjustments.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summaries_adjustments.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summaries_adjustments.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary_delivery_groups.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary_delivery_groups.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary_delivery_groups.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_items.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_items.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summaries_item_adjustments.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summaries_item_adjustments.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summaries_item_adjustments.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary_lookup.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary_lookup.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary_lookup.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product.htm

Associated
Endpoint

DescriptionAPI VersionProductAdapterNamespace/Bundle

information from the
store.

Commerce Webstore
Product Category

Retrieves category
information,
including fields and
related media.

53.0CommerceProductCategoryAdaptercommerce/productApi

Commerce Webstore
Product Categories
Children

Retrieves a list of
product category
information,
including fields and

53.0CommerceProductCategoryHierarchyAdaptercommerce/productApi

related media, based
on the parent
product category Id.

Commerce Webstore
Product Category
Path

Retrieves the
category path from
the root category to
the current category.

53.0CommerceProductCategoryPathAdaptercommerce/productApi

Salesforce
Omnichannel
Inventory Resources

Retrieves the
product inventory
levels for a given
product.

58.0CommerceProductInventoryLevelsAdaptercommerce/productApi

Commerce Webstore
Pricing Products

Called when the
product is loaded.
Retrieves pricing

53.0CommerceProductPricingAdaptercommerce/productApi

information for a
given product.

Commerce Webstore
Product Search

Retrieves products
by search
parameters.

57.0CommerceProductSearchAdaptercommerce/productApi

Commerce Webstore
Taxes

Retrieves tax
information for a
given product.

57.0CommerceProductTaxAdaptercommerce/productApi

B2C Commerce
Einstein Product

Returns Einstein
product

55.0CommerceProductRecommendationsAdaptercommerce/recommendationsApi

Recommendations
API

recommendations.
Import it from the
einsteinAPI module
within the
commerce
namespace
(commerce/einsteinAPI)
and then declare its

43

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_category.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_category.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_categories_children.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_categories_children.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_categories_children.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_category_path.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_category_path.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_category_path.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_omnichannel_inventory_resources.htm?q=inventory%20levels
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_omnichannel_inventory_resources.htm?q=inventory%20levels
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_omnichannel_inventory_resources.htm?q=inventory%20levels
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_pricing_products.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_pricing_products.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_tax.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_tax.htm
https://developer.salesforce.com/docs/atlas.en-us.b2b_b2c_comm_dev.meta/b2b_b2c_comm_dev/b2b_b2c_comm_einstein_b2c_reco_api_ref.htm
https://developer.salesforce.com/docs/atlas.en-us.b2b_b2c_comm_dev.meta/b2b_b2c_comm_dev/b2b_b2c_comm_einstein_b2c_reco_api_ref.htm
https://developer.salesforce.com/docs/atlas.en-us.b2b_b2c_comm_dev.meta/b2b_b2c_comm_dev/b2b_b2c_comm_einstein_b2c_reco_api_ref.htm
https://developer.salesforce.com/docs/atlas.en-us.b2b_b2c_comm_dev.meta/b2b_b2c_comm_dev/b2b_b2c_comm_einstein_b2c_reco_api_ref.htm

Associated
Endpoint

DescriptionAPI VersionProductAdapterNamespace/Bundle

required parameters
with the @wire
decorator.

Wire Adapters in the Experience Namespace

Associated
Endpoint

DescriptionAPI VersionProductWire AdapterNamespace/Bundle

Navigation Menu
Items

Retrieves the items
for a navigation
menu in an

54.0PlatformgetNavigationMenuexperience/navigationMenuApi

Experience Cloud
site.

CMS Delivery
Content

Retrieves published
content from an
enhanced CMS

54.0CMSgetContentexperience/cmsDeliveryApi

workspace to use in
a custom Lightning
web component for
an enhanced LWR
site.

CMS ContentRetrieve metadata
about the content

54.0CMSgetContextexperience/cmsEditorApi

item in the CMS
content editor.

CMS ContentRetrieve the title,
urlName, and

54.0CMSgetContentexperience/cmsEditorApi

contentBody of the
content item based
on the content type:
image, news,
document, or
custom content.

Storefront Actions
Storefront Actions are centrally combined in the component bundle commerce/actionApi. The table shows the factory methods
for this bundle.

44

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_navigation_menu_items.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_navigation_menu_items.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_delivery_content.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_delivery_content.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_contents_content.htm?q=CMS%20get%20content
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_contents_content.htm?q=CMS%20get%20content

actionApi
Source

PropertiesDescriptionAPI VersionProductNameCategory

Commerce
Webstore Cart
Items

productId:
stringquantity?:
number

Returns an Action
that triggers an
add-item-to-cart
operation from

58.0CommercecreateCartItemAddActionCart

the closest
applicable Data
Provider.

Commerce
Webstore Cart
Items

cartItemId:
stringquantity:
number

Returns an Action
that triggers an
update to cart
contents

58.0CommercecreateCartItemUpdateActionCart

operation from
the closest
applicable Data
Provider.

Commerce
Webstore Cart
Items

cartItemId:
string

Returns an Action
that triggers a
remove-item-in-cart
operation from

58.0CommercecreateCartItemDeleteActionCart

the closest
applicable Data
Provider.

Commerce
Webstore Cart
Items

items:
Record<string,
number>

Returns an Action
that triggers an
add items in cart
operation from

58.0CommercecreateCartItemsAddActionCart

the closest
applicable Data
Provider.

Commerce
Webstore Cart
Items

Returns an Action
that triggers a
load more cart
items operation

58.0CommercecreateCartItemsLoadActionCart

from the closest
applicable Data
Provider.

Commerce
Webstore Cart
Items

sortOrder?:
'CreatedDateDesc'
|
'CreatedDateAsc'

Returns an Action
that triggers an
update cart sort
order operation
from the closest

58.0CommercecreateCartSortUpdateActionCart

|
applicable Data
Provider.

'NameDesc'
| 'NameAsc'

45

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm

actionApi
Source

PropertiesDescriptionAPI VersionProductNameCategory

Commerce
Webstore Cart
Items

status?: {
isProcessing?:
boolean;
isReadyForCheckout?:

Returns an Action
that triggers an
update cart status
operation from
the closest

58.0CommercecreateCartStatusUpdateActionCart

boolean;
applicable Data
Provider.

isGuestCartEnabled?:
boolean;
isGuestCheckoutEnabled?:
boolean;}

Commerce
Webstore Cart
Items

Returns an Action
that triggers a
clear cart
operation from

58.0CommercecreateCartClearActionCart

the closest
applicable Data
Provider.

Commerce
Webstore Cart
Items

Returns an Action
that triggers a
reserve inventory
for cart items

59.0CommercecreateCartInventoryReserveActionCart

operation from
the closest
applicable Data
Provider.

checkout
ActionApi

address: {
name?:
string;

Returns an Action
that triggers a
checkout
addresses create

58.0CommercecreateCheckoutAddressesCreateActionCheckout

firstName?:
operation from string;
the closest lastName?:
applicable Data
Provider.

string;
companyName?:
string;
street?:
string;
city?:
string;
postalCode?:
string;
region?:
string;
country?:
string;
addressId?:

46

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_items.htm
https://git.soma.salesforce.com/communities/ui-commerce-components/blob/main/packages/commerce-components/src/lwc/commerce/actionApi/checkout.ts
https://git.soma.salesforce.com/communities/ui-commerce-components/blob/main/packages/commerce-components/src/lwc/commerce/actionApi/checkout.ts

actionApi
Source

PropertiesDescriptionAPI VersionProductNameCategory

string;
id?:
string;
fields?:
unknown;
geocodeAccuracy?:
string;
isDefault?:
boolean;
addressType?:
string;
label?:
string;}

Commerce
Webstore
Checkout

total:
number

Returns an Action
that triggers a
checkout
addresses page

58.0CommercecreateCheckoutAddressesPageChangeActionCheckout

change from the
closest applicable
Data Provider.

Commerce
Webstore
Checkout

address: {
name?:
string;
firstName?:

Returns an Action
that triggers a
checkout
addresses update
from the closest

58.0CommercecreateCheckoutAddressesUpdateActionCheckout

string;
applicable Data
Provider.

lastName?:
string;
companyName?:
string;
street?:
string;
city?:
string;
postalCode?:
string;
region?:
string;
country?:
string;
addressId?:
string;
id?:
string;
fields?:
unknown;

47

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm

actionApi
Source

PropertiesDescriptionAPI VersionProductNameCategory

geocodeAccuracy?:
string;
isDefault?:
boolean;
addressType?:
string;
label?:
string;}

Commerce
Webstore
Checkout

Returns an Action
that triggers a
finalize action
from the closest

58.0CommercecreateCheckoutFinalizeActionCheckout

applicable Data
Provider.

Commerce
Webstore
Checkout

Returns an Action
that triggers a
place order
action from the

58.0CommercecreateCheckoutPlaceOrderActionCheckout

closest applicable
Data Provider.

Commerce
Webstore
Checkout

*
applicable
{@linkDataProvider}.

Returns an Action
that triggers a
checkout update
from the closest

58.0CommercecreateCheckoutUpdateFormActionCheckout

applicable Data
Provider.

Commerce
Webstore Cart
Item

quantity:
number

Returns an Action
that triggers an
update quantity
from the closest

59.0CommercecreateCommonQuantityUpdateActionCommon

applicable Data
Provider.

Commerce
Webstore Cart
Promotions

couponId:
string

Returns an Action
that triggers an
apply coupon
from the closest

58.0CommercecreateCouponApplyActionCoupon

applicable Data
Provider.

Commerce
Webstore Cart
Promotions

couponId:
string

Returns an Action
that triggers a
delete coupon
from the closest

58.0CommercecreateCouponDeleteActionCoupon

48

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_checkouts.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_promotions.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_promotions.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_promotions.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_promotions.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_promotions.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_cart_promotions.htm

actionApi
Source

PropertiesDescriptionAPI VersionProductNameCategory

applicable Data
Provider.

Commerce
Webstore Order
Summary

verificationDetails:
{
orderSummaryIdOrRefNumber?:
string;

Returns an Action
that triggers an
order summary
access validate
from the closest

59.0CommercecreateOrderAccessValidateActionOrder

fields?:
applicable Data
Provider.

string[] |
null;
excludeAdjustments?:
boolean |
null;
excludeAdjustmentAggregates?:
boolean |
null;
excludeLineItems?:
boolean |
null;
excludeDeliveryGroups?:
boolean |
null;
email?:
string |
null;
lastName?:
string |
null;
phoneNumber?:
string |
null;}

Commerce
Webstore Order
Summary

productId:
stringquantity:
number

Returns an Action
that triggers an
update product
quantity from the

58.0CommercecreateProductQuantityUpdateActionProduct

closest applicable
Data Provider.

CMS Contents
Variant

options:
string[]isValid:
boolean

Returns an Action
that triggers an
update product
variant from the

58.0CommercecreateProductVariantUpdateActionProduct

closest applicable
Data Provider.

49

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_order_summary.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_contents_variant.htm?q=variant
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_cms_contents_variant.htm?q=variant

actionApi
Source

PropertiesDescriptionAPI VersionProductNameCategory

SubscriptionproductSellingModelId:
stringsubscriptionTerm?:

Returns an Action
that triggers an
update product

59.0CommercecreateProductSubscriptionUpdateActionProduct

number |
nullsubscription from

the closest
applicable Data
Provider.

Commerce
Webstore
Product Search

sortRuleId?:
string

Returns an Action
that triggers an
update search
sort order from

58.0CommercecreateSearchSortUpdateActionSearch

the closest
applicable Data
Provider.

Commerce
Webstore
Product Search

refinements?:
ProductSearchRefinement[];
categoryId?:

Returns an Action
that triggers an
update search
filters from the
closest applicable
Data Provider.

58.0CommercecreateSearchFiltersUpdateActionSearch

string;
page?:
number;
mruFacet?:
SearchFacetData;}

Commerce
Webstore
Product Search

Returns an Action
that triggers a
clear search filters
from the closest

58.0CommercecreateSearchFiltersClearActionSearch

applicable Data
Provider.

Commerce
Webstore
Wishlists

productId:
string

Returns an Action
that triggers an
add items to
wishliist from the

58.0CommercecreateWishlistItemAddActionWishlist

closest applicable
Data Provider.

Commerce
Webstore
Wishlists

wishlistItemId:
string

Returns an Action
that triggers an
delete items to
wishliist from the

58.0CommercecreateWishlistItemDeleteActionWishlist

closest applicable
Data Provider.

50

Storefront APIsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_responses_subscription.htm?q=subscription
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.246.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_product_search.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_wishlists.htm?q=wishlist
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_wishlists.htm?q=wishlist
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_wishlists.htm?q=wishlist
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_wishlists.htm?q=wishlist
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_wishlists.htm?q=wishlist
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_wishlists.htm?q=wishlist

Custom Payment Components
You can integrate a client-side payment capability as a Lightning web component in your B2B or B2C store created with an LWR template.
Registered and guest buyers interact with the component during checkout to make direct or proxied calls to process the payment with
an external provider.

The custom payment component incorporates the ClientSidePaymentAdapter interface, which you include in a new or existing payment
adapter Apex class. The Apex class connects to the Commerce Payment Gateway adapter.

The store renders the deployed client payment component in the checkout browser. The client component works within a Named
Credential, Payment Gateway, and OMS workflow that is similar to a server-side payment package but with its own corresponding
metadata.

The component can make an authorized payment call directly to the payment provider without passing sensitive personal data.

Unlike with other custom LWCs, you don’t drag the deployed payment component to the store canvas in Experience Builder. Instead,
after you deploy the component, go to Experience Builder, select the card payment gateway, now integrated with the new payment
component, and then republish the store. The store automatically presents and uses the payment component defined in the payment
adapter Apex class.

Create a Custom Payment Component
Use the same credit card payment methods and order processing across stores by creating a custom payment component for your B2B
or B2C store created with an LWR template.

To create and deploy the payment component, first Commerce SFDX Environment Setup.

1. In the Visual Studio Code editor, enter SFDX.

2. Select SFDX: Create an Apex Class or navigate to the project containing an existing payment adapter class.

The Apex class implements the PaymentGatewayAdapter and ClientSidePaymentAdapter interfaces. Here’s the
ClientSidePaymentAdapter interface implemented with the PaymentGatewayAdapter.

class MyClientSideAdapter implements commerce.ClientSidePaymentAdapter,
commercepayments.PaymentGatewayAdapter {

ClientSidePaymentAdapter {
// returns custom component name package_namespace/componentName
String getClientComponentName();

51

Custom Payment ComponentsB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexcode.meta/apexcode/apex_commercepayments_sync_adapter_concept.htm

// returns configuration to bootstrap client component (Public API Keys, account
key, etc)

Map<String, String> getClientConfiguration();

// Generic method to do server side operations
// If a gateway token is returned in the ClientResponse it will be saved
// as the payment method for the cart.
// Params:

// context - Includes the total amount of the cart including tax/shipping,

// the currency code for the transaction, the token that represents the
payment method that’s associated

// with the cart, and a key that can be used for idempotency
// paymentsData - Arbitrary map of data passed from the custom component

on the UI

ClientResponse processClientRequest(ClientRequestContext context, Map<String,
Object> paymentsData);
}

ClientResponse {
global ClientResponse (String token, Map<String, Object> response)

3. Add a PostAuth request to the Apex class.

The PostAuth request type ensures that the provided authentication token is valid. The token, the amount, and currency code are
provided to the adapter through the PostAuth input.

postAuthRequest.alternativePaymentMethod.gatewayToken

The input for this request type is defined here.
https://developer.salesforce.com/docs/atlas.en-us.apexref.meta/apexref/apex_connectapi_input_post_auth.htm

The output is defined here.
https://developer.salesforce.com/docs/atlas.en-us.apexref.meta/apexref/apex_connectapi_output_post_auth_output.htm

4. Create named credentials for the adapter class.

a. In Visual Studio Code Explorer, under force-app/main/default, create a subdirectory called namedCredentials.

b. In namedCredentials, create a file named payment.namedCredential.

c. In the public repo of a reference payment package, such as the Stripe integration payments package, go to the
/namedCredentials folder and copy the contents of the Stripe.namedCredential file to your
payment.namedCredential.

5. Create the payment Lightning web component.

a. Create an SFDX project.

b. Authorize an org for the LWC deployment.

c. Ensure that the LWC includes this CustomPaymentComponent interface.

export interface CustomPaymentComponent extends LightningElement {
/**
* clientConfiguration - Response from payment adapter apex getClientConfiguration

method

52

Create a Custom Payment ComponentB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_connectapi_input_post_auth.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.apexref.meta/apexref/apex_connectapi_output_post_auth_output.htm
https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/payment-gateway-integration/Stripe/namedCredentials

*
**/
initialize(clientConfiguration: Record<string, string>, webStoreId: string): void;
completePayment(address: BillingAddress): Promise<ClientSideCompletePaymentResponse>;

focus(): void;
reportValidity: () => boolean;

}

export interface ClientSideCompletePaymentResponse {
responseCode?: string;
error?: {

message: string;
code: string;

}

6. Deploy the payment component and all the code and metadata required for the integration (LWC, Apex, named credentials, trusted
sites) to your org.

7. Create a payment gateway and link to the stores, as described in Set Up Payment Processing.

8. In Experience Builder, register the third-party trusted sites for scripts that are required to run the LWC, as described in Set Up Payment
Processing.

9. Activate the payment gateway linked to the new payment component, as described in Set Up Payment Processing.

10. Publish the store.

Create Commerce Einstein Recommendations Components
Use Commerce Einstein Activity Tracking and Product Recommendations APIs to create custom components for your Salesforce Commerce
B2C and B2B storefronts.

Commerce Einstein APIs

Use Activity Tracking and Product Recommendation APIs to call Einstein Recommendations for your Salesforce Commerce B2C and
B2B stores. These APIs provide access to underlying data behind Einstein Recommendations and enable modification of the front-end
experience with custom Lightning web components or Aura components.

Prepare Commerce Einstein to Use Custom Components

Before creating custom Commerce Einstein Recommendations components, deploy Commerce Einstein and enable activity tracking.

Create a Custom Recommendations Component for B2C Stores Using Commerce Einstein APIs

Creating a custom B2C Commerce Einstein recommendations component includes implementing the Activity Tracking API and
connecting the component to the Product Recommendation API.

Create a Custom Recommendations Component for B2B Stores Using Commerce Einstein APIs

Creating a custom B2B Commerce Einstein recommendations component includes implementing the Activity Tracking API and
connecting the component to the Commerce Einstein Webstore Recommendations Connect API resource. This process is for B2B
stores on the Aura platform.

Commerce Einstein Recommendations API Reference

Modifying Einstein Recommendations interfaces in your D2C and B2B Commerce stores requires using the Activity Tracking API and
a Product Recommendation API. These APIs provide access to the underlying data behind Einstein Recommendations and enable
modification of the front-end experience with custom Lightning web components.

53

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

Commerce Einstein APIs

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and B2B2C Commerce

Use Activity Tracking and Product Recommendation APIs to call Einstein Recommendations for
your Salesforce Commerce B2C and B2B stores. These APIs provide access to underlying data behind
Einstein Recommendations and enable modification of the front-end experience with custom
Lightning web components or Aura components.

Einstein product recommendations require activity tracking data. For example, tracking the
viewProduct activity provides insight into top-viewed products. The Activity Tracking API provides
access to these activities for use in B2B and B2C Einstein Recommendations components.

Calls to the Product Recommendation API deliver Einstein recommendations. For Salesforce
Commerce for B2C Einstein Recommendations components, the API is accessed using a wire adapter.
The Product Recommendation API returns a set of products to populate the Einstein Recommendations component.

For Salesforce Commerce for B2B Einstein Recommendations components, use the Commerce Einstein Recommendations Connect
REST API to select and deliver recommendations. Using the Connect REST API ensures appropriate product entitlement filtering before
recommendations are delivered.

SEE ALSO:

Prepare Commerce Einstein to Use Custom Components

Create a Custom Recommendations Component for B2C Stores Using Commerce Einstein APIs

Create a Custom Recommendations Component for B2B Stores Using Commerce Einstein APIs

Commerce Einstein Recommendations API Reference

Prepare Commerce Einstein to Use Custom Components

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

Before creating custom Commerce Einstein Recommendations components, deploy Commerce
Einstein and enable activity tracking.

1. Deploy Commerce Einstein.

2. Enable Activity Tracking.

3. Commerce SFDX Environment Setup.

Note: Make sure to install all recommended software and plug-ins.

SEE ALSO:

Commerce Einstein APIs

Create a Custom Recommendations Component for B2C Stores Using Commerce Einstein APIs

Create a Custom Recommendations Component for B2B Stores Using Commerce Einstein APIs

Experience Cloud Cookies

Deploy Commerce Einstein

Activity Tracking

54

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

https://lwc.dev/guide/wire_adapter
https://help.salesforce.com/apex/HTViewHelpDoc?id=comm_einstein_deploy.htm&language=en_US#comm_einstein_deploy
https://help.salesforce.com/apex/HTViewHelpDoc?id=comm_einstein_activity_tracking_top.htm&language=en_US#comm_einstein_activity_tracking_top
https://help.salesforce.com/apex/HTViewHelpDoc?id=networks_cookies.htm&language=en_US#networks_cookies
https://help.salesforce.com/apex/HTViewHelpDoc?id=comm_einstein_deploy.htm&language=en_US#comm_einstein_deploy
https://help.salesforce.com/apex/HTViewHelpDoc?id=comm_einstein_activity_tracking_top.htm&language=en_US#comm_einstein_activity_tracking_top

Create a Custom Recommendations Component for B2C Stores Using Commerce
Einstein APIs

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: D2C Commerce

Creating a custom B2C Commerce Einstein recommendations component includes implementing
the Activity Tracking API and connecting the component to the Product Recommendation API.

For B2C storefronts, you connect the component to the Product Recommendation API through a
wire adapter. Your component must incorporate calls to the Activity Tracking API. When configuring
the Activity Tracking API, keep these considerations in mind.

• Implement both the viewReco and clickReco activities.

• If you build custom components that show product details without including the Product Detail
Purchase Options component, make sure to implement the viewProduct activity.

• If you add custom add-to-cart functionality, also implement the addToCart activity.

You can also introduce custom JavaScript, HTML, and CSS to make front-end modifications. For more information, see the Lightning
Web Components Dev Guide.

Note: This example shows a custom similar-products Commerce Einstein recommendation component using the PRODUCT
anchor type. All steps refer to files created for a sample Lightning web component. For more information, see Create a Sample
Lightning Web Component.

1. In the component’s JavaScript file, define a custom component class (for example, RecommendationsSample). Implement
the ProductRecommendationsAdapter to return Einstein product recommendations.

For example, in force-app/main/default/<Component Name>.js, import this wire adapter from the
recommendationsApi module within the commerce namespace (commerce/recommendationsApi). Declare its
required parameters with the @wire decorator.

import { LightningElement, api, track, wire } from 'lwc';
import { ProductRecommendationsAdapter, ANCHOR_TYPES } from 'commerce/recommendationsApi';
import { navigate, NavigationContext } from 'lightning/navigation';
import { trackClickReco, trackViewReco } from 'commerce/activitiesApi';

export default class RecommendationsSample extends LightningElement {

@api products = [];
@api productId;

recommenderName = 'similar-products';
anchorType = ANCHOR_TYPES.PRODUCT;
get anchorValue() {

return [this.productId];
};

@wire(ProductRecommendationsAdapter, {
recommenderName: '$recommenderName',
anchorType: '$anchorType',
anchorValue: '$anchorValue',

})
async loadRecommendation(response) {

let { data, error } = response;

if (data && data.recoUUID && data.products && data.products.length > 0) {

55

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

https://lwc.dev/guide/introduction
https://lwc.dev/guide/introduction

this.products = data.products;
this.recoUUID = data.recoUUID;

if (this.canDisplayRecommendations) {
this.sendViewReco();

}
} else if (error) {

// unable to load recommendation, handle accordingly
this.products = { data: [] };
console.error('Unable to load product recommendations');

}
}

get canDisplayRecommendations() {
return this.products.length > 0;

}

// NavigationContext allows us to click a link to get to new Product page
@wire(NavigationContext)
navContext;

handleClickProduct(event) {
const pid = event.currentTarget.getAttribute('pid');
const product = this.products.filter(p => p.id === pid)[0];

trackClickReco(this.recommenderName, this.recoUUID, {
id: product.id,
sku: product.sku,

});

// go to the Product Detail Page for the product clicked
navigate(this.navContext, {

type: 'standard__recordPage',
attributes: {

objectApiName: 'Product2',
recordName: product.fields.Name.replace(' ', '-'),
name: 'recordId',
recordId: pid,

},
});

}

sendViewReco() {
trackViewReco(

this.recommenderName,
this.recoUUID,
this.products.map((product) => {

return {
id: product.id,
sku: product.sku,

};
})

);

56

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

}
}

2. Update the component’s HTML file (for example, force-app/main/default/<Component Name>.html).

<template>
<section class="component-wrapper" if:true={canDisplayRecommendations}>

<h1>Product Recommendations</h1>
<table>

<tr>
<th>Image</th>
<th>Name</th>
<th>List Price</th>
<th>Unit Price</th>

</tr>
<template for:each={products} for:item="product">

<tr key={product.id}>
<td></td>
<td>

<a key={product.id} class="product-line"
onclick={handleClickProduct} pid={product.id}>

{product.fields.Name}

</td>
<td>{product.prices.listPrice} {product.prices.currencyIsoCode}</td>

<td>{product.prices.unitPrice} {product.prices.currencyIsoCode}</td>

</tr>
</template>

</table>
</section>

</template>

3. Update the metadata in the component’s XML file (for example, force-app/main/default/<Component
Name>.js-meta.xml).

Note: Ensure that the <apiVersion> tag references the latest API version.

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>55.0</apiVersion>
<isExposed>true</isExposed>
<targets>

<target>lightningCommunity__Page</target>
<target>lightningCommunity__Default</target>

</targets>

<targetConfigs>
<targetConfig targets="lightningCommunity__Default">

<property label="Product Id" name="productId" type="String"
default="{!recordId}" />

57

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

</targetConfig>
</targetConfigs>

</LightningComponentBundle>

4. In your lwc directory, create a CSS file with the same name as your project. In this example, the CSS file is named
recommendationsSample.css.

5. In the CSS file, add custom CSS to style your component. The sample code provided includes modifications to the component’s
image size and headings.

h1 {
font-size: 1.5em;
font-weight: 800;

}
img {

width: 150px;
}
th {

font-weight: 800;
}

6. After you create the custom Einstein Recommendations component, deploy the component from Visual Studio Code and place it
in your store with Experience Builder.

58

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

7. Before publishing your site from Experience Builder, click Preview to see how the custom component looks in a desktop browser
window or on a mobile device.

SEE ALSO:

Commerce Einstein APIs

Prepare Commerce Einstein to Use Custom Components

Commerce Einstein Activity Tracking API

B2C Commerce Einstein Product Recommendations API

Customize Sites with Experience Builder

Create a Custom Recommendations Component for B2B Stores Using Commerce
Einstein APIs

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce

Creating a custom B2B Commerce Einstein recommendations component includes implementing
the Activity Tracking API and connecting the component to the Commerce Einstein Webstore
Recommendations Connect API resource. This process is for B2B stores on the Aura platform.

Using Connect APIs ensures appropriate product entitlement filtering before recommendations
are delivered.

Make sure to reindex after you change associations between buyer groups and products, such as
when changing entitlement policies or product-to-buyer group assignments.

Your component must incorporate calls to the Activity Tracking API. When configuring the API:

• Implement both the viewReco and clickReco activities.

• If you replace the Product Detail Purchase Options component with a custom component, implement the viewProduct activity.

• If you add custom add-to-cart functionality, implement the addToCart activity.

You can use custom JavaScript, HTML, and CSS to make front-end modifications. For more information, see the Lightning Aura Components
Developer Guide.

1. Create a custom Apex controller.

a. Go to Setup > Developer Console.

b. Select File > New > Apex Class.

c. Enter a name for the Apex class.

Make sure to match the component class name for easier identification. For example, recsController.

The controller file (in this case, recsController.apxc) opens to show an empty class.

2. Update the controller file, making sure to modify the orgDomain and webstoreId values to match your storefront domain
and ID.

public with sharing class recsController {
@AuraEnabled
public static String getRecs(String recommender, String anchorValues, String cookie)

{
String orgDomain = 'alpinecommerce236.my.salesforce.com';
String webstoreId = '0ZEB0000000HMNGOA4';

String endpoint = 'https://'+orgDomain+'/services/data/v55.0/commerce/webstores/

59

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=community_designer_overview.htm&language=en_US#community_designer_overview
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/intro_framework.htm
https://developer.salesforce.com/docs/atlas.en-us.248.0.lightning.meta/lightning/intro_framework.htm

'+webstoreId+'/ai/recommendations?language=en-US&asGuest=true&recommender='+recommender;

if (anchorValues.length() > 0) {
endpoint += '&anchorValues='+anchorValues;

}

HttpRequest req = new HttpRequest();
req.setEndpoint(endpoint);
req.setHeader('Cookie', cookie);
req.setMethod('GET');
req.setHeader('Authorization', 'OAuth ' + UserInfo.getSessionId());

Http http = new Http();
HTTPResponse res = http.send(req);
return res.getBody();

}
}

3. Update the controller file with the appropriate profile for buyers.

a. Go to Setup > Custom Code > Apex Classes.

b. Next to the controller file that you created, click Security.

c. Add the Shopper profile to the enabled profiles column.

d. Click Save.

4. Create an SFDX project in Visual Studio Code and run the SFDX: Create Aura Component command.

5. Specify a name for the component.

6. Update the component file with the attribute configuration (for example,
force-app/main/default/aura/<project_name>/<component_name>.cmp).

Make sure to use the controller filename that you used when creating the Apex controller, and provide the tag needed for importing
activity tracking.

<aura:component implements="forceCommunity:availableForAllPageTypes"
controller="RecsController" access="global">

<aura:attribute name="title" type="String" default="" required="true" />
<aura:attribute name="recommender" type="String" default="RecentlyViewed"

required="true" />
<aura:attribute name="anchorValues" type="String" default="" required="false" />
<aura:attribute name="uuid" type="String" default=""/>
<aura:attribute name="loading" type="boolean" default="false"/>
<aura:attribute name="showProducts" type="boolean" default="false"/>
<aura:attribute name="products" type="List" default="[]" />

<!-- Tag needed to import Commerce Activity Tracking-->
<commerce:activitiesApi aura:id="activitiesApi" />

<aura:handler name="init" value="{!this}" action="{!c.onLoadComponent}"/>

<div>
<aura:if isTrue="{!v.loading}">LOADING...</aura:if>

60

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

<aura:if isTrue="{!v.showProducts}">
<div class="title">{!v.title}</div>
<div class="products">

<aura:iteration items="{!v.products}" var="product">
<div class="product">

<img data-pid="{!product.id}" onclick="{!c.handleClickProduct}"
src="{!product.defaultImage.url}"/>

<a class="name" data-pid="{!product.id}"
onclick="{!c.handleClickProduct}">{!product.name}

</div>
</aura:iteration>

</div>
</aura:if>

</div>

</aura:component>

7. Update the metadata in the component’s XML file (for example,
force-app/main/default/aura/<project_name>/<component_name>.cmp-meta.xml).

Make sure that the <apiVersion> tag references the latest API version.

<?xml version="1.0" encoding="UTF-8" ?>
<AuraDefinitionBundle xmlns="http://soap.sforce.com/2006/04/metadata">

<apiVersion>55.0</apiVersion>
<description>Aura Recommendations Component</description>
<isExposed>true</isExposed>
<targets>

<target>lightningCommunity__Page</target>
<target>lightningCommunity__Default</target>

</targets>
</AuraDefinitionBundle>

8. Edit your component’s CSS file to add custom styling (for example,
force-app/main/default/aura/<project_name>/<component_name>.css).

This sample code includes modifications to the component’s image size and headings.

.THIS div.title {
text-align: center;
font-weight: 800;
font-size: 2em;

}

.THIS .products {
height: 400px;
text-align: center;

}
.THIS .products .product {

width: 25%;
height: 450px;
padding: 10px;
display: inline-block;

}

61

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

.THIS .products .product img {
cursor: pointer;
max-height: 300px;
width: auto;

}
.THIS .products .product .name {

display: block;
}

9. Edit your component’s Controller.js file, making sure to modify the storeName value for the current store (for example,
force-app/main/default/aura/<project_name>/<component_name>Controller.js).

({
"onLoadComponent": function(cmp, event, helper) {

let pageProductId = helper.getProductDetailProductId();
if (pageProductId) {

// Component is on a product detail page; show Similar Products recommender

cmp.set("v.title", 'Similar Products');
cmp.set("v.recommender", 'SimilarProducts');
cmp.set("v.anchorValues", pageProductId);

} else {
// Show Recently Viewed recommender
cmp.set("v.title", 'Recently Viewed');
cmp.set("v.recommender", 'RecentlyViewed');
cmp.set("v.anchorValues", '');

}
helper.loadProductRecommendations(cmp, event, helper);

},

// send a clickReco activity and navigate to the product detail page
"handleClickProduct": function(cmp, event, helper) {

let productId = event.currentTarget.getAttribute('data-pid');
let trackClickReco = cmp.find('activitiesApi').trackClickReco;
let recName = helper.recommenderNames[cmp.get("v.recommender")]
let uuid = cmp.get('v.uuid');
let products = cmp.get('v.products');
let product = products.filter(p => p.id === productId)[0];
let productToSend = {

id: product.id,
price: product.prices ? product.prices.listPrice : undefined,

};
trackClickReco(recName, uuid, productToSend);

// navigate to the product page
let storeName = 'AlpineB2B';
let productName = product.name || 'detail';
let newHref = `/${storeName}/s/product/${productName}/${productId}`;
window.location.href = newHref;

}
})

62

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

10. Edit your component’s Helper.js file, using this example for guidance (for example,
force-app/main/default/aura/<project_name>/<component_name>Helper.js).

({
loadProductRecommendations : function(cmp,event,helper) {

try {
cmp.set("v.loading", true);
var action = cmp.get("c.getRecs");
action.setParams({

recommender : cmp.get("v.recommender"),
anchorValues : cmp.get("v.anchorValues"),
cookie: document.cookie

});
// Create a callback that is executed after
// the server-side action returns
action.setCallback(this, function(response) {

var state = response.getState();
if (state === "SUCCESS") {

try {
let data = JSON.parse(response.getReturnValue());
let products = data.productPage.products;
// Keep it simple, only show 4 products
cmp.set("v.products", products.slice(0, 4));
cmp.set("v.uuid", data.uuid);
cmp.set("v.loading", false);
let showProducts = products.length > 0;
cmp.set("v.showProducts", showProducts);
// Only send the viewReco activity when we display the product

// recommendations
if (showProducts) {

helper.sendViewRecoActivity(cmp, helper);
}

} catch (err) {
console.error('Error fetching recommendations', err);
cmp.set("v.loading", false);

}
}

});
$A.enqueueAction(action);

} catch (error) {
console.error('Failed to load recommendations: ', error);
cmp.set("v.loading", false);

}
},
// The recommender names we pass into the Connect API are in a different format
// than the recommender names we pass into the activities api.
recommenderNames: {

"RecentlyViewed" : "recently-viewed",
"SimilarProducts" : "similar-products",
"MostViewedByCategory" : "most-viewed-by-category",
"TopSelling" : "top-selling",
"Upsell" : "upsell"

},

63

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

formatPrice: function(price, curr) {
return new Intl.NumberFormat('en-US', { style: 'currency', currency:

curr}).format(price);
},

sendViewRecoActivity: function(cmp, helper) {
let trackViewReco = cmp.find('activitiesApi').trackViewReco;
let recName = helper.recommenderNames[cmp.get("v.recommender")]
let products = cmp.get('v.products').map(p => ({id: p.id}));
let uuid = cmp.get("v.uuid");
trackViewReco(recName, uuid, products);

},

getProductDetailProductId: function() {
let pageProductIdMatch = window.location.href.match(new

RegExp('01t[a-zA-Z0-9]{15}'));
let pid = pageProductIdMatch ? pageProductIdMatch[0] : null;
return pid;

}
})

11. After you create the custom Einstein Recommendations component, deploy it from Visual Studio Code and place it in your store
with Experience Builder.

12. Before publishing your site from Experience Builder, click Preview to see how the custom component looks in a desktop browser
window and on a mobile device.

SEE ALSO:

Commerce Einstein APIs

Prepare Commerce Einstein to Use Custom Components

Commerce Einstein Activity Tracking API

B2B Commerce Einstein Product Recommendations API

Tracked Data

Commerce Einstein Webstore Recommendations

Commerce Einstein Recommendations API Reference
Modifying Einstein Recommendations interfaces in your D2C and B2B Commerce stores requires using the Activity Tracking API and a
Product Recommendation API. These APIs provide access to the underlying data behind Einstein Recommendations and enable
modification of the front-end experience with custom Lightning web components.

Commerce Einstein Activity Tracking API

Commerce Einstein product recommendations require activity tracking data. For example, tracking the viewProduct activity provides
insight into top-viewed products. The Activity Tracking API provides access to these activities for use in recommendations.

B2C Commerce Einstein Product Recommendations API

Calls to the Product Recommendation API deliver Einstein recommendations. The API is accessed using a wire adapter to provide
data to a Lightning web component. In this case, the Product Recommendation API returns a set of products to populate the Einstein
Recommendations component.

64

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=comm_einstein_data.htm&language=en_US#comm_einstein_data
https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_ai_recommendations.htm

B2B Commerce Einstein Product Recommendations API

Calls to the Product Recommendation API deliver Einstein recommendations. The API is accessed using a Connect API to provide
data to a Lightning web component. The Connect API returns a set of products to populate the Commerce Einstein
Recommb2b_b2c_comm_einstein_reco_api_refendations component.

SEE ALSO:

Commerce Einstein Activity Tracking API

B2C Commerce Einstein Product Recommendations API

B2B Commerce Einstein Product Recommendations API

Commerce Einstein Activity Tracking API

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

Commerce Einstein product recommendations require activity tracking data. For example, tracking
the viewProduct activity provides insight into top-viewed products. The Activity Tracking API
provides access to these activities for use in recommendations.

The Commerce Cloud Einstein Recommendation Validator extension helps with preliminary validation
when integrating Commerce Einstein Activity Tracking on Salesforce production instances. This
extension is available only for the Google Chrome browser. You can search for and install the
Commerce Cloud Recommendation Validator extension from the Chrome Web Store.

View Product Activity

Trigger the viewProduct activity when a shopper views a Product Detail page. Don’t fire if a product is displayed via a recommendation,
search result, or any other means.

Note: If you replace the Product Detail Purchase Options component with a custom component, implement the viewProduct
activity to ensure that Commerce Einstein Recommendations use cases generate results based on shopper or buyer view behavior.

Parameters

• product—The product that the customer viewed. An object with an 18-character product ID.

• sku—(Optional) A unique stock keeping unit identifier for the product.

Example usage

trackViewProduct({ id: '01t000000000000001', sku: 'sku123' });

View Recommendations Activity

Trigger the viewReco activity when a recommendation is displayed to the customer. Implement this activity when building a custom
Commerce Einstein recommendations component.

Note: If you calculate a recommendation but don’t show it to the customer—for example, it doesn’t have as many results as you
like—don’t fire this activity.

Parameters

• recommenderName—The name of the recommender.

• recoUUID—A string representing the unique ID for this recommendation response.

• products—The products displayed to the customer. A list of one or more 18-character product IDs.

• sku—(Optional) A unique stock keeping unit identifier for the product.

65

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

https://chrome.google.com/webstore/detail/commerce-cloud-recommenda/dobmbolmcejainkefklnpkjbaibgjihn?hl=en-US

Example usage

trackViewReco(
'similar-products',
'123-456',
[{ id: '01t000000000000001', sku: 'sku123' }, { id: '01t000000000000002', sku: 'sku456'
}]
);

Click Recommendations Activity

Trigger the clickReco activity when a recommended product is clicked and the customer is taken to the product detail page. Implement
this activity when building a custom Commerce Einstein recommendations component.

Parameters

• recommenderName—The name of the recommender.

• recoUUID—A string representing the unique ID for this recommendation response.

• product—The product that the customer clicked. An object with an 18-character product ID.

• sku—(Optional) A unique stock keeping unit identifier for the product.

Example usage

trackClickReco('similar-products', '123-456', { id: '01t000000000000001', sku: 'sku123'
});

Add To Cart Activity

Trigger the addToCart activity when a shopper adds a product to the cart.

Note: If you replace the Product Detail Purchase Options component with a custom component, implement the addToCart
activity to ensure that Commerce Einstein Recommendations use cases generate results based on shopper or buyer view behavior.

Parameters

• product—The product that the customer adds to cart. An object with an 18-character product ID.

• sku—(Optional) A unique stock keeping unit identifier for the product.

• quantity—(Optional) The total number of this item in the cart.

• price—(Optional) The price of each individual unit of this product.

• originalPrice—(Optional) The original price of each individual unit of this product.

Example usage

trackAddProductToCart({ id: '01t000000000000001', sku: 'sku123', quantity: 2, price: '9.99',
originalPrice: '10.99' });

SEE ALSO:

Commerce Einstein APIs

Prepare Commerce Einstein to Use Custom Components

Create a Custom Recommendations Component for B2C Stores Using Commerce Einstein APIs

Create a Custom Recommendations Component for B2B Stores Using Commerce Einstein APIs

66

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

B2C Commerce Einstein Product Recommendations API

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: D2C Commerce

Calls to the Product Recommendation API deliver Einstein recommendations. The API is accessed
using a wire adapter to provide data to a Lightning web component. In this case, the Product
Recommendation API returns a set of products to populate the Einstein Recommendations
component.

ProductRecommendationsAdapter Wire Adapter

The ProductRecommendationsAdapter returns Einstein product recommendations. Implement
this wire adapter by importing it from the einsteinAPI module within the commerce
namespace (commerce/einsteinAPI) and then declaring its required parameters with the @wire decorator.

Parameters

• Recommender Name—The name of the recommender. This parameter determines what kind of product results you see. It must
be one of the recommender names listed in the Recommender Names and Anchors table.

• Anchor Type—The anchor type is either PRODUCT, CATEGORY, or NO_CONTEXT. A product recommendation with an anchor type
PRODUCT bases its results on the product IDs that you pass.

• Anchor Value—If the anchor type is PRODUCT, the value is a list of 18-character product IDs. If the anchor type is CATEGORY, the
value is a list of 18-character category IDs. If the anchor type is NO_CONTEXT, there’s no anchor value; it can be null or undefined.

Result

• products—A list of product details.

• recoUUID—A string representing the unique ID for the recommendation response. Use this value when you trigger the viewReco
and clickReco activities.

Constants

• ANCHOR_TYPE.PRODUCT

• ANCHOR_TYPE.CATEGORY

• ANCHOR_TYPE.NO_CONTEXT

Recommender Names and Anchors

Each recommender name requires a specific anchor type and anchor value. For example, if you use the recommender name
“similar-products,” the anchor type must be PRODUCT, and the anchor value must be a list of product IDs. This table shows the anchor
type and value associated with each recommender name.

Recommender NamesAnchor ValueAnchor Type

Any value that evaluates to false. For
example: null or undefined.

NO_CONTEXT • personalized-for-shopper

• recently-viewed

• top-selling

A list of one or more 18-character product
IDs. For example:

PRODUCT • complementary-products

• customers-who-bought-also-bought
['01t000000000000001',

• recently-viewed'01t000000000000002',
'01t000000000000003']. • similar-products

• upsell

67

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

Recommender NamesAnchor ValueAnchor Type

A list of one or more 18-character category
IDs. For example:

CATEGORY • most-viewed-by-category

• recently-viewed
['0ZG000000000000001',

• top-selling-by-category'0ZG000000000000002',
'0ZG000000000000003'].

SEE ALSO:

Einstein Recommendations Component (LWR) for B2C Stores

Commerce Einstein APIs

Prepare Commerce Einstein to Use Custom Components

Create a Custom Recommendations Component for B2C Stores Using Commerce Einstein APIs

B2B Commerce Einstein Product Recommendations API

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: Available in:
B2B Commerce

Calls to the Product Recommendation API deliver Einstein recommendations. The API is accessed
using a Connect API to provide data to a Lightning web component. The Connect API returns a set
of products to populate the Commerce Einstein
Recommb2b_b2c_comm_einstein_reco_api_refendations component.

Commerce Einstein Webstore Recommendations Resource

The Commerce Einstein Recommendations Connect API resource
(/commerce/webstores/webstoreId/ai/recommendations) returns Einstein
product recommendations.

Recommender Names and Anchors

You can add one or more Einstein Recommendations components to any page in B2B Commerce stores. When using a product
recommender, such as SimilarProducts or ComplementaryProducts, specify product IDs. When using a category
recommender, such as MostViewedByCategory or TopSellingByCategory, specify category IDs. All other anchors are
supported on any page, but they’re intended for use on certain pages.

B2B recommenders don’t require that you specify an anchor type. The Connect API automatically determines the anchor type based on
the anchor values and the recommendation use case that you specify.

Fields ReturnedAnchor ValueAnchor Type

Any value that evaluates to false. For
example: null or undefined.

No anchor • RecentlyViewed

• TopSelling

• PersonalizedForShopper

A list of one or more 18-character product
IDs. For example:

Product ID • RecentlyViewed

• SimilarProducts
01t000000000000001,

• ComplementaryProducts01t000000000000002,
01t000000000000003 • CustomersWhoBoughtAlsoBought

68

Create Commerce Einstein Recommendations ComponentsB2B Commerce and D2C Commerce Developer Guide

https://help.salesforce.com/apex/HTViewHelpDoc?id=comm_einstein_component.htm&language=en_US#comm_einstein_component

Fields ReturnedAnchor ValueAnchor Type

• Upsell

A list of one or more 18-character category
IDs. For example:

Category ID • RecentlyViewed

• MostViewedByCategory
0ZG000000000000001,

• TopSellingByCategory0ZG000000000000002,
0ZG000000000000003

For example, a URL containing an anchor value for the connect API looks like this.

/services/data/v55.0/commerce/webstores/0ZERM00000009eR/ai/recommendations?recommender=SimilarProducts&anchorValues=01tRM000000R8DnYAK,01tRM000000R8DWYA0

SEE ALSO:

Commerce Einstein APIs

Prepare Commerce Einstein to Use Custom Components

Create a Custom Recommendations Component for B2B Stores Using Commerce Einstein APIs

Commerce Einstein Webstore Recommendations

Create a Custom Checkout Component for a B2B or B2C Store (LWR)
You can create custom checkout components to extend the default checkout processing for a B2B or B2C store created with an LWR
template.

Checkout Component Hierarchy

The checkout page for a B2B or B2C store created with an LWR template contains a recommended hierarchy of nested checkout
components. These components rely on a checkout data provider that loads and saves all of the necessary data for checkout.

UseCheckoutComponent Interface

On the checkout page for a B2B or B2C store created with an LWR template, child checkout components implement the
useCheckoutComponent mixin interface.

Checkout Component Communication

Checkout components communicate with each other during checkout processing. Understanding how they communicate helps
you develop a custom checkout component for a B2B or B2C store created with an LWR template.

Sample Custom Checkout Component

The Terms and Conditions sample component shows how to create a custom checkout component for a B2B or B2C store created
with an LWR template. You can add a Terms and Conditions component to any section of your Checkout page, but we recommend
placing it after the Payment component.

Checkout Component Hierarchy
The checkout page for a B2B or B2C store created with an LWR template contains a recommended hierarchy of nested checkout
components. These components rely on a checkout data provider that loads and saves all of the necessary data for checkout.

The checkout component hierarchy consists of three levels. At the top of the component hierarchy is a layout component. The layout
component contains multiple section components, and it organizes the customer experience into a one-page workflow or an accordion

69

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.chatterapi.meta/chatterapi/connect_resources_commerce_webstore_ai_recommendations.htm

workflow. The Layout: One Page component shows all sections at once, and the customer can complete them in any order. The Layout:
Accordion layout expands one section at a time, and the customer must complete them in a specific order.

Section components group related child components. For example, a Shipping section can contain a Shipping Address component and
a Shipping Instructions component. You can add, remove, reorder, or rename section components as needed.

Child components show and accept the customer details that are required to complete checkout. These components apply the mixin
extend useCheckoutComponent(LightningElement) and implement certain checkout methods, depending on the
desired behavior, to be managed by the page, layout, and section components.

Some components on the Checkout Page, such as the Place Order Button component and Checkout Notification component, are placed
directly on the page and aren’t part of this hierarchy.

Default Checkout Components
When you create a new store in Experience Builder, we provide a preconfigured Checkout Page by default that follows this setup.

You can add custom components anywhere in the workflow and expect the same or different behavior as the default components,
depending on the implementation.

UseCheckoutComponent Interface
On the checkout page for a B2B or B2C store created with an LWR template, child checkout components implement the
useCheckoutComponent mixin interface.

The component API is used to create custom components that integrate with the checkout process of form validation and the
synchronization of external API validations.

/**
* Applies mixin for base class for any checkout dedicated building block.
*
* example:

70

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

* export default class MyCheckoutInput extends useCheckoutComponent(LightningElement) {
* setAspect(newAspect: CheckoutContainerAspect): void {
* console.log(`dbb newAspect`, JSON.stringify(newAspect));
* }
* private handleButton(): void {
* this.dispatchCommit();
* }
* }
*/
export function useCheckoutComponent(

superclass: Constructor<LightningElement>
): Constructor<LightningElement & CheckoutComponent>;

This component API adds these helper methods to a LightningElement.

/**
* interface implemented by CheckoutComponentMixin
* and required to exist for CheckoutContainerMixin
*/
export interface CheckoutComponent extends CheckoutComponentHandlers {

/**
* notify the container the child component has modified data to put in the form store

* the container should start 'dirty form' processing:
* - optionally stageAction on this and other components
* - save form store data to the server
* - report errors
*/
dispatchCommit(): void;
/**
* notify the DataProvider to update the form with the supplied changes.
* the DataProvider catches updateForm errors so components do not need to.
* unlike most dispatch functions this one is awaitable.
*/
dispatchUpdateAsync(formRequest: CheckoutFormRequest): Promise<void>;
/**
* specialized version of dispatchUpdateAsync for setting client side errors.
* note: this will never reject or throw, so it's safe not to await if circumstances

permit
*/
dispatchUpdateErrorAsync(errorRequest: CheckoutException): Promise<void>;
/**
* notify the DataProvider to start 'final' processing (the place order button pressed)

* returns a Promise to facilitate advanced payment integrations.
*/
dispatchFinalizeAsync(): Promise<void>;
/**
* notify the DataProvider to call place order API
* unlike most dispatch fns this one is awaitable.
*/
dispatchPlaceOrderAsync(): Promise<OrderConfirmation>;
/**
* ask our container to change our display such as put us in summary mode

71

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

*/
dispatchRequestAspect(desiredAspect: CheckoutContainerAspectRequest): void;

}

The component API also adds these default implementations for container-initiated actions. The component designer can override these
implementations as needed.

/**
* ComponentRegistration delegates CheckoutContainerSubscriptionPayload to these handlers
in the derived component implementation
*/
export interface CheckoutComponentHandlers {

/**
* called on connect. derived classes should expose this key the DOM
* if DOM ordering of container children is needed.
* container classes combine a DOM query with sortSubscribers to break
* through the otherwise opaque CheckoutComponentReference.
* e.g. this.setAttribute('data-checkout-domkey', suggestedDomKey)
*/
setDomKey(suggestedDomKey: string): string;
/**
* display hints from container such as summary mode, stencil, etc.
* @param newAspect update checkout mode and stage
*/
setAspect(newAspect: CheckoutContainerAspect): void;
/**
* derived class must implement REPORT_VALIDITY_SAVE calls reportValidity if defined.

* derived class must implement CHECK_VALIDITY_UPDATE or do equivalent before
dispatchCommit.

* unsummarize if an error encountered to ensure it is seen
*
* aside: this subsumes all of CheckoutSavable's reportValidity, checkValidity,

checkoutSave, placeOrder
*
* @param _checkoutStage used to synchronize processing and responses across components

* @returns a Promise that resolves false if processing should be blocked
* should always return true if uninterested in a stage.
*/
stageAction(checkoutStage: CheckoutStage): Promise<boolean>;

Checkout Stages
These are the currently defined checkout stages.

/**
* where in the linear steps of checkout process, affects stageAction/reportValidity
responses
* note: these are unordered, stageAction should only use equality checks.
*/
export enum CheckoutStage {

// commit (user edit) stages that lead to form save (checkout API update)
//

72

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

// CHECK_VALIDITY_UPDATE may skip update if component updates itself on each change
before dispatchCommit

CHECK_VALIDITY_UPDATE = 'CHECK_VALIDITY_UPDATE',
REPORT_VALIDITY_SAVE = 'REPORT_VALIDITY_SAVE',
// finalize stages that lead to place order
BEFORE_PAYMENT = 'BEFORE_PAYMENT',
PAYMENT = 'PAYMENT',
BEFORE_PLACE_ORDER = 'BEFORE_PLACE_ORDER',
PLACE_ORDER = 'PLACE_ORDER',

}

Aspect Type Definitions
These aspect type definitions are referenced by the helper methods.

/**
* Used for nested checkout containers to specify how they are displayed
*/
export type CheckoutContainerAspect = {

/**
* truthy indicates DP is initializing, preparing for the place order step,
* or reached an unrecoverable error.
* input controls should render as readonly
*
* WARNING! when disabled or readonly lightning-input.reportValidity always
* returns true; therefore, defer setting controls to read-only
* unless they pass checkValidity.
* Otherwise they break stageAction(REPORT_VALIDITY_SAVE)
*/
readOnlyIfValid: boolean;
/**
* truthy indicates expandable child sections should show as collapsed
* typically this indicates the section is in a future accordion step, or in
* a past or future subway step.
*/
collapse: boolean;
/**
* truthy indicates summarizable components should render as summarized
*
* component may ignore summary: true requests, and if needed respond
* with dispatchRequestAspect(false) to ask their containers to become unsummarized;
* useful because errors are not typically rendered nor fixable in
* summarized components.
*/
summary: boolean;

};
/**
* Used by components to ask their container to change how they are displayed
*/
export type CheckoutContainerAspectRequest = {

/**
* true container should enter summary mode, false should leave it
* Children inform containers they can be summarized.

73

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

*/
summarizable: boolean;
/**
* if truthy there are no options and summarized container can hide edit button
*/
uneditable?: boolean;

};

Checkout Data Provider with Form Data
The checkout data provider is used to access checkout session API data and local, not-yet-persisted form changes. The data provider
Checkout.Details publishes an object of type CheckoutFormOverlay.

/**
* holds current state of checkout from the checkout api overlayed with
* with unpersisted client side changes and related meta-data.
*/
export type CheckoutFormOverlay = CheckoutInformation & {

/**
* captured billing details
*/
billingInfo?: CheckoutBillingInfo;
/**
* captured client side exceptions
*/
notifications?: FormNotification[];
/**
* computed meta information about the overlay
*/
formStatus?: CheckoutFormStatus;

};
/**
* billing information that is not necessarily represented
* in the checkout session
*/
export type CheckoutBillingInfo = {

address?: Address;
email?: string;

};
/**
* computed meta information about the form like is
* there data that should be saved
*/
export type CheckoutFormStatus = CheckoutFormActivity & {

/**
* true if persistForm should be called
* does not account for inconguent data, billing info, etc.
* cleared by persistForm (sometimes) and revertForm
*/
dirty: boolean;
/**
* true if some data typically saved by persistForm is incomplete
* for example only some of the fields required to save
* contactInfo have been set.

74

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

* promoted (cleared) to dirty (set) when updateform gets missing data.
* cleared by revertForm
*/
incongruent: boolean;
/**
* indicates if billingInfo.address explicitly set
*/
useShippingAddressForBilling: boolean;

};
/**
* used to add and remove client side notifications returned in the overlay.
* note: overlay's server side errors are not affected by adding or removing these.
* note: new client side notifications are appended to the overlay array
*/
export type FormNotification = {

/**
* unique ID used to clear all client notifications added in previous requests that
* had the same groupId.
*/
groupId: string;
/**
* pass a unique type that can control where in the UI the exception renders.
*/
type?: RequestErrorType;
/**
* the l10n string to display in the UI as the notification body.
* when detail falsey clear all client side set exceptions of this groupId.
*/
detail?: string;
/**
* optional unique error class identifier which can be used to further customize
* the notification.
*
* Examples are the Error.name (PaymentAuthorizationError)
* or Error.message (CheckoutError.NO_DELIVERY_ADDRESSES)
*/
code?: string;

};

Updating Checkout Form Data
The checkout data provider published data is updated using the provided component API dispatchUpdateAsync. It accepts an
object of type CheckoutFormRequest with the list of fields to update.

/**
* used by components to update the unpersisted client side data.
* assumes all contents are "validated" with checkValidity
*/
export type CheckoutFormRequest = {

/**
* caller short hand for deliveryGroups.items[0]
*/
defaultDeliveryGroup?: CheckoutFormRequestDeliveryGroup;
contactInfo?: ContactInfo;

75

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

billingInfo?: {
/**
* in FormRequest send null to revert to useShippingAddressForBilling
*/
address?: Address | null;
email?: string;

};
notifications?: FormNotification[];

};
/**
* selectable fields of a DeliveryGroup
*/
export type CheckoutFormRequestDeliveryGroup = {

/**
* notice changing the deliveryAddress results in all existing
* availableDeliveryMethods and any selectedDeliveryMethod (even
* an explictly set one) to be removed from the overlay until the
* new deliveryAddress is saved.
*/
deliveryAddress?: Address;
desiredDeliveryDate?: string;
shippingInstructions?: string;
/**
* in FormRequest send null to revert to existing selection
*
* notice an invalid (or no longer valid) delivery method selection
* is ignored (the xisting selection (if any) shows in the overlay
*
* notice that by default changing the deliveryAddress will not
* clear any explicitly set selectedDeliveryMethodId. if a caller
* wants to reset to the default (cheapest) delivery method when
* changing addresses they must also explicitly clear any previous
* selectedDeliveryMethodId setting.
*/
selectedDeliveryMethodId?: string | null;

};

Checkout Component Communication
Checkout components communicate with each other during checkout processing. Understanding how they communicate helps you
develop a custom checkout component for a B2B or B2C store created with an LWR template.

Checkout Layout Options
There are two checkout layout options: one-page and accordion. The layout option that you choose affects how the data provider and
sections interact with your custom child components.

In the one-page layout, the shopper can generally complete checkout sections in any order. All checkout components are kept in edit
mode, so the shopper can edit each section. In Experience Builder, you can reorder the sections and components.

In the accordion layout, the shopper completes the sections in a prescribed order from top to bottom: Shipping Address, Shipping
Method, and Payment. The default minimum set of sections and components must be kept in this order. Each section in this layout has
a Proceed (or Next) button.

76

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

In both layouts, an authenticated customer must provide or confirm their shipping address, shipping method, payment, and billing
information. A guest customer must also enter an email address and a phone number as part of the shipping address. To place the order,
the customer clicks Place Order.

One-Page Layout Processing Flow
In the one-page layout, shoppers can edit sections in any order. Editing autosaves on the shipping component, which triggers the
shipping methods to load. The checkout place order operation triggered by the Place Order button succeeds when all required sections
and forms are completed and they report as valid. The address and shipping methods autoload for a returned authenticated shopper,
and only payment information must be entered.

Form Updates and Autosave

One-page layout sections are always expanded and editable. After a customer enters valid information into a component’s form fields,
the component typically calls two methods, dispatchUpdateAsync() and dispatchCommit(), to notify the checkout
data provider or parent section containers that they’re ready to be saved.

The dispatchUpdateAsync() method notifies the checkout page data provider to update the internal form store with the
supplied changes. To avoid updating the internal form store with invalid data, the component typically calls the checkValidity()
method first. The dispatchCommit() method informs the section to attempt to save the new internal form store changes. The
component stageAction() method handles the CHECKOUT_VALIDITY_UPDATE and REPORT_VALIDITY_SAVE actions.
When the component checkValidity() and reportValidity() methods return true, the subsequent
dispatchCommit() calls are made through the intermediary one-page layout container component. Finally, the checkout data
provider handles the commit and saves the checkout data.

This diagram shows the sequence initiated when a customer interacts with a component form.

One-Page Place Order Sequence

In one-page checkout, after the user clicks the place order button, the button calls the helper dispatchFinalizeAsync to start
the validation cycle. The checkout page data provider executes reportValidity on each child component to determine if all
forms are valid and ready. This validity check is complete when components implement the stageAction() method with
CHECK_VALIDITY_UPDATE and REPORT_VALIDITY_SAVE handlers. See Sample Custom Checkout Component on page
78.

If any form fields are invalid, errors are shown and the place order operation is halted. The customer can then provide missing information
or correct mistakes.

77

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

If all initial stageAction(...) calls report valid and return true, the ACTION_CHECKOUT_FINALIZE operation continues
with stageAction(PAYMENT) and calls completePayment() on the Payment component.

If completePayment() succeeds and returns true from the stageAction(PAYMENT) call, the checkout data provider
continues to process calls stageAction(BEFORE_PLACE_ORDER) and stageAction(PLACE_ORDER). When
stageAction(PLACE_ORDER) is called, the component uses dispatchPlaceOrderAsync to make the server API call.

Finally, the Place Order Button component handles the `PLACE_ORDER` option and dispatches the
ACTION_CHEKOUT_PLACE_ORDER action. This component also navigates to the order confirmation summary. Custom components
can also implement the stageAction(checkoutStage:CheckoutStage) method and handle BEFORE_PAYMENT and
BEFORE_PLACE_ORDER for any custom processing needed at those stages.

This diagram shows the sequence initiated when the customer clicks Place Order.

Accordion Layout Processing Flow
The shopper clicks Proceed on each section to go to the next section.

By default, the accordion layout shows these sections in order: Guest Information (for unauthenticated shoppers), Shipping Address,
Shipping Methods, and Payment and Billing. You can add custom sections and components, but you must keep the default sections for
checkout to work.

Error Handling
Error handling behaves similarly for both layout options. Whenever an error is caught, a dispatchUpdateErrorAsync() call
can be made. For example, in the Place Order diagram, a dispatchUpdateErrorAsync() call is made on the Payment component
completePayment() method. The checkout page data provider then updates the Checkout Notification component to display
the error. The checkout process is halted until the shopper corrects any issues and clicks Place Order or Proceed again. See
FormNotification details in Checkout Interfaces on page 70.

Sample Custom Checkout Component
The Terms and Conditions sample component shows how to create a custom checkout component for a B2B or B2C store created with
an LWR template. You can add a Terms and Conditions component to any section of your Checkout page, but we recommend placing
it after the Payment component.

78

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

The Terms and Conditions component presents a checkbox to the customer. If the customer accepts the terms and conditions by
selecting the box, they can continue the checkout process. Otherwise, the component blocks the checkout process. The checkbox text
links to a page that describes your store’s terms and conditions, which you provide.

This example shows a Terms and Conditions component (1) placed in its own Terms and Conditions section after the Payment section.

You need four files to implement the Terms and Conditions component.

The first file is the LWC template: terms.html

<template>
<div>

<input
type="checkbox"
id="termsandconditions"
name="terms"
checked={checked}
onchange={handleChange}

></input>
<label class="slds-p-left_x-small" for="termsandconditions">

<lightning-formatted-rich-text
value={disclaimerLink}

></lightning-formatted-rich-text>
</label>

</div>
<label if:true={showError} class="slds-text-color_error">

{error}
</label>

</template>

The second file is the JavaScript component: terms.js:

import { LightningElement, api } from 'lwc';

import { useCheckoutComponent } from 'commerce/checkoutApi';

const CheckoutStage = {
CHECK_VALIDITY_UPDATE: 'CHECK_VALIDITY_UPDATE',
REPORT_VALIDITY_SAVE: 'REPORT_VALIDITY_SAVE',
BEFORE_PAYMENT: 'BEFORE_PAYMENT',
PAYMENT: 'PAYMENT',
BEFORE_PLACE_ORDER: 'BEFORE_PLACE_ORDER',
PLACE_ORDER: 'PLACE_ORDER'

79

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

};

/**
* Terms and Conditions has a link to the terms and conditions for the
* checkout user to read and a checkbox to accept the terms. Place order
* should be blocked by this component when placed in the payment step
* before or after the payment component.
*
* One page layout: this component may be placed anywhere.
*
* Accordion layout: this component may be placed in its own section
* before the payment section or directly in the payment section
* before or after the payment component.
*/
export default class CheckoutTerms extends useCheckoutComponent(LightningElement) {

_checkedByDefault = false;
checked = false;
showError = false;

// The message to show to the shopper
@api
disclaimer = 'I accept the [[Terms and Conditions]]';

// The link to the page containing the terms and conditions
@api
link = '/s/terms-and-conditions';

// The error message instructing the user to accept the terms
@api
error = 'Please click the checkbox to accept the terms and conditions';

/**
* The terms may be checked by default from the builder property panel.
*/
@api
get checkedByDefault() {

return this._checkedByDefault;
}

set checkedByDefault(value) {
this._checkedByDefault = value;
this.checked = value;

}

/**
* Embed a link directing in the disclaimer string.
*/
get disclaimerLink() {

if (this.disclaimer.indexOf('[[') > 0 && this.disclaimer.indexOf('[[') <<
this.disclaimer.indexOf(']]')) {

return this.disclaimer
.replace(

'[[',
`<a href="${this.link}"

80

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

target="termsandconditions">`
)
.replace(']]', '');

}

return `<a href="${this.link}"
target="termsandconditions">${this.disclaimer}`;

}

/**
* update form when our container asks us to
*/
stageAction(checkoutStage /*CheckoutStage*/) {

switch (checkoutStage) {
case CheckoutStage.CHECK_VALIDITY_UPDATE:

return Promise.resolve(this.checkValidity());
case CheckoutStage.REPORT_VALIDITY_SAVE:

return Promise.resolve(this.reportValidity());
default:

return Promise.resolve(true);
}

}

/**
* Return true when terms checkoutbox is checked
*/
checkValidity() {

return !this.checked;
}

/**
* Return true when terms checkbox is checked
*/
reportValidity() {

this.showError = !this.checked;

if (this.showError) {
this.dispatchUpdateErrorAsync({

groupId: 'TermsAndConditions',
type: '/commerce/errors/checkout-failure',
exception: 'Terms and Conditions must be accepted first by clicking the

checkbox',
});

}

return this.checked;
}

/**
* Check and uncheck the checkbox. Show error unless checked.
* @param {*} event
*/
handleChange(event) {

this.checked = event.target.checked || false;

81

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

this.showError = !this.checked;
}

}

The third file is the component’s metadata: terms.js-meta.xml

<?xml version="1.0" encoding="UTF-8"?>
<LightningComponentBundle xmlns="http://soap.sforce.com/2006/04/metadata">
<apiVersion>56.0</apiVersion>
<isExposed>true</isExposed>
<masterLabel>Terms and Conditions</masterLabel>
<targets>
<target>lightningCommunity__Page</target>
<target>lightningCommunity__Default</target>

</targets>
<targetConfigs>
<targetConfig targets="lightningCommunity__Default">
<property
label="Checked by Default"
name="checkedByDefault"
type="Boolean"
default="false"/>

<property
label="Disclaimer"
name="disclaimer"
type="String"
default="By clicking, you are confirming that your have read, understand and agree

to the [[Terms and Conditions]]"/>
<property
label="Link URL"
name="link"
type="String"
default="/s/terms-and-conditions"/>

<property
label="Error Message"
name="error"
type="String"
default="Please click the checkbox to accept the terms and conditions"/>

</targetConfig>
</targetConfigs>
</LightningComponentBundle>

And the fourth file is a checkout icon: terms.svg:

<svg viewBox="0 0 52 52"
width="52"
height="52"
xmlns="http://www.w3.org/2000/svg"
xmlns:bx="https://boxy-svg.com">
<rect width="100%" height="100%" fill="#225f8c"/>
<path d="M 34.996 27.173

C 41.499 27.169 45.571 33.914 42.324 39.316
C 39.077 44.718 30.947 44.724 27.689 39.328
C 26.944 38.093 26.552 36.692 26.553 35.265

82

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

C 26.562 30.8 30.336 27.181 34.996 27.173
Z
M 21.34 34.522
C 23.637 34.522 25.072 36.904 23.923 38.81
C 22.776 40.716 19.906 40.716 18.757 38.81
C 18.496 38.375 18.357 37.883 18.357 37.381
C 18.357 35.802 19.693 34.522 21.34 34.522
Z
M 38.075 31.976 L 33.556 36.83 L 31.513 34.85
C 31.283 34.634 30.914 34.634 30.685 34.85
L 29.857 35.615
C 29.634 35.798 29.61 36.12 29.804 36.33
L 29.857 36.387
L 32.706 39.074
C 32.931 39.292 33.236 39.416 33.556 39.418
C 33.875 39.427 34.183 39.302 34.399 39.074
L 39.76 33.449
C 39.926 33.239 39.926 32.946 39.76 32.734
L 38.925 31.984 C 38.695 31.768 38.327 31.768 38.098 31.984
L 38.075 31.976
Z
M 12.272 9.054
C 13.046 9.072 13.72 9.561 13.95 10.269
L 14.412 11.812
L 40.73 11.812 C 41.345 11.797 41.859 12.26 41.879 12.849
C 41.886 12.964 41.871 13.077 41.834 13.185
L 38.717 23.657
C 38.663 23.89 38.525 24.098 38.329 24.243
C 37.245 23.944 36.122 23.791 34.996 23.785
C 33.602 23.794 32.221 24.036 30.916 24.5
L 20.595 24.5
C 19.689 24.492 18.947 25.19 18.939 26.058
C 18.938 26.241 18.97 26.423 19.036 26.595
L 19.036 26.651
C 19.247 27.34 19.906 27.811 20.654 27.81
L 25.949 27.81
C 25.071 28.789 24.373 29.903 23.883 31.105
L 18.089 31.105
C 17.307 31.11 16.62 30.612 16.411 29.889 L 11.004 12.356
L 9.386 12.356
C 8.412 12.341 7.635 11.574 7.648 10.641
L 7.648 10.597
C 7.762 9.706 8.56 9.04 9.497 9.054
L 12.272 9.054 Z"

style="paint-order: fill; fill: rgb(255, 255, 255);" bx:origin="0.507 0.496"/>
</svg><svg viewBox="0 0 52 52" width="52" height="52" xmlns="http://www.w3.org/2000/svg"
xmlns:bx="https://boxy-svg.com">

<rect width="100%" height="100%" fill="#225f8c"/>
<path d="M 34.996 27.173 C 41.499 27.169 45.571 33.914 42.324 39.316 C 39.077 44.718

30.947 44.724 27.689 39.328 C 26.944 38.093 26.552 36.692 26.553 35.265 C 26.562 30.8
30.336 27.181 34.996 27.173 Z M 21.34 34.522 C 23.637 34.522 25.072 36.904 23.923 38.81 C
22.776 40.716 19.906 40.716 18.757 38.81 C 18.496 38.375 18.357 37.883 18.357 37.381 C
18.357 35.802 19.693 34.522 21.34 34.522 Z M 38.075 31.976 L 33.556 36.83 L 31.513 34.85
C 31.283 34.634 30.914 34.634 30.685 34.85 L 29.857 35.615 C 29.634 35.798 29.61 36.12

83

Create a Custom Checkout Component for a B2B or B2C
Store (LWR)

B2B Commerce and D2C Commerce Developer Guide

29.804 36.33 L 29.857 36.387 L 32.706 39.074 C 32.931 39.292 33.236 39.416 33.556 39.418
C 33.875 39.427 34.183 39.302 34.399 39.074 L 39.76 33.449 C 39.926 33.239 39.926 32.946
39.76 32.734 L 38.925 31.984 C 38.695 31.768 38.327 31.768 38.098 31.984 L 38.075 31.976
Z M 12.272 9.054 C 13.046 9.072 13.72 9.561 13.95 10.269 L 14.412 11.812 L 40.73 11.812 C
41.345 11.797 41.859 12.26 41.879 12.849 C 41.886 12.964 41.871 13.077 41.834 13.185 L
38.717 23.657 C 38.663 23.89 38.525 24.098 38.329 24.243 C 37.245 23.944 36.122 23.791
34.996 23.785 C 33.602 23.794 32.221 24.036 30.916 24.5 L 20.595 24.5 C 19.689 24.492
18.947 25.19 18.939 26.058 C 18.938 26.241 18.97 26.423 19.036 26.595 L 19.036 26.651 C
19.247 27.34 19.906 27.811 20.654 27.81 L 25.949 27.81 C 25.071 28.789 24.373 29.903 23.883
31.105 L 18.089 31.105 C 17.307 31.11 16.62 30.612 16.411 29.889 L 11.004 12.356 L 9.386
12.356 C 8.412 12.341 7.635 11.574 7.648 10.641 L 7.648 10.597 C 7.762 9.706 8.56 9.04
9.497 9.054 L 12.272 9.054 Z" style="paint-order: fill; fill: rgb(255, 255, 255);"
bx:origin="0.507 0.496"/>
</svg>

Custom Rules for Product Readiness

Merchandisers can run Product Readiness on their catalogs to ensure that all products in a catalog are storefront ready. By default, Product
Readiness uses a rule set that contains criteria based on SKUs, images, categories, and descriptions. If the default Product Readiness rule
set doesn’t fit your organization’s needs, create a custom rule set to determine what criteria a product must fit to be considered ready.

Use an APEX class to create a rule set, and then activate the Readiness.ProductEvaluator. After the rule set is enabled, an admin must
rebuild the index.

A custom rule can’t be added to the default rule set. If a custom rule set is enabled, it replaces the default rule set.

ProductScore records are associated with productIds as a measure of Product Readiness. If there are no score details returned for a given
product, the score record is deleted. This rule allows for obsolete product scores to be deleted if the rules no longer return scores for
these cases.

Example:

public class ProductReadinessDescriptionEvaluator implements Readiness.ProductEvaluator
{

// return true for the rule to run
public boolean isActive() {

return true;
}

// return a list of Readiness.ProductScoreDetail which will become the product
readiness score

public List<Readiness.ProductScoreDetail>
evaluateReadiness(Readiness.ProductEvaluationContext productContext) {

// example implmentation which checks for a description and a price
Set<ID> productIds = productContext.ProductIds;
List<Readiness.ProductScoreDetail> scores = new

List<Readiness.ProductScoreDetail>();

List<Product2> products = [SELECT
id, description
FROM Product2
WHERE
id IN : productIds];

84

Custom Rules for Product ReadinessB2B Commerce and D2C Commerce Developer Guide

for (Product2 product : products) {
scores.add(new Readiness.ProductScoreDetail(

product.Id,
'Description Length',
String.isBlank(product.description) ? 0 : 100,
'Product does not have a Description.'));

List<PricebookEntry> entries = [SELECT id FROM PricebookEntry WHERE
Product2Id = :product.Id];

Integer pricebookScore = (entries.size() == 0) ? 0 : 100;
scores.add(new Readiness.ProductScoreDetail(

product.Id,
'Price',
pricebookScore,
'Product must have a price.'));

}

return scores;
}

}

B2B Commerce Checkout Flow (Aura)

If you created your B2B store with an Aura template, use Flow Builder to create dynamic checkout flows. Use simple GitHub scripts to
stand up a scratch org with a fully functioning checkout, ready to test with preconfigured buyers. Customize the checkout sequence in
Experience Builder. Optionally, you can customize your checkout in Flow Builder by adding, replacing, or reordering the flow.

Note: These topics are for setting up checkout flows for B2B stores created with an Aura template. B2B and B2C stores created
with an LWR template use the Salesforce Commerce Checkout that’s installed when you create the store. For B2B and B2C stores
created with an LWR template, select checkout in Experience Builder, and then click to reorder or add steps and enhance the layout
with your custom functionality.

B2B Checkout Flows

B2B checkout implementations are built in Flow Builder, the Salesforce declarative programming interface that requires no coding.
The included applications execute each task in the checkout sequence. The Commerce app checkout applications use APIs to trigger
interactions between carts, orders, and external providers that take shoppers through all the sequential states—inventory check,
shipping, tax fee calculation, payment authorization, order creation, and so on—to support your store checkout.

B2B Checkout Flow Tasks

Many components create a working checkout flow. Use this list as you configure your checkout .

Create a B2B Commerce Org and Checkout Flow

Using SFDX scripts, you can deploy a Lightning B2B testing environment that includes checkout flows, sample products, and a buyer.

Configure a B2B Checkout Flow

Use Experience Builder or Flow Builder to configure and customize your checkout flow.

Configure B2B Checkout Flows to Create Managed Order Summaries

Configure your B2B checkout flow to integrate Salesforce Order Management.

85

B2B Commerce Checkout Flow (Aura)B2B Commerce and D2C Commerce Developer Guide

Import and Export Lightning B2B Commerce Order Summaries

You can export order summaries created by the Lightning B2B Checkout flow to an external order management system and then
import them back into Salesforce.

B2B Legacy Checkout Reference

Understand the legacy B2B checkout flow and subflow architecture, elements, and states to create custom buyer experiences.

B2B Checkout Flows
B2B checkout implementations are built in Flow Builder, the Salesforce declarative programming interface that requires no coding. The
included applications execute each task in the checkout sequence. The Commerce app checkout applications use APIs to trigger
interactions between carts, orders, and external providers that take shoppers through all the sequential states—inventory check, shipping,
tax fee calculation, payment authorization, order creation, and so on—to support your store checkout.

Main Checkout Flow

When the data and processing necessary to complete integration tasks are tightly coupled with local objects (cart, pricing, inventory),
the Main Checkout flow is preferable. This mostly synchronous checkout implementation elicits immediate feedback from objects when
triggered by the checkout UI. The Main Checkout flow is a full-featured checkout implementation that provides a responsive experience.

Pricing and Promotions Flow

When you install the Main Checkout flow, the Pricing and Promotions flow is also installed. Use this flow to support B2B promotions.

Re-entrant Checkout Flow

The Re-entrant Checkout flow supports:

• Multiple carts per shopper in various checkout states

• Shopper navigation back to a cart that was closed during checkout by a browser, with no loss of data

• Access to eligible promotions for cart items

Like the Main Checkout and Pricing and Promotions flows, the Re-entrant Checkout flow consists of Apex classes that execute subflow
logic. You use an SFDX GitHub script to install the Re-entrant Checkout flow.

Note: The separate, legacy B2B checkout flow template that is also provided does not support tokenization for credit card payments
with external providers.

B2B Checkout Flow Tasks
Many components create a working checkout flow. Use this list as you configure your checkout .

Basic Tasks
Complete these tasks to install, test, and configure a checkout.

• Create an Org and install the checkout flow—Use an SFDX script to install and deploy a checkout flow to a scratch test org.
Then save a copy of the installed and deployed checkout flow to create a customizable flow for your store.

• Test the checkout flow—Log in as a buyer (a buyer, store items, and mock shipping and payment integrations are installed with
the SFDX script) to explore the checkout journey.

• Configure the Checkout component in Experience Builder—On the Checkout page, configure the Checkout component by
choosing a flow.

• Configure checkout using Flow Builder—Optionally, add, remove, or reorder sublfows, change a subflow from synchronous to
asynchronous, or make other customizations.

86

B2B Checkout FlowsB2B Commerce and D2C Commerce Developer Guide

• Set the Security setting—For your cloned checkout flow, select System Context with Sharing-Enforces Record-Level Access.

• Activate the flow—After you select the appropriate security setting, activate your flow.

• Configure third-party integrations—Your checkout sample includes checkout integrations that require configuration. You can
also replace these integrations, but doing so requires a developer to create custom integrations. Reference integration samples for
tax, shipping, and payment are available in GitHub.

• Map the checkout flow to your store—Using Developer Console, map the checkout flow to the store using the
StoreIntegrationService object junction table. ServiceProviderType is a MappingProviderTypeEnum.

Functional Checkout Elements
Although these elements aren’t required, they’re important checkout items that we recommend using.

• Shipping address—To add addresses to your checkout flow, create them in your buyer account. Addresses can’t be added during
checkout using the provided shipping component.

• Inventory check—Use custom Apex to perform inventory checks to determine if your inventory meets the line item quantities.

• Product pricing confirmation—Use the B2B pricing engine or add custom Apex to create a pricing strategy.

• Shipping cost calculation—Use custom Apex to calculate shipping charges and connect to a third-party shipping service to
determine the cost for each delivery group.

• Tax cost calculation—Use custom Apex to calculate taxes per line item.

• Cart summary—Provide a high-level summary of the prices, shipping, and taxes in the cart per delivery group. The limit is one cart
per delivery group.

• Payment collection information—Authorize the payment amount specified in the order summary.

• Order confirmation—After converting a cart to an order, let buyers track their order and redirect to the order detail page for further
action.

Additional Features
To enhance your checkout experience and provide for complex scenarios, such as third-party integrations or large carts, consider adding
these flows.

• Provide re-entrant checkout—Allow buyers to browse away from a checkout and return where they left off without losing
previously entered data. The out-of-the-box flow provides a re-entrant checkout experience.

• Add an asynchronous checkout process for long-running tasks—Allow buyers to browse away from the current checkout
process or optionally close the browser tab without losing data. The Re-entrant checkout flow provides an asynchronous checkout
experience.

• Enhance order management—Export orders from Salesforce to an external ERP, including all order line items, taxes, line item
adjustments, tax adjustments, and the payment summary.

Create a B2B Commerce Org and Checkout Flow
Using SFDX scripts, you can deploy a Lightning B2B testing environment that includes checkout flows, sample products, and a buyer.

You can use the configuration files and scripts in the SFDX Git repositoryto quick start your project. If you use the SFDX scripts to create
an org, a checkout flow and the checkout subflows are included. You can then select and configure a checkout flow in Experience Builder
or optionally in Flow Builder.

• To create a scratch org for testing, see SFDX.

• For example integrations and tests, see Reference Implementation.

87

Create a B2B Commerce Org and Checkout FlowB2B Commerce and D2C Commerce Developer Guide

https://github.com/forcedotcom/b2b-commerce-on-lightning-quickstart/tree/master/sfdx
https://github.com/forcedotcom/b2b-commerce-on-lightning-quickstart/tree/master/sfdx
https://github.com/forcedotcom/b2b-commerce-on-lightning-quickstart/tree/master/examples/checkout/integrations

• For checkout notifications, see Checkout Notifications.

Configure a B2B Checkout Flow
Use Experience Builder or Flow Builder to configure and customize your checkout flow.

Add a Checkout Flow to a B2B Store

Launch Experience Builder for your store and choose one of the installed checkout flows.

Update a Checkout Flow to Handle Promotions

If you created a custom checkout flow before Winter ’22, it didn’t include support for promotions. You can update your existing flow
to make it capable of handling promotions.

Configure Purchase Order or Credit Card B2B Flows

After you deploy your flow, choose a purchase order or credit card implementation.

Change a B2B Subflow: Asynchronous or Synchronous

You can change a subflow to run synchronously or asynchronously in Flow Builder.

Customize a B2B Subflow

You can use the default checkout subflows or modify them by removing, adding, and reordering steps or exchanging part of a
default subflow with a custom subflow.

Time Limits and Active Checkouts

You can put a time limit on an active checkout to prevent users from checking out with outdated information. For example, a buyer
can start a checkout and then leave to complete other tasks. In the meantime, inventory and pricing can change. With the Time to
Live feature, you can set an expiration limit so that when the user returns to their cart, the checkout integrations run again and
provide current information.

Test Your B2B Checkout Flow

Before you go live, make sure that you thoroughly test your B2B checkout.

B2B Checkout Flow Notifications

The checkout flow runs through stages, such as pricing, shipping, inventory, taxation, order activation, and confirmation. You can
modify the flow to trigger notifications during the various stages and send updates to the buyer throughout the checkout process.

Add a Checkout Flow to a B2B Store

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: Available in:
B2B Commerce

Launch Experience Builder for your store and choose one of the installed checkout flows.

To choose the B2B checkout flow for your store in Experience Builder:

1. On your store’s home page, click the Experience Builder tile.

2. Navigate to the Checkout page.

3. Select the Checkout Flow component.

4. For Checkout Flow Name , select a flow that you installed, for example,(Checkout) Main with
Salesforce Pricing and Promotions.

Update a Checkout Flow to Handle Promotions
If you created a custom checkout flow before Winter ’22, it didn’t include support for promotions.
You can update your existing flow to make it capable of handling promotions.

88

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

https://github.com/forcedotcom/b2b-commerce-on-lightning-quickstart/tree/master/examples/checkout/notifications

Note: This section assumes that your existing checkout flow is based on the legacy checkout flow template. In previous releases,
this flow was the most frequently used checkout flow. The legacy B2B checkout flow template does not support tokenization for
credit card payments with external providers.

Create a Promotion Subflow for an Existing Checkout Flow

Checkout flows created before Winter ’22 didn’t support promotions. To add promotion capability to a flow created before Winter
’22, create a subflow.

Add a Promotions Subflow to a Checkout Flow

To add promotion capability to a checkout flow created before Winter ’22, add a subflow.

Map a Promotions Integration to a B2B Store

After you add a promotion subflow to your legacy checkout flow, you map the promotions integration to the store. This task applies
only to custom checkout flows created before Winter ’22.

Create a Promotion Subflow for an Existing Checkout Flow

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B Commerce

Checkout flows created before Winter ’22 didn’t support promotions. To add promotion capability
to a flow created before Winter ’22, create a subflow.

Your flow must be based on the legacy checkout flow template.

1. From Setup, in the Quick Find box, enter Flows, and then select Flows.

2. Click New Flow.

3. Click All + Templates.

4. Click Checkout Flow, select Checkout Flow, and then click Next.

5. Click Freeform.

6. Drag the Action element onto the canvas.

7. In the New Action screen, locate Promotions, and select Calculate Cart Promotions.

8. Define the action.

a. For the label, enter Calculate Cart Promotions.

b. For Cart Id, select + New Resource.

c. For Resource Type, select Variable.

d. For API Name, enter cartId.

e. For Data Type, select Text.

f. Select Available for input.

g. On the New Resource screen, click Done.

h. On the New Action screen, click Done.

9. Drag another Action element onto the canvas.

10. In the New Action screen, search for "Session" and select Update Checkout Session Action.

11. Define the action.

a. Enter Update Checkout Session as the label.

b. In the Checkout Session Id field, select + New Resource.

89

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

c. Select Variable as the Resource Type.

d. Enter checkoutSessionId as the API Name.

e. Select Text as the Data Type.

f. Select Available for input.

g. Click Done in the New Resource screen.

h. In the Next State field, select + New Resource.

i. Select Variable as the Resource Type.

j. Enter nextState as the API Name.

k. Select Text as the Data Type.

l. Select Available for input.

m. Click Done in the New Resource screen.

n. Select Include for the Expected Current State field.

o. In the Expected Current State field, select + New Resource.

p. Select Variable as the Resource Type.

q. Enter currentState as the API Name.

r. Select Text as the Data Type.

s. Select Available for input.

t. Click Done in the New Resource screen.

u. Click Done in the New Action screen.

12. Drag the Subflow element onto the canvas.

13. In the New Subflow screen, search for “Error” and select Subflow - Error.

14. Configure the subflow.

a. Enter Show Error as the Label.

b. Select Include for the cartId field.

c. Select the cartId variable for the cartId field.

d. Select Include for the ErrorMessage field.

e. Select the Flow.FaultMessage variable for the ErrorMessage field.

f. Click Done in the New Subflow screen.

15. Drag a connector line from the Start node to the Update Checkout Session action.

16. Drag a connector line from the Update Checkout Session to the Calculate Cart Promotions action.

17. Drag a connector line from the Update Checkout Session action to the Show Error subflow.

18. Drag two connector lines from the Calculate Cart Promotions action to the Show Error subflow, and delete the solid line.

The first connector line you drag is solid, and the second is a dashed fault line. Delete the solid line.

Your subflow looks like this.

90

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

19. Click Save.

20. On the Save the flow screen, enter a label (for example, Calculate Promotions) and click Save.

21. Click Activate.
You can now add the subflow to your primary checkout flow.

Add a Promotions Subflow to a Checkout Flow

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B Commerce

To add promotion capability to a checkout flow created before Winter ’22, add a subflow.

Your flow must be based on the legacy B2B checkout flow template. If you haven’t created a
promotion subflow, see Create a Promotion Subflow for an Existing Checkout Flow.

1. From Setup, in the Quick Find box, enter Flows, and then select Flows.

2. In Flow Builder, open your main checkout flow.

3. Configure when the subflow is triggered.

a. Double-click the Main Decision Hub node.

b. On the Edit Decision screen, click +.

c. For the label, enter Promotions.

d. For Conditions Requirement, select All Conditions Are Met (AND).

e. For Resource, select mainCheckoutSession > state.

f. For Operator, select Equals.

91

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

g. For Value, enter Promotions.

h. Click Done.

4. Drag a Subflow element onto the canvas, placing it between the Confirm Price and Shipping Cost subflow nodes.

5. On the New Subflow screen, search for the promotion subflow that you created, and select it.

6. Modify the settings for the new subflow, and then click Done.

92

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

7. Drag a connector line from the Main Decision Hub to your promotions subflow.

8. On the Select outcome for decision connector screen, select Promotions.

9. Drag a connector line from your promotions subflow to the Assignment node.

10. Double-click the Confirm Price subflow.

11. On the Edit “Subflow - Confirm Price” Subflow screen, enter Promotions as the nextState.

12. Click Save As and select A New Version.

13. Click Activate.

Map the promotions integration to the store.

Map a Promotions Integration to a B2B Store

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B Commerce

After you add a promotion subflow to your legacy checkout flow, you map the promotions
integration to the store. This task applies only to custom checkout flows created before Winter ’22.

1. From the Developer Console, click Query Editor, and enter this query.

SELECT Id,Integration, ServiceProviderType, storeId FROM StoreIntegratedService

93

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

2. Click Execute.

3. Click Insert Row, and enter these values in the columns.

a. In the Integration column, enter Promotions__b2b_storefront__StandardPromotions.

b. In the ServiceProviderType column, enter Promotions.

c. In the StoreId column, enter your store’s ID.

Configure Purchase Order or Credit Card B2B Flows
After you deploy your flow, choose a purchase order or credit card implementation.

Note: This topic assumes that you deployed the Main, Pricing and Promotions, or Re-Entrant checkout flow.

The Main, Sales and Promotion, and Re-Entrant Flows support purchase order or credit card transactions. Buyers click to choose one or
the other on the order summary page. When choosing purchase order, buyers are prompted to enter a PO Number and Billing Address.

Change a B2B Subflow: Asynchronous or Synchronous

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B Commerce

You can change a subflow to run synchronously or asynchronously in Flow Builder.

The example used in this task shows how to modify a synchronous Check Inventory subflow to run
asynchronously.

Note: This topic assumes that you deployed the Main, Pricing and Promotions, or Re-Entrant
checkout flows.

1. From Setup, in the Quick Find box, enter Flows, and then select Flows.

2. Click to select a checkout subflow that runs asynchronously .

3. Drag a New Action element to the canvas, enter Inventory in the Action pane, and choose
the asynchronous checkCartInventoryAction- checkCartInventoryAction. (The synchronous
counterpart is apex_B2BSyncCheckInventory.)

4. Enter a label and API name (such as Check Inventory) for the New Action element.

5. Under cartId, add {!cartId}. This variable represents the ID value of the current cart.

6. Click Done.

7. Delete the subflow action you want to replace.

8. Drag and connect the new action.

9. Click Save as and click New Flow.

10. Enter Asynch Check Inventory in the Flow Label and Flow API Name fields.

11. To make the new action available, reload the checkout flow.

12. Drag a new subflow onto the canvas.

13. Enter Inventory in the Referenced flow pane and choose the new asynchronous subflow.

14. Enter Asynch Check Inventory in the label and API Name fields for this subflow.

15. In the Set Input Values, choose {!cartId} and also checkoutsessionId.

16. Click Done.

17. Delete the old Apex Action Check Inventory (the synchronous node).

94

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

18. Connect the new Async Check Inventory subflow.

19. Click Save.

20. Reload the page.

You can now choose this modified checkout flow in Experience Builder.

Customize a B2B Subflow

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B Commerce

You can use the default checkout subflows or modify them by removing, adding, and reordering
steps or exchanging part of a default subflow with a custom subflow.

Note: The default checkout flow doesn’t show a Previous button during checkout. Instead,
the flow references the checkout state variable to determine which screen to show or which
integration to run. If you add a Previous button, make sure that the button resets to the
checkout state that corresponds to the screen shown and doesn’t revert to the previous
checkout state. For example, if an integration runs between screens, reverting to the previous
checkout state can result in unexpected behavior or errors.

1. To replace an existing subflow with a custom subflow, drag a new subflow element onto your
flow canvas.

Note: We recommend that you keep the Shipping Address subflow first and the Payments subflow at the end. The Shipping
Address subflow determines the information related to shipping that the rest of the flow requires. Ending with the Payments
subflow minimizes the number of unused payment authorizations on the payment gateway.

2. Enter or search for the type of subflow that you want to add.

3. For the nextState and cartId input values, select Include.

4. Under cartId, add {!cartId}.

This variable represents the ID value of the current cart.

5. Under nextState, add the subflow that comes next.

Each subflow contains a currentState and a nextState variable. If the nextState variable doesn’t accurately reflect the next subflow,
the flow can’t continue, and the checkout hangs. If you delete or reorder a subflow, make sure to update the nextState variable to
the correct state value.

For example, if you replace the Shipping Address subflow and you want inventory to come next like it does in the default flow, select
Inventory.

6. Delete the subflow that you want to replace.

7. On the Main Decision Hub element, drag the connector to your new subflow, and then drag the connector on your new subflow
to the subflow that follows.

8. Save and activate your flow.

To complete your checkout flow, create Apex classes for pricing, tax, shipping, and inventory. For information about creating Apex classes
and customizing your flow, see Lightning B2B Commerce Checkout Flow.

95

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.b2b_comm_lex_dev.meta/b2b_comm_lex_dev/b2b_comm_lex_checkout_flow.htm

Time Limits and Active Checkouts
You can put a time limit on an active checkout to prevent users from checking out with outdated information. For example, a buyer can
start a checkout and then leave to complete other tasks. In the meantime, inventory and pricing can change. With the Time to Live
feature, you can set an expiration limit so that when the user returns to their cart, the checkout integrations run again and provide current
information.

Configure B2B Checkout Time to Live with Developer Console

You can put a time limit on an active checkout to prevent users from checking out with outdated information.

Configure B2B Checkout Time to Live with APIs

You can put a time limit on an active checkout to prevent users from checking out with outdated information.

Configure B2B Checkout Time to Live with Developer Console

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B Commerce

You can put a time limit on an active checkout to prevent users from checking out with outdated
information.

1. Locate your commerce store ID.

a. Navigate to the Commerce app and select your store.

b. In the URL, find your store ID.

In this example, the store ID is the string of numbers and letters before /view.

https://examplestore.lightning.force.com/lightning/r/WebStore/0TERR00000004XG4AY/view

a. From Developer Console, select Query Editor.

b. Copy the following SOQL query to the Query Editor panel, and replace storeID with the 15- or 18-digit Salesforce ID of the
store.

SELECT CheckoutTimeToLive, CheckoutValidAfterDate, Id FROM WebStore WHERE Id =
'storeID'

c. Click Execute.

d. Double-click the value in the CheckoutTimeToLive column, and enter the number of minutes that the checkout stays
active. The default number of minutes is 2880 (48 hours). The maximum value for CheckoutTimeToLive is 525600 minutes (365
days).

e. Double-click the value in the CheckoutValidAfterDate column, and enter a date. If a checkout starts before this date,
it’s considered expired. Example format: 2020-07-14T14:27:00.000Z

f. Click Save Rows.

96

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

Configure B2B Checkout Time to Live with APIs

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B Commerce

You can put a time limit on an active checkout to prevent users from checking out with outdated
information.

1. Locate your commerce store ID.

a. Navigate to the Commerce app and select your store.

b. In the URL, find your store ID.

In this example, the store ID is the string of numbers and letters before /view.

https://examplestore.lightning.force.com/lightning/r/WebStore/0TERR00000004XG4AY/view

2. After you have your store ID, use the WebStore object to configure TTL.

GET
https://yourstore.salesforce.com:6101/services/data/v50.0/sobjects/WebStore/<Your Store
ID>

3. Update the WebStore object.

PATCH
https://yourstore.salesforce.com:6101/services/data/v50.0/sobjects/WebStore/<Your Store
ID>
{
"CheckoutTimeToLive" : <value in minutes, e.g. 5>,
"CheckoutValidAfterDate": "<timestamp, e.g. 2020-07-14T14:27:00.000Z>"
}

• CheckoutTimeToLive is the number of minutes that the checkout stays active. If you enter Null, the checkout never expires.
If you enter 0, checkout is disabled. The default number of minutes is 2880 (48 hours).

• CheckoutValidAfterDate is a timestamp in the default server timezone (GMT). Example format: 2020-07-14T14:27:00.000Z. If a
checkout starts before this date, it’s considered expired. A Null value means all checkouts are valid.

Test Your B2B Checkout Flow

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B Commerce

Before you go live, make sure that you thoroughly test your B2B checkout.

Test these areas of the checkout flow.

• Buyer facing components in Experience Builder

• Checkout flow definition and implementation

• Action APIs used in the checkout flow and data mapping

Test the Experience Builder components and the checkout flow manually.

To test the API actions, complete these prerequisites:

• Publish a fully configured and populated store with products, buyers, entitlements, prices, and
other necessary store elements.

• Configure a test account with test buyers.

97

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

• Ensure that the test orders generated by testing are separated logically from real orders and don’t have a physical or financial impact
downstream.

1. Create an Autolaunched Flow.

a. Select Run as System Context with Sharing-Enforces Record-Level Access.

b. Apply the input parameter TestBuyerId.

c. Activate your flow.

2. In the new test flow:

a. Remove old tests that ran or failed, and clear the cart for the buyer specified by TestBuyerId.

b. Use SOAP inserts to add items to the cart for the buyer specified by TestBuyerId.

3. Use the Checkout APIs as actions within the test flow.

a. Create a checkout session.

b. Check inventory, and wait for BackgroundOperation to complete.

c. Check prices, and wait for BackgroundOperation to complete.

d. Calculate taxes, and wait for BackgroundOperation to complete.

e. Calculate shipping charges, and wait for BackgroundOperation to complete.

f. Process cart to order, and wait for BackgroundOperation to complete

B2B Checkout Flow Notifications
The checkout flow runs through stages, such as pricing, shipping, inventory, taxation, order activation, and confirmation. You can modify
the flow to trigger notifications during the various stages and send updates to the buyer throughout the checkout process.

Order Confirmation Notifications

To notify users when their order is successfully placed, use email or in-app notifications.

Checkout Stage Notifications

The checkout process contains various intermediate stages, including pricing, inventory, tax, and shipping. Some of these stages
connect to a third party, so they can take more time to complete. Using platform events, Process Builder, and Flow Builder, you can
notify the buyer when a stage is complete.

Make Notifications Optional for Users

Let users choose whether to receive email or app notifications that you create for the B2B Commerce checkout.

Localize Checkout Notifications

You can set up your B2B Commerce store to provide your users language options. You can create a flow that sends notifications for
each language.

Create Third-Party Integrations with Platform Events

To trigger notifications using an external, or third-party, system, subscribe to Salesforce platform events.

Order Confirmation Notifications
To notify users when their order is successfully placed, use email or in-app notifications.

98

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

Create Email Order Confirmation Notifications

To email buyers when their order is confirmed, create an email template, an email alert, a flow that uses the email alert, and a process
to invoke your flow.

App, Push, and Bell Order Confirmations

Use app, push, or bell notifications to notify buyers that their order is confirmed.

Create Email Order Confirmation Notifications

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

Available in: B2B Commerce
and D2C Commerce

To email buyers when their order is confirmed, create an email template, an email alert, a flow that
uses the email alert, and a process to invoke your flow.

You can perform all of these tasks declaratively in the Commerce app using templates.

1. Go to GitHub for Commerce on Lightning.

2. Open and review the Order Confirmation Email Notification Implementation README file.

App, Push, and Bell Order Confirmations

Use app, push, or bell notifications to notify buyers that their order is confirmed.

Create an App, Push, or Bell Notification

To send bell, app, or push notifications to buyers when their order is confirmed, create a custom notification to use in a flow.

Create a Notification Flow

After you create a custom notification, you can use it in an autolaunched flow.

Invoke a Notification Flow

After you create a notification flow, add an action to invoke the flow by cloning an existing process.

Create an App, Push, or Bell Notification

To send bell, app, or push notifications to buyers when their order is confirmed, create a custom notification to use in a flow.

Note: Bell notifications aren’t store specific. If a buyer user is a member of multiple stores, the buyer receives a bell notification
in all stores after placing an order, not just the store where the order was placed.

1. From Setup, in the Quick Find Box, enter Notification Builder, and select Custom Notifications.

2. Click New.

3. Enter the information in the New Custom Notification Type form.

a. For Custom Notification Name, enter Order Summary Bell Notification Type.

b. For API Name, enter Order_Summary_Bell_Notification_Type.

c. Under Supported Channels, select Desktop and Mobile.

4. Click Save.

Add this notification to a flow.

Create a Notification Flow

After you create a custom notification, you can use it in an autolaunched flow.

1. From Setup, in the Quick Find Box, enter Process Automation, and select Flows.

99

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

https://github.com/forcedotcom/commerce-on-lightning/tree/main/examples/b2c/checkout/order-confirmation-email-flow#order-confirmation-email-notification-implementation

2. Create a flow.

3. Select Autolaunched Flow, and click Create.

Add resources to the autolaunched flow. For each resource listed in the Record Resources table, navigate to the Manager tab, click New
Resource, and fill in the fields accordingly.

Resource ThreeResource TwoResource OneField

VariableVariableVariableResource Type

customNotificationRecordIdorderSummaryRecordIDOrderSummaryRecordAPI Name

RecordRecordRecordData Type

Custom Notification TypeOrder SummaryOrder SummaryObject

NoNoNoAllow Multiple Values?

NoneNoneAvailable for InputAvailability Outside the Flow

Table 1: Text Resources

Resource TwoResource OneField

VariableVariableResource Type

RecipientIdcustomNotificationTypeDevNameAPI Name

TextTextData Type

YesNoAllow Multiple Values?

N/AOrder_Summary_Bell_Notification_Type

Note:
Order_Summary_Bell_Notification_Type

Default Value

refers to the name of your custom
notification type.

On the Element tab, create two Get Records elements using this information.

Element TwoElement OneField

getCustomNotificationTypeRecordgetOrderSummaryRecordLabel

getCustomNotificationTypeRecordgetOrderSummaryRecordAPI Name

Custom Notification TypeOrder SummaryObject

Conditions • Condition requirements: Conditions are
met

• Condition requirements: Conditions are
met

• Field: ID • Field: DeveloperName

• Operator: Equals• Operator: Equals

100

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

Element TwoElement OneField

• Value: {!OrderSummaryRecord.Id} • Value:
{!customNotificationTypeDevName}Note: OrderSummaryRecord refers to the

API name of the first variable that you
created in this flow.

Note: customNotificationTypeDevName
refers to the API name of the third variable
that you created in this flow.

Not SortedNot SortedSort Order

Only the first recordOnly the first recordHow Many Records to Store

Choose fields and assign variables
(advanced)

Choose fields and assign variables
(advanced)

How to Store Record Data

Together in a record variableTogether in a record variableWhere to Store Field Values

customNotificationRecordIdorderSummaryRecordIDRecord

Select [Object] Fields to Store in Variable •• ID ID

• OwnerId

1. On the Element tab, drag an Assignment element to the canvas.

2. Fill in the Assignment element form.

a. For Label, enter assignRecipientId.

b. For API Name, enter assignRecipientId.

c. For Variable, select RecipientId.

d. For Operator, select Add.

e. For Value, select orderSummaryRecordID and ownerId. The field value is {!orderSummaryRecordID.OwnerId}.

3. On the Element tab, drag another Action element to canvas.

4. Search all actions, and select Send Custom Notification.

5. Fill in the Action element form.

a. For Label, enter Send Notifications.

b. For API Name, enter Send_Notifications.

c. For Custom Notification Type ID, enter {!customNotificationRecordId.Id}.

d. For Notification Body and Notification Title, enter your message, such as Your order is confirmed..

e. For Recipient IDs, enter {!RecipientId}.

f. For TargetID, enter {!orderSummaryRecordID.Id}.

6. Connect all your elements, and click Save.

7. Save your flow.

a. For Label, enter Order Summary Bell Notification Flow.

b. For API Name, enter Order_Summary_Bell_Notification_Flow.

101

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

8. Click Done, and activate your flow.

Example: Here’s an example flow with the elements connected.

Invoke a Notification Flow

After you create a notification flow, add an action to invoke the flow by cloning an existing process.

1. From Setup, in the Quick Find Box, enter Process Automation, and select Process Builder.

2. Select Notify On Order Summary Created Process.

3. Select Clone, choose Save Close As, and select Version of current process.

4. Click Save.

5. Select + Add Action.

6. Fill in the action form.

a. For Action Type, select Flows.

b. For Action Name, enter Order Summary Bell Notification Flow Action.

c. For Flow, select Order Summary Bell Notification Flow.

d. Click + Add Row.

e. For Flow Variable, select OrderSummaryRecord.

f. For Type, select Field Reference.

g. For Value, select Select the OrderSummary record that started your process, and click Choose.

h. Click Save.

7. Activate your process.

102

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

Checkout Stage Notifications
The checkout process contains various intermediate stages, including pricing, inventory, tax, and shipping. Some of these stages connect
to a third party, so they can take more time to complete. Using platform events, Process Builder, and Flow Builder, you can notify the
buyer when a stage is complete.

Intermediate Checkout Stage Notifications Overview

Using platform events, Process Builder, and Flow Builder, you can notify the buyer when an integration is complete.

Create a Platform Event for Checkout Notifications

Create a platform event to notify users that an intermediate checkout stage is complete.

Create a Process to Publish a Checkout Notification Platform Event

After you create a platform event, you can use Process Builder to publish it.

Create an Email Notification

Create a notification to email users when an intermediate checkout stage is complete.

Create a Flow to Send an Email Alert

After you create an email template and an email alert, you can create a flow to trigger the alert.

Create a Flow for Bell Notifications

Create a flow that triggers bell notifications for intermediate checkout steps.

Create a Process to Call a Flow

Create a process that calls your notification flow when your platform event occurs.

Intermediate Checkout Stage Notifications Overview

Using platform events, Process Builder, and Flow Builder, you can notify the buyer when an integration is complete.

Intermediate checkout stages depend on the cartCheckoutSession object. When cartCheckoutSession completes a stage, it moves to
the next stage. See B2B Checkout States for more information.

There are many ways to implement an intermediate checkout notification. In the example detailed in this section, we create a platform
event and use Process Builder to publish and subscribe to the event. The buyer receives notifications after completion of inventory, price
confirmation, shipping cost, and taxation stages.

Create a Platform Event for Checkout Notifications

Create a platform event to notify users that an intermediate checkout stage is complete.

1. From Setup, in the Quick Find Box, enter Platform Events, and select Platform Events.

2. Create a platform event.

3. Fill in the New Platform Event form.

a. For Label, enter Checkout Intermediate Notification.

b. For Plural Label, enter Checkout Intermediate Notifications.

c. For Object Name, select Checkout_Intermediate_Notification.

d. For Publish Behavior, select Publish After Commit.

e. Click Save.

4. Create a field with a Text data type.

103

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

a. In the Custom Fields and Relationships section, click New.

b. For Data Type, select Text, and click Next.

c. For Field Label, enter Cart Session ID

d. For Length, enter 255.

e. For Field Name, enter Cart_Session_ID

f. Click Save.

5. Create two more custom text fields, and label them Next State and State.

Create a Process to Publish a Checkout Notification Platform Event

After you create a platform event, you can use Process Builder to publish it.

1. From Setup, in the Quick Find Box, enter Process Automation, and select Process Builder.

2. Create a process.

3. Fill in the New Process form.

a. For Process Name, enter Publish Event On Checkout Intermediate Operation Process.

b. For API Name, enter Publish_Event_On_Checkout_Intermediate_Operation_Process.

c. For when to start the process, select A record changes.

4. Save your process.

5. After Process Builder launches, click Add Object.

a. For Object, select Cart Checkout Session.

b. For when to start the process, select when a record is created or edited.

6. Click Add Criteria.

a. For Criteria Name, enter Publish Checkout Intermediate Notification Event.

b. For Criteria for Executing Actions, select No criteria-just execute the actions!

c. Click Save.

7. Click Add Action.

a. For Action Type, select Create a Record.

b. For Action Name, enter Publish Intermediate Notification.

c. For Record Type, select the platform event that you created.

d. Set field values.

• For Field, select Cart Session ID.

• For Type, select Field Reference.

• Under Value, select Cart Checkout Session ID, and click Choose.

• Click Add Row.

• Under Field, select Next State.

• For Type, select Field Reference.

• Under Value, select Next State, and click Choose.

104

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

• Click Add Row.

• Under Field, select State.

• For Type, select Field Reference.

• Under Value, select State, and click Choose.

e. Click Save.

8. Save and activate your process.

Create an Email Notification

Create a notification to email users when an intermediate checkout stage is complete.

1. Create an email template to notify buyers when an integration phase is complete. For step-by step-instructions, see
https://help.salesforce.com/articleView?id=sf.comm_email_templates.htm.

2. Create an email alert. For a step-by-step guide, see https://help.salesforce.com/articleView?id=sf.comm_create_email_alert.htm.

a. For Object, select cartCheckoutSession.

b. For the recipient, select Record Creator.

Example: Here’s an example template that you can use.

Hello {!OrderSummary.OwnerFullName},

An intermediate checkout stage is complete.

Please click here to continue: https://<Store-url>/s/checkout/{!CartCheckoutSession.Name}

Thanks,
{!Organization.Name}

Create a Flow to Send an Email Alert

After you create an email template and an email alert, you can create a flow to trigger the alert.

1. From Setup, in the Quick Find Box, enter Process Automation, and select Flows.

2. Create a flow.

3. Select Auto launched Flow, and click Create.

4. In Flow Builder, select the Manager tab, and click New Resource.

5. Fill in the New Resource form.

a. Under Resource Type, select Variable.

b. For API Name, enter CartCheckoutSessionRecord.

c. Under Data Type, select Record.

d. Under Object, select Cart Checkout Session.

e. For Availability Outside the Flow, select Available for input.

6. Click Done.

7. Back in Flow Builder, select the Elements tab. Drag the Action element to the canvas.

105

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

https://help.salesforce.com/articleView?id=sf.comm_email_templates.htm&language=en_US
https://help.salesforce.com/articleView?id=sf.comm_create_email_alert.htm&language=en_US

8. Fill in the New Action form.

a. For Filter By, select Type.

b. Select Email Alert.

c. Click Search email alerts, and select the alert you created.

d. Label your action Checkout Stage Email Notification Alert Action.

e. For the API Name, enter Checkout_Stage_Email_Notification_Alert_Action.

f. Under Record ID, enter {!CartCheckoutSessionRecord.Id}.

9. Click Done.

10. Link the two flow actions by dragging a connection between them.

11. Save and activate your flow.

Create a Flow for Bell Notifications

Create a flow that triggers bell notifications for intermediate checkout steps.

Follow the steps in Create a Notification Flow using these variables and elements.

1. Create the input variable cartCheckoutSessionRecord using the Record data type and the Cart Checkout Session object.

2. Create the variable cartSessionRecordID using the Record data type and the Cart Checkout Session object.

This variable stores the output of the getRecord lookup for the Cart Checkout Session object.

3. Create the Get Records element on the Cart Checkout Session object, and store the values of the CreatedById and
WebCartId fields in the output.

4. Create the variable recipientId using the Text data type, and accept multiple values.

5. Create the Assignment Logic element, and add the {!cartSessionRecordID.CreatedById} value to recipientId.

6. Create an Action element called Send Custom Notification. For Target ID in send custom notification, enter
{!cartSessionRecordID.WebCartId}. For bell notifications, Target ID accepts only record IDs, not URLs, so you can’t
redirect the user directly to the checkout flow.

Create a Process to Call a Flow

Create a process that calls your notification flow when your platform event occurs.

1. From Setup, in the Quick Find Box, enter Process Automation, and select Process Builder.

2. Click New.

3. Fill in the New Process form.

a. For Process Name, enter Notify On Checkout Intermediate Notification Event.

b. For API Name, enter Notify_On_Checkout_Intermediate_Notification_Event.

c. For when to start the process, select A platform event message is received.

4. Click Save.

5. After Process Builder launches, click Add Trigger.

a. For Platform Event, select Checkout Intermediate Notification.

a. For Object, select Cart Checkout Session.

106

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

b. Provide matching conditions.

a. Under Field, select Cart Checkout Session ID.

b. For Operator, select Equals.

c. For Type, select Event Reference.

d. Under Value, select Cart Session ID.

c. Click Save.

6. Click Add Criteria.

a. For Criteria Name, enter Checkout Intermediate Operation Criteria.

b. For Criteria for Executing Actions, select Conditions are Met.

c. Create five conditions with this criteria.

FiveFourThreeTwoOneField

Platform EventPlatform EventPlatform EventPlatform EventPlatform EventSource

Next StateStateStateStateStateField

Is NullEqualsEqualsEqualsEqualsOperator

BooleanStringStringStringStringType

TrueCheckout SummaryTaxesShipping CostConfirm PriceValue

7. For Conditions, select Customize the Logic.

8. For Logic, select (1 OR 2 OR 3 OR 4) AND 5.

9. Click Save.

10. Select + Add Action.

11. Fill in the New Action form.

a. For Action Type, select Flows.

b. For Action Name, enter Trigger intermediate checkout notification.

c. For Flow, select the flow that you created in the Bell notifications step.

12. Save and activate your process.

Make Notifications Optional for Users
Let users choose whether to receive email or app notifications that you create for the B2B Commerce checkout.

Let Users Opt Out of Checkout Notifications

Add a checkbox to let users choose whether to receive checkout notifications.

Write an Apex Action to Make Notifications Optional

After you add a checkbox to your user profiles, create custom Apex code to create a notification setting for your buyer users.

Add Optional Notifications to an Email Flow

To let users choose whether to receive email notification, modify your email order notification flow.

107

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

Let Users Opt Out of Checkout Notifications

Add a checkbox to let users choose whether to receive checkout notifications.

1. From Setup, in the Quick Find Box, enter Object Manager, and select User.

2. Select Fields and Relationships, and click New.

3. For Data Type, select Checkbox.

4. Under Field Label, enter Checkout Notifications.

5. Select the default value.

If you select Checked, users are automatically opted in to checkout notifications. They can choose to opt out by deselecting the
box.

6. For Field Name, enter Checkout_Notifications, and click Next.

7. Choose which profiles see the field, and click Next.

We suggest choosing the buyer user profiles.

8. Add the field to the User Profile Layout.

9. Click Save.

Write an Apex Action to Make Notifications Optional

After you add a checkbox to your user profiles, create custom Apex code to create a notification setting for your buyer users.

1. From Setup, in the Quick Find Box, enter Custom Code, and select Apex Classes.

2. Click New.

3. Copy this code sample or write your own.

Example: Here’s an example Apex class.

public class B2BIfNotifyBuyer {
@InvocableMethod(label='GetBuyerNotificationSetting' description='Retrieve checkout
notify setting for buyer user')
public static List<String> getSetting(List<ID> orderSummaryIds) {
List<String> output = new List<String>();
List<OrderSummary> orderSummaries = [SELECT TYPEOF OriginalOrder.Owner WHEN User THEN
Checkout_Notifications__c END FROM OrderSummary WHERE Id in :orderSummaryIds];
for (OrderSummary orderSummary : orderSummaries) {
if (orderSummary.OriginalOrder.Owner instanceof User){
User userOwner = orderSummary.OriginalOrder.Owner;
output.add(String.valueOf(userOwner.Checkout_Notifications__c));
}
}
return output;
}
}

Add Optional Notifications to an Email Flow

To let users choose whether to receive email notification, modify your email order notification flow.

This task assumes that you’ve created an email notification flow. See
https://help.salesforce.com/articleView?id=sf.comm_create_a_flow_email.htm.

108

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

https://help.salesforce.com/articleView?id=sf.comm_create_a_flow_email.htm&language=en_US

1. On the Element tab, drag an Action element to the canvas.

2. Fill in the New Action form.

a. Search all actions, and select your Apex action to make notifications optional.

b. For Label and API Name, enter GetNotificationSetting.

c. Turn on Set Input Values.

d. For orderSummaryIds, enter {!OrderSummaryRecord.Id}.

e. Click Done.

3. On the Element tab, drag a Decision element to the canvas.

4. Fill in the New Decision form.

a. For Label and API Name, enter NotificationDecision.

b. Fill in the Outcome Details.

a. For Label and Outcome API Name, enter NotificationsEnabled.

b. For when to execute the outcome, select All Conditions are Met.

c. For Resource, enter the label and API name used for the Action element.

d. For Operator, select Equals.

e. For Value, select {!$GlobalConstant.True}.

5. Click Done.

6. Connect all your elements, and click Save.

7. Activate your flow.

8. Repeat these steps for all flows that send email notifications or in-app notifications.

Localize Checkout Notifications
You can set up your B2B Commerce store to provide your users language options. You can create a flow that sends notifications for each
language.

Localize a Notification

Create an Apex action that retrieves the buyer’s selected language.

Create a Flow for Localized Notifications

Create a flow that uses your Apex action to localize notifications.

Localize a Notification

Create an Apex action that retrieves the buyer’s selected language.

1. From Setup, in the Quick Find Box, enter Custom Code, and select Apex Classes.

2. Click New.

3. Write an Apex action with an invocable method that retrieves the language that the user chooses.

109

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

Example: You can use this code in your Apex action.

public class B2BGetBuyerUserLanguageAction {
@InvocableMethod(label='GetBuyerUserLanguageAction' description='Retrieve

language of buyer user')
public static List<User> getBuyerUserLanguage(List<ID> orderSummaryIds) {

List<User> output = new List<User>();
List<OrderSummary> orderSummaries = [SELECT TYPEOF OriginalOrder.Owner

WHEN User THEN LocaleSidKey, LanguageLocaleKey END FROM OrderSummary WHERE Id in
:orderSummaryIds];

for (OrderSummary orderSummary : orderSummaries) {
if (orderSummary.OriginalOrder.Owner instanceof User){
User userOwner = orderSummary.OriginalOrder.Owner;
output.add(userOwner);

}
}
return output;

}
}

Create a Flow for Localized Notifications

Create a flow that uses your Apex action to localize notifications.

This task creates a flow for bell notifications, but you can create a similar flow for email notifications. See App, Push, and Bell Order
Confirmations.

1. From Setup, in the Quick Find Box, enter Process Automation, and select Flows.

2. Create a flow.

3. Select Autolaunched Flow, and click Create.

4. On the Manager tab, click New Resource.

5. Fill in the New Resource form.

a. For Resource Type, select Variable.

b. For API Name, enter UserLanguage.

c. For Data Type, select Record.

d. For Object, enter User.

6. On the Element tab, drag an Action element to the canvas.

7. Fill in the New Action form.

a. For Filter By, select Type.

b. Click Apex Action.

c. Click Search Apex Actions, and select GetBuyerUserLanguageAction.

d. For Label, enter Get Buyer Language.

e. For API Name, enter Get_Buyer_Language.

f. Under Set Input Values, include orderSummaryIds.

g. Select Enter value of search resources, and enter {!OrderSummaryRecord.Id}.

110

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

h. Select Manually assign variables (advanced).

i. Click Search variables, and enter {!UserLanguage}.

j. Click Done.

8. On the Element tab, drag a Decision element to the canvas.

9. Fill in the New Decision form.

a. For Label, enter Check Buyer Language.

b. For API Name, enter Check_Buyer_Language.

c. Fill in the Outcome Detail.

a. For Label, enter French Buyer.

b. For Outcome API Name, enter French_Buyer

c. For When to Execute Outcome, select All Conditions are Met.

d. For Resource, enter {!UserLanguage.LanguageLocaleKey}, which uses the output of the Apex class created
in Localize a Notification.

e. For Operator, select Equals.

f. For Value, enter fr.

g. Click Done.

10. On the Element tab, drag an Action element to the canvas.

11. Fill in the Action element form.

a. For Search All Actions, select Send Custom Notifications.

b. For Label, enter Notifications for French Buyers.

c. For API Name, enter Notifications_for_French_Buyers.

d. For Custom Notification Type ID, enter {!customNotificationRecordId.Id}.

e. For Notification Body and Notification Title, enter Votre commande a été confirmée. You can also customize
this message.

f. For Recipient IDs, enter {!RecipientId}.

g. For TargetID, enter {!orderSummaryRecordID.Id}.

h. Click Done.

12. On the Element tab, drag another Action element to the canvas.

13. Fill in the Action element form.

a. For Search All Actions, select Send Custom Notifications.

b. For Label, enter Notifications for English Buyers.

c. For API Name, enter Notifications_for_English_Buyers.

d. For Custom Notification Type ID, enter {!customNotificationRecordId.Id}.

e. For Notification Body and Notification Title, enter Your Order is Confirmed. You can also customize this message.

f. For Recipient IDs, enter {!RecipientId}.

g. For TargetID, enter {!orderSummaryRecordID.Id}.

111

Configure a B2B Checkout FlowB2B Commerce and D2C Commerce Developer Guide

h. Click Done.

14. Connect your elements. Start connects to getOrderSummaryRecord, connects to getCustomNotificationTypeRecord, connects to
assignRecipientId, connects to Get Buyer Language, connects to Check Buyer language, which connects to both Notification for
English Buyers and Notification for French Buyers. Notification for English Buyers is the default outcome.

Example: Here’s an example flow with the elements connected.

Create Third-Party Integrations with Platform Events
To trigger notifications using an external, or third-party, system, subscribe to Salesforce platform events.

You can subscribe to browser events or processes running on the Salesforce platform using Streaming API, which is built on the Bayeux
protocol. Subscribe to events upon order confirmation or for intermediate checkout stages.

• Order confirmation—When an OrderSummary sObject is created successfully, Salesforce triggers the OrderSummaryCreatedEvent.
Applications can subscribe to this platform event and send notifications from external systems to Salesforce.

• Intermediate checkout stages—Create a custom platform event, such as the event described in Create a Platform Event for
Checkout Notifications. Applications can subscribe to your platform event and send notifications from systems external to Salesforce.

Configure B2B Checkout Flows to Create Managed Order Summaries
Configure your B2B checkout flow to integrate Salesforce Order Management.

Note: Before using Salesforce Order Management, you must purchase a license and enable it for your org.

1. From Setup, in the Quick Find box, enter Flows, and then select Flows.

2. Click your checkout flow.

3. In Flow Builder, double-click the Activate Order action.

112

Configure B2B Checkout Flows to Create Managed Order
Summaries

B2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.api_streaming.meta/api_streaming/intro_stream.htm

4. If the Order Life Cycle Type field is not visible in the “Activate Order” action, toggle the Don’t Include control to display it.

5. In the Order Life Cycle Type input field, enter MANAGED.

6. Click Done.

7. In Flow Builder, click Save.

113

Configure B2B Checkout Flows to Create Managed Order
Summaries

B2B Commerce and D2C Commerce Developer Guide

Import and Export Lightning B2B Commerce Order Summaries
You can export order summaries created by the Lightning B2B Checkout flow to an external order management system and then import
them back into Salesforce.

Order Summaries

When a buyer places an order in Lightning B2B Commerce using the Checkout flow, two records are created: an order record and
an order summary record.

Export or Update Unmanaged Order Summaries

Use Salesforce Data Loader to bulk export or update unmanaged order summaries created by Lightning B2B Commerce. When you
export data with Data Loader, you can use a comma-separated values (CSV) file or a database connection. Data Loader exports to a
CSV file. You can also use other solutions, like dataloader.io, MuleSoft, or direct API access.

Create Unmanaged Order Summaries

To directly create an Order Summary record, you must create an activated order record and generate an order summary from it.

Order Summaries
When a buyer places an order in Lightning B2B Commerce using the Checkout flow, two records are created: an order record and an
order summary record.

What Happens When a Customer Places an Order

When a customer places an order, several events occur.

Managed and Unmanaged Order Summaries

When you use the Order Summary object for Lightning B2B Commerce, the order summary lifecycle is often managed by an external
order management system.

Map Cart Data to Order Data

During checkout, B2B Commerce and D2C Commerce create orders and order summaries using information from the cart. Many
fields in the cart map to order fields and to order summary fields. In addition, fields in other order-related objects are mapped to
fields in various other objects, including cart-related objects. If you understand how the various fields are mapped, you can plan
accordingly. Also, if you follow certain patterns, you can ensure that custom fields are mapped successfully.

Disable Cart to Order Mappings for Custom Fields

Starting in Spring ‘23, the Cart to Order action supports the automatic mapping of custom fields. This feature is enabled by default,
but you can disable it if needed.

Exportable and Updatable Summary Objects

You can update and export a variety of order-related objects in Lightning B2B Commerce.

114

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

What Happens When a Customer Places an Order

EDITIONS

Available in: Enterprise,
Unlimited, and Developer
Editions

EDITIONS

Available in: B2B and D2C
Commerce

When a customer places an order, several events occur.

1. The order is submitted.

2. The items in the customer’s cart are copied to an order.

3. Cart and order information is updated with line item totals.

4. The order is activated to create the order summary, and the cart is closed.

This step occurs inside the CreateOrderSummary API transaction.

5. The OrderSummaryAdjustmentAggregate API is called.

6. The order placement process is completed.

Managed and Unmanaged Order Summaries
When you use the Order Summary object for Lightning B2B Commerce, the order summary lifecycle is often managed by an external
order management system.

When updates are made in your external system, they must be reflected in Salesforce. Use the OrderLifeCycleType field on the Order
Summary object to manage external system information by selecting the unmanaged value.

• The managed value identifies an order summary created by Salesforce Order Management.

• The unmanaged value identifies an order summary created by Lightning B2B Commerce.

Note: Users with the Edit Unmanaged Order Summaries or B2B Commerce Integrator User permission can export or update an
order summary with an unmanaged value.

Map Cart Data to Order Data
During checkout, B2B Commerce and D2C Commerce create orders and order summaries using information from the cart. Many fields
in the cart map to order fields and to order summary fields. In addition, fields in other order-related objects are mapped to fields in
various other objects, including cart-related objects. If you understand how the various fields are mapped, you can plan accordingly.
Also, if you follow certain patterns, you can ensure that custom fields are mapped successfully.

Several objects hold cart-related data and order-related data. We describe which fields are required to create an order record and an
order summary record. We also indicate how the fields of order-related objects map to other fields.

115

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

Note: Starting in Spring ‘23, the Cart to Order action supports the automatic mapping of custom fields if you follow certain
patterns.

To be mapped successfully, a custom field must exist in the Cart, Order, and OrderSummary objects. It can also optionally exist in
the OrderAdjustmentGroup, OrderDeliveryGroup, OrderItem, OrderItemAdjustmentLineItem, and OrderItemTaxLineItem objects.

Across all of these objects, the custom field must have the same API name, same data type, and same field configuration (length,
precision, field-level security, and so on). The data type of the field must be one of the following:

• Checkbox

• Currency

• Date

• DateTime

• Email

• Html

• LongTextArea

• Number

• Percent

• Phone

• Text

• TextArea

• Url

If the system finds a custom field that matches across these objects, the field is automatically mapped.

Mapping Order Data

The following tables list fields for order-related objects. The tables don’t show a comprehensive list of all fields for each object. However,
the tables do include all fields that must be populated to create an order record or an order summary record. The tables also show
information about other fields whose values are mapped to other objects.

When an order field is populated, or mapped, the system copies the value from a cart object and inserts it into the order object without
modification. If you want to import orders from an external system, use this information to determine which fields are necessary for a
functional checkout.

Note:

• If a field is denoted with the *Generated at runtime value, the value of the field is unique and generated when the
record is created.

• If a field is denoted with *Provided by shipping integration, the values can also be provided using your
shipping integration. For an example, see our sample shipping integration.

Order Object

ValueField TypeRequired for
Orders

Required for
Order
Summaries

Order Field

*Generated at runtimeEntityIdYesYesId

116

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

https://github.com/forcedotcom/b2b-commerce-on-lightning-quickstart/blob/master/examples/checkout/integrations/classes/B2BShippingSample.cls

ValueField TypeRequired for
Orders

Required for
Order
Summaries

Order Field

WebCart.AccountIdEntityIdYesNoAccountId

CreatedDateDateYesYesEffectiveDate

WebCart.BillingCityAddressNoNoBillingCity

WebCart.BillingCountryAddressNoNoBillingCountry

WebCart.GuestEmailAddressEmailNoNoBillingEmailAddress

WebCart.BillingLatitudeAddressNoNoBillingLatitude

WebCart.BillingLongitudeAddressNoNoBillingLongitude

WebCart.GuestPhoneNumberPhoneNoNoBillingPhoneNumber

WebCart.BillingPostalCodeAddressNoNoBillingPostalCode

WebCart.BillingStreetAddressNoNoBillingStreet

WebCart.BillingStateAddressNoNoBillingState

WebCart.CurrencyIsoCodeCurrencyCodeYesYesCurrencyIsoCode

Note: This field is only required if
MultiCurrency is enabled.

CreatedDateDateTimeNoNoOrderedDate

WebCart.OwnerIdReferenceYesNoOwnerId

Collected at checkout.StringNoNoPoNumber

WebCart.WebStoreIdEntityIdYesNoSalesStore

DraftDynamicEnumYesYesStatus

WebCart.TaxTypeEntityIdYesYesTaxLocaleType

OrderItem Object

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderItem Field

WebCart.GrossUnitPriceCurrencyYesYesGrossUnitPrice

*Generated at runtimeEntityIdYesYesId

Order.IdEntityIdYesYesOrderId

117

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderItem Field

ID of OrderDeliveryGroupEntityIdNoYesOrderDeliveryGroupId

Note:
CartItem.CartDeliveryGroupId
points to the
CartDeliveryGroup, which is
used to create an
OrderDeliveryGroup.

CartItem.Product2IdEntityIdYesYesProduct2Id

CartItem.QuantityDoubleYesYesQuantity

CartItem.TotalLineAmount,
TotalLineNetAmount

CurrencyYesNoTotalLineAmount

CartItem.TypePicklistYesNoType

Note: Product and Charge are
the only types allowed.

When CartItem.Type is set to
Product, Order.Type is set to
Order Product. When
CartItem.Type is set to
Charge, Order.Type is set to
Delivery Charge.

CartItem.SalesPrice or
CartItem.ListPrice if
SalesPrice is empty, NetUnitPrice

CurrencyYesYesUnitPrice

CartItem.ListPrice or
CartItem.SalesPrice if
ListPrice is empty.

CurrencyNoNoListPrice

OrderDeliveryGroup Object

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderDeliveryGroup
Field

*Generated at runtimeEntityIdYesYesId

CartDeliveryGroup.DeliverToStreetAddressNoNoDeliverToStreet

CartDeliveryGroup.DeliverToCityAddressNoNoDeliverToCity

CartDeliveryGroup.DeliverToStateAddressNoNoDeliverToState

118

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderDeliveryGroup
Field

CartDeliveryGroup.DeliverToPostalCodeAddressNoNoDeliverToPostalCode

CartDeliveryGroup.DeliverToCountryAddressNoNoDeliverToCountry

CartDeliveryGroup.DeliverToLatitudeAddressNoNoDeliverToLatitude

CartDeliveryGroup.DeliverToLongitudeAddressNoNoDeliverToLongitude

CartDeliveryGroup.ShippingInstructionsTextAreaNoNoDeliveryInstructions

CartDeliveryGroup.DesiredDeliveryDateDateNoNoDesiredDeliveryDate

CartDeliveryGroup.OrderDeliveryMethodIdEntityIdYesYesDeliveryMethodId

Order.IdEntityIdYesYesOrderId

CartDeliveryGroup.DeliverToNameTextYesYesDeliverToName

Note: Defaults to “Deliver To”

OrderItemAdjustmentLineItem Object

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderItemAdjustmentLineItem
Field

*Generated at runtimeEntityIdYesYesId

CartItem.NetAdjustmentAmountCurrencyYesYesAmount

“Price Adjustment”TextYesNoName

OrderItem.IdEntityIdYesYesOrderItemId

When you enable promotions, the following OrderItemAdjustmentLineItem fields are also mapped.

Note: The Amount and Name fields are mapped from a different source than when promotions are disabled

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderItemAdjustmentLineItem
Field

CartItemPriceAdjustment.PriceAdjustmentCauseEntityIdNoNoAdjustmentCause

CartItemPriceAdjustment.TotalAmount,
TotalNetAmount

CurrencyYesYesAmount

CartItemPriceAdjustment.DescriptionTextAreaNoNoDescription

CartItemPriceAdjustment.NameTextYesNoName

119

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderItemAdjustmentLineItem
Field

CartItemPriceAdjustment.WebCartAdjustmentGrupEntityIdNoNoOrderAdjustmentGroup

CartItemPriceAdjustment.PriorityIntegerNoNoPriority

OrderItemTaxLineItem Object

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderItemTaxLineItem
Field

*Generated at runtimeEntityIdYesYesId

CartTax.Amount or
CartItem.AdjustmentTaxAmount
if this field contains a tax adjustment.

CurrencyYesYesAmount

CartTax.Name or "Tax Adjustment" if field
contains a tax adjustment.

TextYesYesName

Orderitem.IdEntityIdYesYesOrderItemId

EntityIdNoNoOrderItemAdjustment
LineItem

• OrderItemAdjustmentLineItem.Id,
if this field contains a tax adjustment

• Otherwise, this field is empty.

CartTax.TaxCalculationDate or a
past date if TaxEffectiveDate is

DateYesYesTaxEffectiveDate

empty. If this field contains a tax adjustment,
it’s the current date.

CartTax.TaxType or "Estimated" if this
field contains a tax adjustment.

StaticEnumYesYesType

CartTax.TaxRate or empty if this field
contains a tax adjustment.

PercentNoNoRate

CartTax.Description or empty if this
field contains a tax adjustment.

TextNoNoDescription

OrderAdjustmentGroup Object

Note: The OrderAdjustmentGroup object is available only when you enable promotions.

120

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

ValueField TypeRequired for
Orders

Required for
Order
Summaries

OrderAdjustmentGroup
Field

*Generated at runtimeEntityIdNoNoId

WebCartAdjustmentGroup.DescriptionTextAreaNoNoDescription

WebCartAdjustmentGroup.NameTextYesNoName

Order.idEntityIdYesNoOrderId

WebCartAdjustmentGroup.PriceAdjustmentCauseEntityIdNoNoPromotionAdjustmentCause

WebCartAdjustmentGroup.AdjustmentTargetTypePicklistNoNoType

SEE ALSO:

Disable Cart to Order Mappings for Custom Fields

Disable Cart to Order Mappings for Custom Fields
Starting in Spring ‘23, the Cart to Order action supports the automatic mapping of custom fields. This feature is enabled by default, but
you can disable it if needed.

You use Developer Console to disable the automatic mapping of custom fields supported by the Cart to Order action.

1. Locate your commerce store ID.

a. Navigate to the Commerce app and select your store.

b. In the URL, find your store ID.

In this example, the store ID is the string of numbers and letters before /view.

https://examplestore.lightning.force.com/lightning/r/WebStore/0TERR00000004XG4AY/view

2. Set the value of the OptionsCartToOrderAutoCustomFieldMapping to false.

a. From Developer Console, select Query Editor.

b. Copy the following SOQL query to the Query Editor panel, and replace storeID with the 15- or 18-digit Salesforce ID of the
store.

SELECT OptionsCartToOrderAutoCustomFieldMapping, Id FROM WebStore WHERE Id = 'storeID'

c. Click Execute.

d. Double-click the value in the OptionsCartToOrderAutoCustomFieldMapping column, and set the value to false.

e. Click Save Rows.

Exportable and Updatable Summary Objects
You can update and export a variety of order-related objects in Lightning B2B Commerce.

• OrderSummary

• OrderItemSummary

121

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

• OrderItemAdjustmentLineSummary

• OrderItemTaxLineItemSummary

• OrderAdjustmentGroupSummary

• OrderDeliveryGroupSummary

• OrderPaymentSummary

Export or Update Unmanaged Order Summaries
Use Salesforce Data Loader to bulk export or update unmanaged order summaries created by Lightning B2B Commerce. When you
export data with Data Loader, you can use a comma-separated values (CSV) file or a database connection. Data Loader exports to a CSV
file. You can also use other solutions, like dataloader.io, MuleSoft, or direct API access.

Export Unmanaged Order Summaries with Data Loader

Export your B2B Commerce order summary data out of Salesforce using Data Loader.

Update Unmanaged Order Summaries with Data Loader

Use Data Loader to make bulk updates to your B2B Commerce order summary data.

Export Unmanaged Order Summaries with Data Loader
Export your B2B Commerce order summary data out of Salesforce using Data Loader.

1. Log in to Data Loader.

2. Select Export.

3. Enter the credentials for the org where your B2B order summaries are.

4. Under Select Salesforce Object, select an order summary or a related summary object.

5. For the extraction target, enter the name of your output CSV file and click Next.

122

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

6. On the Edit Your Query page, select the fields that you want to export, and under Fields, select the ID that you want to export from.

7. Add the OrderLifeCycleType = 'UNMANAGED' clause. This clause is required if you want to limit your export to B2B
Commerce order summaries.

8. To edit or create a Where statement when querying data from a summary object rather than an order summary, include the
OrderSummaryId.

9. When you export data periodically, use the CreatedDate field with the SOQL supported values. For example, CreatedDate
< LAST_90_DAYS.

Data Loader generates a query that you can edit.

10. Click Finish and view the extracted results.

Example: These example queries illustrate how you can export data from order summaries.

Example QueryObject

Select Id, CreatedDate, OrderNumber, OrderedDate, OwnerId, Status,
TotalAmount, FROM OrderSummary WHERE SalesStoreId =
'0ZER00000004Kos' AND OrderLifeCycleType = 'UNMANAGED'

OrderSummary

Select Id, CreatedDate, Product2Id, ProductCode, Quantity, Status, Type,
UnitPrice FROM OrderItemSummary WHERE OrderSummaryId IN
('1OsR000000002K7KAI')

OrderItemSummary

Select Id, Amount, CreatedDate, TotalTaxAmount FROM
OrderItemAdjustmentLineSummary WHERE OrderSummaryId IN
('1OsR000000002K7KAI')

OrderItemAdjustmentLineSummary

123

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

Example QueryObject

Select Id, Amount, CreatedDate, Rate, Type FROM
OrderItemTaxLineItemSummary WHERE OrderSummaryId IN
('1OsR000000002K7KAI')

OrderItemTaxLineItemSummary

Select Id, CreatedDate, TotalAmount, TotalTaxAmount, Type FROM
OrderAdjustmentGroupSummary WHERE OrderSummaryId IN
('1OsR000000002K7KAI')

OrderAdjustmentGroupSummary

Select Id, CreatedDate, DeliverToCity, DeliverToCountry, EmailAddress,
PhoneNumber, TotalAmount FROM OrderDeliveryGroupSummary WHERE
OrderSummaryId IN ('1OsR000000002K7KAI')

OrderDeliveryGroupSummary

Select Id, ChangeOrderItemId, ChangeType, OrderItemSummaryId, Reason
FROM OrderItemSummaryChange WHERE OrderSummaryId IN
('1OsR000000002K7KAI')

OrderItemSummaryChange

Select Id, CreatedDate, FullName, AuthorizationAmount OwnerId,
PaymentMethodId, RefundedAmount, Type FROM OrderPaymentSummary
WHERE OrderSummaryId IN ('1OsR000000002K7KAI')

OrderPaymentSummary

Update Unmanaged Order Summaries with Data Loader
Use Data Loader to make bulk updates to your B2B Commerce order summary data.

Start by opening the Data Loader client application.

1. Select Update.

2. Search for an order summary or a related summary object, and enter the name of the CSV file where orders are updated.

3. Map fields in your CSV file to the corresponding object columns in Salesforce.

124

Import and Export Lightning B2B Commerce Order SummariesB2B Commerce and D2C Commerce Developer Guide

4. Select the directory where your success or error files are saved.

5. Click Finish, and view the extracted results.

Create Unmanaged Order Summaries
To directly create an Order Summary record, you must create an activated order record and generate an order summary from it.

Creating an order summary is a three-step process:

1. Import a draft order into Salesforce.

2. Activate the order.

3. Create an order summary in one of four ways.

a. Use the Order Summaries Rest API to create an OrderSummary record based on an order.

b. Use the OrderSummaryCreation Apex class.

c. Use Process Builder to call an invocable action when an order is activated.

d. Use a flow that runs when an order is activated and a SalesStoreId is provided.

B2B Legacy Checkout Reference
Understand the legacy B2B checkout flow and subflow architecture, elements, and states to create custom buyer experiences.

Checkout Flow Architecture

The Checkout flow is available only from the Checkout component in Experience Builder and uses only specific subflows.

125

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

Buyer Experience SDK

The Buyer Experience Software Development Kit (SDK) includes all the Apex interfaces that support B2B Commerce cart and checkout.
The reference content presented here exposes the interfaces that support the legacy B2B checkout template.

Checkout Flow Architecture
The Checkout flow is available only from the Checkout component in Experience Builder and uses only specific subflows.

B2B Checkout Flow Design

The B2B Checkout flow is triggered by, and interacts with, browser-based shopper UI actions.

B2B Checkout Flow Elements

The B2B checkout flows include flow elements that structure the buyer experience.

B2B Checkout Subflows

Each B2B checkout flow contains subflows Working with subflows makes it easier to move, delete, or change steps. Some of the
subflows are screen flows, which require input from, or display information to, the buyer. Other subflows are system flows, which
complete actions that make your checkout work.

B2B Checkout States

The CartCheckoutSession object manages checkout progress.

B2B Checkout Task Modes

The B2B checkout flow executes tasks in two distinct modes, each suited to different action types.

B2B Checkout Error Handling

If an error occurs during the checkout process, the Checkout flow routes the checkout to the error subflow. The error subflow then
presents the user an error screen with an explanation.

B2B Checkout Flow Design
The B2B Checkout flow is triggered by, and interacts with, browser-based shopper UI actions.

The flow, which provides integration points to third-party services, is triggered when a customer clicks Checkout or revisits a previously
started checkout.

126

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

The flow is split into two tiers: the parent flow and subflows. The parent flow controls the flow through the checkout, managing the
state, collecting errors, and waiting on async tasks to complete. The subflows make it easy to add, move, or remove steps in the checkout
process.

B2B Checkout Flow Elements
The B2B checkout flows include flow elements that structure the buyer experience.

Several core elements create the basic structure of your checkout flow.

• Start—Your checkout flow execution begins here.

127

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

• Fetch Checkout Session—Returns the CartCheckoutSessionId. The session identifies the current state of the checkout
and whether an async task is running in the background. Based on that information, the element determines whether to display the
wait screen. The checkout process routes to the next step based on current state and async task status. This process provides a
re-entrant checkout and executes one time per loop in the default implementation.

• Route by State—Routes to the next element based on the value of CartCheckoutSession.State and transitions to
CartCheckoutSession.IsProcessing. It then routes to the wait screen until the background operation completes and
sets CartCheckoutSession.IsProcessing to false.

• Wait Screen—A screen that polls CartCheckoutSession.IsProcessing for changes and routes back to Fetch Checkout
Session when CartCheckoutSession.IsProcessing is false.

B2B Checkout Subflows
Each B2B checkout flow contains subflows Working with subflows makes it easier to move, delete, or change steps. Some of the subflows
are screen flows, which require input from, or display information to, the buyer. Other subflows are system flows, which complete actions
that make your checkout work.

Screen Subflows

• Shipping Address—Requires buyer input to determine the shipping address. Addresses are pulled from the buyer account.

• Checkout Summary—Redirects the user to the Checkout Summary component, which outlines the total cart cost, prices, taxes,
and shipping information.

• Payments and Billing Address—Requires buyer input to determine the billing address and payment method. Addresses are
pulled from the buyer account. The component in the browser integrates with the Salesforce Payments API to provide payment
authorization services.

• Order Confirmation—Redirects the user to the Order Confirmation component, which outlines the final order details, prices, taxes,
and shipping charges. Checkout is complete at this point.

• Error—Presents errors to the buyer and then redirects to the cart to resolve those errors. If the buyer reaches this point, the checkout
is complete with errors. To complete the checkout as intended, the user must cancel the checkout and start again from the beginning.

System Subflows

• Inventory—Triggers a check inventory request for each cart line item. Executing this step updates
CartCheckoutSession.BackgroundOperation and CartCheckoutSession.IsProcessing and redirects
the flow to the Wait Screen.

• Confirm Price—Triggers a price check request for each cart line item. Executing this step updates
CartCheckoutSession.BackgroundOperation and CartCheckoutSession.IsProcessing and redirects
the flow to the Wait Screen.

• Shipping Costs—Triggers a request to calculate shipping costs for each cart delivery group. Executing this step updates
CartCheckoutSession.BackgroundOperation and CartCheckoutSession.IsProcessing and redirects
the flow to the Wait Screen.

• Taxes—Triggers a request to calculate taxes for each cart line item. Executing this step updates
CartCheckoutSession.BackgroundOperation and CartCheckoutSession.IsProcessing and redirects
the flow to the Wait Screen.

• Cart to Order—Converts a cart to an order in Draft state, pending activation. Executing this step updates
CartCheckoutSession.BackgroundOperation and CartCheckoutSession.IsProcessing and redirects
the flow to the Wait Screen. CartCheckoutSession.OrderId is populated with the ID of the created order. You can extend
your checkout flow to update order fields after the Cart to Order step.

128

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

• Activate Order—Activates an order previously created in Draft state. Executing this step updates
CartCheckoutSession.BackgroundOperation and CartCheckoutSession.IsProcessing and redirects
the flow to the Wait Screen.

Subflows allowed in the Checkout Flow include:

• FlowProcessType.Flow

• FlowProcessType.AutoLaunchedFlow

• FlowProcessType.CheckoutFlow

Note: The Cart to Order and Activate Order subflows run synchronously by default. To run these actions asynchronously, change
the Run Asynchronously parameter from within the flow.

B2B Checkout States
The CartCheckoutSession object manages checkout progress.

The State and NextState fields on CartCheckoutSession drive the progression through a checkout. State identifies and completes an
async task, and NextState identifies the value that State automatically transitions to. The values are stored as strings, and the Checkout
flow manages state transitions.

The BackgroundOperation object identifies the async checkout task running in the background and provides a status of the tasks.
CartCheckoutSession.IsProcessing also tracks whether the background operation is still processing, and
CartCheckoutSession.IsError indicates whether an error occurred during checkout.

129

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

Example: In this example, State=Inventory transitions to NextState=Confirm Price, which confirms the price
after inventory processing completes. InProcessing indicates that a checkout task is operating in the background, and the
checkout Wait Screen displays until the task is finished or canceled.

When an async task completes:

• IsProcessing is set to false.

• If an error occurs, If error State is set to Error, and NextState is set to null.

• Else, NextState is copied to State.

B2B Checkout Task Modes
The B2B checkout flow executes tasks in two distinct modes, each suited to different action types.

A screen subflow contains a screen component, which is displayed to the buyer when the element executes. A screen subflow uses
buyer input and progresses to the next step when the buyer clicks Next.

An asynchronous checkout API action triggers a checkout task. The APIs return the job ID, which the checkout flow wait screen uses to
determine if the async task is complete.

When a synchronous operation executes in the checkout flow, the buyer must stay on the checkout flow screen for the task to complete.
If the buyer leaves the screen, the checkout information is lost.

To add a sync checkout step, create a custom invocable action using the InvocableMethod Apex annotation. Include the action in your
checkout flow. You can also execute Apex directly with the Flow Apex element.

B2B Checkout Error Handling
If an error occurs during the checkout process, the Checkout flow routes the checkout to the error subflow. The error subflow then
presents the user an error screen with an explanation.

When an error occurs, State is set to error, and NextState is set to null.

An error can occur during checkout for these reasons.

• A checkout flow element contains errors.

• The checkout flow API returns an HTTP error status.

• The checkout async integration indicates that a background operation failed.

130

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

• The checkout async integration contains write errors during execution to CartValidationOutput.

Buyer Experience SDK
The Buyer Experience Software Development Kit (SDK) includes all the Apex interfaces that support B2B Commerce cart and checkout.
The reference content presented here exposes the interfaces that support the legacy B2B checkout template.

Apex APIs

These Apex interfaces form the Buyer Experience SDK. Repeated execution of all these integrations must be idempotent.

Shared SDK Interface Properties

Inventory, pricing, shipping, and tax integrations share interface properties.

Asynchronous Checkout Interface

The cart processing and checkout integrations share a base method structure. These interfaces extend the base interface.

Error Handling

Cart and checkout integrations can provide errors and warnings that give the buyer who triggered the integration the ability to
resolve the problem and retry. Examples of resolvable errors include lack of inventory, pricing changes, and transient errors, such as
unreachable external services.

Idempotent Execution

API calls that trigger Integration services often run multiple times for the same cart. The integration APIs are designed to clean up
and resolve the results of prior calls (idempotentcy) before updating the cart. When a failure occurs, the cart executes a retry. Usually
the integration service or a buyer action causes errors.

Set Up Custom B2B Checkout Integrations

After you create your Apex classes, set up your checkout integrations.

Apex APIs
These Apex interfaces form the Buyer Experience SDK. Repeated execution of all these integrations must be idempotent.

Inventory Validation

Inventory checks guarantee that cart item quantities are available by delegating checks to the cart inventory interface. Quantity availability
errors are written to CartValidationOutput.

global interface checkout_CartInventoryValidation
extends checkout_AsyncCartFunction {

}

Price Calculations

The price calculation integration guarantees that all cart items have a transactional price assigned to each line item in the cart.

global interface checkout_CartPriceCalculations
extends checkout_AsyncCartFunction {

}

131

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

Shipping Charges

The shipping integration guarantees that all cart delivery groups have the correct identifying carrier, class of service, and cost.

global interface checkout_CartShippingCharges
extends checkout_AsyncCartFunction {

}

Tax Calculations

The tax calculation integration guarantees that each cart item has associated tax line items added with tax amounts.

global interface checkout_CartTaxCalculations
extends checkout_AsyncCartFunction {

}

Shared SDK Interface Properties
Inventory, pricing, shipping, and tax integrations share interface properties.

Each SDK interface shares the following properties:

• Published under reserved namespace sfdc_checkout.

• Extends AsyncCartProcessor.

• Executes asynchronously.

• Accept cartId as an input parameter.

Interface NameIntegration Use Case

CartInventoryValidation.apexInventory Validation

CartPriceCalculations.apexPricing

CartShippingCharges.apexShipping Charges

CartTaxCalculations.apexCalculate Taxes

Asynchronous Checkout Interface
The cart processing and checkout integrations share a base method structure. These interfaces extend the base interface.

Base Interface

global interface AsyncCartProcessor {

// Integration used for async processing.
IntegrationStatus startCartProcessAsync(

IntegrationInfo integrationInfo,
Id cartId);

}

132

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

Input Type: IntegrationInfo

The IntegrationInfo input param provides values that checkout APIs use to map requests to responses and the necessary
metadata and context. Integration code also needs instance details because code can be reused across stores.

global class IntegrationInfo {

// Identifies specific to the Salesforce Background Operation framework.
global String jobId;

// ID of this integration.
Webservice String integrationId;

// Site language to be used by third party services.
Webservice String siteLanguage;

}

Return Type: IntegrationStatus

IntegrationStatus supports only synchronous execution of Apex integrations. The implementation must return the status of
the execution.

• Success indicates that the integration executed successfully.

• Failed indicates a transient, unknown error managed by the implementor. The buyer can retry this action.

Note: If IntegrationStatus returns Failed, the checkout session state is set to Error. In turn, the Checkout flow
fails, presents an error to the buyer, and redirects the buyer back to the cart to resolve errors or retry.

global class IntegrationStatus {
//Indicates that integration processing is complete.

global enum Status {SUCCESS, FAILED}
global Status status;

}

Return Type: Exception

If a runtime exception occurs during an Apex integration execution, the integration execution is rolled back and the system fires a
platform error event. This rollback preserves data integrity and marks the integration task as failed. The checkout session state is updated
to Error, which causes the Checkout flow process to fail. When the checkout fails, an error displays to the buyer, and they’re redirected
back to the cart to resolve the errors or retry. To receive more information about an error, subscribe to the platform error event.

Error Handling
Cart and checkout integrations can provide errors and warnings that give the buyer who triggered the integration the ability to resolve
the problem and retry. Examples of resolvable errors include lack of inventory, pricing changes, and transient errors, such as unreachable
external services.

133

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

https://developer.salesforce.com/docs/atlas.en-us.248.0.platform_events.meta/platform_events/sforce_api_objects_platformstatusalertevent.htm

Integration developers can catch runtime errors and communicate those errors to users via the CartValidationOutput standard object.
This example code is executed in a synchronous style, indicating to the caller that the integration completed with errors. You can also
execute these errors asynchronously by adding a callback mechanism.

public class CartInventoryValidationImpl implements checkout_CartInventoryValidation {

IntegrationStatus startCartProcessAsync(IntegrationInfo jobInfo, ID cartId) {

//Look up cart items and process inventory availability
ID cartItemId = firstCartItemWithoutInventory(cartId);

// Insert cart item error
insert new CartValidationOutput(

jobInfo.getJobId(),
cartItemId,
"Inventory",
"Error",
"Item out of stock");

// Indicate to the service that the work
// completed with errors that still need to be resolved
return IntegrationStatus.Failed;

}

Note: This example code is executed in a synchronous style, indicating to the caller that the integration completed with errors.
You can also execute these errors in an async style with the addition of a callback mechanism.

Errors that occur during checkout execution are presented to the buyer within the cart. They can present as a cart header, a cart item
error, or a cart delivery group error.

Idempotent Execution
API calls that trigger Integration services often run multiple times for the same cart. The integration APIs are designed to clean up and
resolve the results of prior calls (idempotentcy) before updating the cart. When a failure occurs, the cart executes a retry. Usually the
integration service or a buyer action causes errors.

An integration can be executed using partial results from a previous execution. Partial results are a mix of null and non-null values. Before
writing updated values, the code cleans up the integration results from previous executions.

This example integration clears the price of all items with a bulk write and then attempts to recalculate the prices.

public class CartPriceCalcImpl implements checkout_CartPriceCalc {

IntegrationStatus startCartProcessAsync(IntegrationInfo jobInfo, ID cartId) {

// clean previous executions
cleanItemPrices(jobInfo, cartId);

// bulk update prices
bulkUpdateItems(jobInfo, cartId);

// indicate to the service, that the work is complete
IntegrationStatus.complete();

134

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

}

public void cleanItemPrices(IntegrationInfo jobInfo, ID cartId) {

// execute integration work on the calling thread
List<CartItem> cartItems =

[SELECT CartItemId, SKU, Quantity, TotalLineAmount
FROM CartItem
WHERE WebCartId = cartId];

// for each set price
for(Cartitem cartItem : cartItems) {

cartItem.TotalLineAmount = null;
}

// bulk update of cart items
update cartItems;

}

...
}

Set Up Custom B2B Checkout Integrations
After you create your Apex classes, set up your checkout integrations.

Register Your Apex Class

Insert your Apex class into RegisteredExternalService. Use the ApexClassId as ExternalServiceProviderId,
and use the ExternalServiceProviderType included in the code sample.

// WebStore query values
String webstoreName = 'store1';

// ApexClass query values
String apexClassname = 'B2BPricingSample';
String status = 'Active';
Double ApiVersion = 54.0;

// RegisteredExternalService insert values
String registeredProviderType = 'Price';
String registeredDevName = 'COMPUTE_PRICE';
String registeredLabel = registeredDevName;

// StoreIntegratedService insert values
String devname = registeredDevName;
String prefix = registeredProviderType;
String prefixedName = prefix + '__' + devname;

// locate webstore
WebStore webStore = Database.query('SELECT Id FROM WebStore WHERE Name = :webstoreName
LIMIT 1');
String webStoreId = webStore.Id;
System.debug('webStoreId:' + webStoreId);

135

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

// locate apex class Id
ApexClass apexClass = Database.query('SELECT Id FROM ApexClass WHERE Status=:status AND
ApiVersion=:apiVersion AND Name=:apexClassname LIMIT 1');
String apexClassId = apexClass.Id;
System.debug('apexClassId:' + apexClassId);

// locate apex in RegisteredExternalService
String registeredIntegrationId = null;
try {
RegisteredExternalService registeredExternalService = Database.query('SELECT Id FROM
RegisteredExternalService WHERE ExternalServiceProviderId=:apexClassId AND
DeveloperName=:registeredDevName AND ExternalServiceProviderType=:registeredProviderType
LIMIT 1');
registeredIntegrationId = registeredExternalService.Id;
System.debug('apex class registration: FOUND ' + registeredIntegrationId);
//delete registeredExternalService; // optionally remove if needed

} catch (QueryException q) {
System.debug('apex class registration: MISSING ' + apexClassId);
insert new RegisteredExternalService(DeveloperName = registeredDevName, MasterLabel =

registeredLabel, ExternalServiceProviderId = apexClassId, ExternalServiceProviderType =
registeredProviderType);
RegisteredExternalService registeredExternalService = Database.query('SELECT Id FROM

RegisteredExternalService WHERE ExternalServiceProviderId = :apexClassId LIMIT 1');
registeredIntegrationId = registeredExternalService.Id;
System.debug('apex class registration: INSERTED ' + registeredIntegrationId);

}

Example: Configure a provider for each type, and include these entries.

DeveloperNameExternalServiceProviderTypeExternalServiceProviderIdId

CHECK_INVENTORYInventory01pxx0000004cGRAAY1uuxx00000001s9AAA

COMPUTE_SHIPPINGShipment01pxx0000004cGQAAY1uuxx00000001sAAAQ

COMPUTE_TAXESTax01pxx0000004cGPAAY1uuxx00000001sBAAQ

COMPUTE_PRICEPrice01pxx0000004cGOAAY1uuxx00000001sCAAQ

Map to Your Store

Insert the DeveloperName into StoreIntegratedService.

// WebStore query values
String webstoreName = 'store1';

// ApexClass query values
String apexClassname = 'B2BPricingSample';
String status = 'Active';

136

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

Double ApiVersion = 48.0;

// RegisteredExternalService insert values
String registeredProviderType = 'Price';
String registeredDevName = 'COMPUTE_PRICE';
String registeredLabel = registeredDevName;

// StoreIntegratedService insert values
String devname = registeredDevName;
String prefix = registeredProviderType;
String prefixedName = prefix + '__' + devname;

// locate webstore
WebStore webStore = Database.query('SELECT Id FROM WebStore WHERE Name = :webstoreName
LIMIT 1');
String webStoreId = webStore.Id;
System.debug('webStoreId:' + webStoreId);

// locate apex class Id
ApexClass apexClass = Database.query('SELECT Id FROM ApexClass WHERE Status=:status AND
ApiVersion=:apiVersion AND Name=:apexClassname LIMIT 1');
String apexClassId = apexClass.Id;
System.debug('apexClassId:' + apexClassId);

// locate apex in RegisteredExternalService
RegisteredExternalService registeredExternalService = Database.query('SELECT Id FROM
RegisteredExternalService WHERE ExternalServiceProviderId=:apexClassId AND
DeveloperName=:registeredDevName AND ExternalServiceProviderType=:registeredProviderType
LIMIT 1');
String registeredIntegrationId = registeredExternalService.Id;
System.debug('apex registration:' + registeredIntegrationId);

// locate and map in StoreIntegratedService
try {
StoreIntegratedService registeredMappingObj = Database.query('SELECT Id FROM

StoreIntegratedService WHERE Integration=:prefixedName AND ServiceProviderType=:prefix AND
StoreId=:webStoreId LIMIT 1');
System.debug('registered class mapping: FOUND ' + registeredMappingObj);
// delete registeredMappingObj; // optionally remove if needed

} catch (QueryException q) {
System.debug('registered class mapping: MISSING ' + prefixedName);
insert new StoreIntegratedService(Integration = prefixedName, ServiceProviderType =

prefix, StoreId = webStoreId);
StoreIntegratedService registeredMappingObj = Database.query('SELECT Id FROM

StoreIntegratedService WHERE Integration=:prefixedName AND ServiceProviderType=:prefix AND
StoreId=:webStoreId LIMIT 1');
System.debug('registered class mapping: INSERTED ' + registeredMappingObj);

}

137

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

Example: Use the ID from RegisteredExternalService for the Integration field and the ServiceProviderType
matching the ExternalServiceProviderType from RegisteredExternalService.

StoreIdServiceProviderTypeIntegrationId

0ZExx00000002rRGAQInventory1uuxx00000001s9AAA1ffxx000000021pAAA

0ZExx00000002rRGAQShipment1uuxx00000001sAAAQ1ffxx000000021qAAA

0ZExx00000002rRGAQTax1uuxx00000001sBAAQ1ffxx000000021rAAA

0ZExx00000002rRGAQPrice1uuxx00000001sCAAQ1ffxx000000021sAAA

0ZExx00000002rRGAQPayment2abxx00000001sDAAQ1ffxx000000021tAAA

Set Up the Payment Gateway

Create a payment gateway, and locate the PaymentGatewayId.

String paymentGatewayId = [SELECT Id FROM PaymentGateway WHERE PaymentGatewayName = 'Name'
LIMIT 1].Id;
System.debug('paymentGatewayId:' + paymentGatewayId);

Create Named Credentials

A custom Apex call that makes outbound HTTP connections must reference a named credential to avoid creating hard-coded credentials
within the code. Configure corresponding named credentials, referenced by the Apex class, after you finish your integration installation.

//Prepare HTTP POST
HttpRequest req = new HttpRequest();
req.setEndpoint('callout:My_Named_Credential/some_path');

138

B2B Legacy Checkout ReferenceB2B Commerce and D2C Commerce Developer Guide

	B2B Commerce and D2C Commerce Developer Guide
	B2B and D2C Commerce Data Model
	Cart Data Model
	Product and Catalog Data Model
	Product and Category Media Data Model
	Product Attributes Data Model

	Implementation Lifecycle: Personas
	Integrations
	Integration Architecture for B2B and D2C Stores (LWR)
	Integration Architecture for B2B Stores (Aura)
	Checkout Integration
	Shipping and Tax Integration
	Shipping and Tax API
	Shipping Reference Package
	Tax Reference Package

	Payment Integration
	Payment Architecture
	Payment APIs
	Payment Gateway
	Payments Reference Packages

	Set Up Payment Processing
	Handle Currency Changes for Active Carts
	Commerce SFDX Environment Setup
	Install the SFDX CLI
	Install the Visual Studio Code Editor
	Get Salesforce Extensions for VS Code Editor

	Build Custom Components
	Lightning Web Components
	Create an SFDX Project for the Custom Component
	Authorize an Org for an SFDX Project
	Create a Sample Lightning Web Component
	Deploy a Custom Component
	Add a Custom Component to Your Store
	Public Commerce LWR Library

	Storefront APIs
	Custom Payment Components
	Create a Custom Payment Component
	Create Commerce Einstein Recommendations Components
	Commerce Einstein APIs
	Prepare Commerce Einstein to Use Custom Components
	Create a Custom Recommendations Component for B2C Stores Using Commerce Einstein APIs
	Create a Custom Recommendations Component for B2B Stores Using Commerce Einstein APIs
	Commerce Einstein Recommendations API Reference
	Commerce Einstein Activity Tracking API
	B2C Commerce Einstein Product Recommendations API
	B2B Commerce Einstein Product Recommendations API

	Create a Custom Checkout Component for a B2B or B2C Store (LWR)
	Checkout Component Hierarchy
	UseCheckoutComponent Interface
	Checkout Component Communication
	Sample Custom Checkout Component

	Custom Rules for Product Readiness
	B2B Commerce Checkout Flow (Aura)
	B2B Checkout Flows
	B2B Checkout Flow Tasks
	Create a B2B Commerce Org and Checkout Flow
	Configure a B2B Checkout Flow
	Add a Checkout Flow to a B2B Store
	Update a Checkout Flow to Handle Promotions
	Create a Promotion Subflow for an Existing Checkout Flow
	Add a Promotions Subflow to a Checkout Flow
	Map a Promotions Integration to a B2B Store

	Configure Purchase Order or Credit Card B2B Flows
	Change a B2B Subflow: Asynchronous or Synchronous
	Customize a B2B Subflow
	Time Limits and Active Checkouts
	Configure B2B Checkout Time to Live with Developer Console
	Configure B2B Checkout Time to Live with APIs

	Test Your B2B Checkout Flow
	B2B Checkout Flow Notifications
	Order Confirmation Notifications
	Create Email Order Confirmation Notifications
	App, Push, and Bell Order Confirmations
	Create an App, Push, or Bell Notification
	Create a Notification Flow
	Invoke a Notification Flow

	Checkout Stage Notifications
	Intermediate Checkout Stage Notifications Overview
	Create a Platform Event for Checkout Notifications
	Create a Process to Publish a Checkout Notification Platform Event
	Create an Email Notification
	Create a Flow to Send an Email Alert
	Create a Flow for Bell Notifications
	Create a Process to Call a Flow

	Make Notifications Optional for Users
	Let Users Opt Out of Checkout Notifications
	Write an Apex Action to Make Notifications Optional
	Add Optional Notifications to an Email Flow

	Localize Checkout Notifications
	Localize a Notification
	Create a Flow for Localized Notifications

	Create Third-Party Integrations with Platform Events

	Configure B2B Checkout Flows to Create Managed Order Summaries
	Import and Export Lightning B2B Commerce Order Summaries
	Order Summaries
	What Happens When a Customer Places an Order
	Managed and Unmanaged Order Summaries
	Map Cart Data to Order Data
	Disable Cart to Order Mappings for Custom Fields
	Exportable and Updatable Summary Objects

	Export or Update Unmanaged Order Summaries
	Export Unmanaged Order Summaries with Data Loader
	Update Unmanaged Order Summaries with Data Loader

	Create Unmanaged Order Summaries

	B2B Legacy Checkout Reference
	Checkout Flow Architecture
	B2B Checkout Flow Design
	B2B Checkout Flow Elements
	B2B Checkout Subflows
	B2B Checkout States
	B2B Checkout Task Modes
	B2B Checkout Error Handling

	Buyer Experience SDK
	Apex APIs
	Shared SDK Interface Properties
	Asynchronous Checkout Interface
	Error Handling
	Idempotent Execution
	Set Up Custom B2B Checkout Integrations

