
SETTING UP YOUR JAVA DEVELOPER
ENVIRONMENT

Summary

Configure your local dev
environment for integrating
with Salesforce using Java.

This tipsheet describes how to set up your local environment so that you can start using Salesforce APIs,
such as SOAP API or REST API.

Note: If you’re setting up a local environment to develop Salesforce applications using Apex and
custom Metadata API components, take a look at the Salesforce Extensions for Visual Studio Code.

This tipsheet focuses on tools and configurations you’ll need to set up your local development system. It
assumes you already have a working Salesforce organization with the “API Enabled” permission. API is
enabled by default on Developer Edition, Enterprise Edition, Unlimited Edition, and Performance Edition
organizations.

To create a Developer Edition org, go to developer.salesforce.com/signup and follow the
instructions for signing up for a Developer Edition organization.

If you have a Salesforce organization you can use for development but need to set up a sandbox for
development and testing, see Deploy Enhancements from Sandboxes in Salesforce Help.

Installing Java
You need the Java Developer Kit (JDK) version 8.0 or later to use Salesforce APIs. Java is a robust,
cross-platform, widely used language that integrates well with Salesforce.

To install the JDK, you need a Windows, Mac OS X, or Linux system that has internet access. Depending
on your system, you might also need administrator level access to install the JDK.

Note: If you think you already have the JDK installed, use the steps listed in Verifying your JDK
install to verify your version of Java. Most versions of Mac OS X and Linux come pre-installed with
a version of the JDK.

The JDK is a development kit required to build Java applications. The JDK includes the Java Runtime
Environment (JRE) which is required to run Java applications.

1. Navigate to http://www.oracle.com/technetwork/java/javase/downloads/index.html in your browser
on your local system. Download the latest version of the JDK for your operating system. Make sure
you are downloading the JDK, and not the JRE.

2. On Windows, double-click the installer executable and follow the steps to install the JDK and the
included JRE to your local machine. On Mac OS X, open the .dmg file and double-click the installer
package. On Linux, if you downloaded an .rpm file, in a command prompt window type rpm —ivh
jdk install rpm file. If you downloaded a .tar file, extract the files from the tar archive and
copy to a location of your choice.

3. Add the JDK executables to your path.

a. On Windows, click Start > Control Panel > System and Security > System > Advanced
system settings. Click Environment Variables and find the PATH variable in System variables.
Add the location of the bin folder of the JDK installation path to the end of your path value.
Your path might look something like:
%SystemRoot%\system32;%SystemRoot%;C:\Program
Files\Java\jdk1.8.0_162_x64\bin. Click Ok to apply the changes.

Last updated: November 9, 2023

https://forcedotcom.github.io/salesforcedx-vscode/
https://developer.salesforce.com/signup
https://help.salesforce.com/articleView?id=deploy_sandboxes_parent.htm&language=en_US
http://www.oracle.com/technetwork/java/javase/downloads/index.html

b. On Mac OS X or Linux, you must update your $PATH environment variable. On Mac OS X, you
can also use the java_home command to set your Java paths.

Verifying your JDK install

To verify your JDK install, in a command prompt window type java —version. You should see
something like:

java version "1.8.0_162"
Java(TM) SE Runtime Environment (build 1.8.0_162-b12)
Java HotSpot(TM) 64-Bit Server VM (build 225.162-b12, mixed mode)

You can also verify that the Java compiler was properly installed by typing javac —version in a
command prompt window. The output should look something like:

javac 1.80_162

If you get an error indicating that either java or javac is an unknown executable, your installation might
have failed, or you might not have set your path environment as described in Step 3.

Installing Eclipse
Eclipse is an integrated development environment (IDE) for Java development.

Eclipse requires a Java runtime environment to run.

While Eclipse is not required to develop integration applications for Salesforce, install Eclipse if you want
an easy to use IDE that works with Salesforce.

1. Navigate to http://www.eclipse.org/downloads in your browser. Download “Eclipse IDE for Java
Developers.” Choose either the 32–bit version or the 64–bit version, depending on the version of the
JDK you have installed.

2. Un-archive the downloaded file to a location of your choice. Eclipse does not have a special installation
application.

3. Launch the Eclipse executable in the eclipse folder you just un-archived. On Windows, this is
eclipse.exe, on Mac OS X, this is Eclipse.app, and on Linux this is eclipse. Eclipse will
ask for the location of a new eclipse workspace. Click Ok to accept the default workspace location.

4. Dismiss the welcome page by closing the welcome page window. You are now in the Eclipse
workbench, ready to create a new Java-based Salesforce integration project.

Picking a Path Based on Which API You Use
The next steps for setting up your development environment depend on which Salesforce API you want
to use.

To use SOAP API or CRUD-based Metadata API, or any other WSDL-based Salesforce API, complete the
steps in the following tasks.

• Install the Web Services Connector (WSDL-Based APIs) on page 3

• Download Developer WSDL Files (WSDL-Based APIs) on page 3

• Generating Java Stub Files (WSDL-Based APIs) on page 4

• Verify the WSDL Environment (WSDL-Based APIs) on page 4

2

Installing EclipseSetting Up Your Java Developer Environment

http://www.eclipse.org/downloads

To use REST API, Bulk API, Connect REST API, or any other REST-based Salesforce API, complete the steps
in the following tasks.

• Installing HttpClient and JSON Frameworks (REST-Based APIs) on page 6

• Setting Up Connected App Access (REST-Based APIs) on page 6

• Verify the REST Environment (REST-Based APIs) on page 6

Tooling API provides both SOAP and REST-based interfaces, so depending on your needs, you can set up
your environment by using one of the paths above.

Streaming API requires installing additional Java frameworks for supporting push technology. See Example:
Subscribe to and Replay Events Using a Java Client (EMP Connector) in the Force.com Streaming API
Developer’s Guide.

Install the Web Services Connector (WSDL-Based APIs)
The Lightning Platform Web Services Connector (WSC) is a high-performance runtime framework that
makes using WSDL-based Salesforce APIs easier. To install the WSC, download the prebuilt .jar file from
the Force MVN repository.

Before you use the WSC framework, make sure that you have a working of the Java JDK.

1. Navigate to https://mvnrepository.com/artifact/com.force.api/force-wsc in your browser.

2. Select the WSC version you want to download. We recommend downloading the version that matches
the API version of Salesforce that you’re using.

3. To view all files, select View All.

4. Note: If you can’t find a pre-built version of WSC that works with the API version you’re using,
you can build the .jar file from source. Navigate to https://github.com/forcedotcom/wsc and
follow the instructions on “Building WSC.”

Download the file ending in uber.jar. For example, download the
force-wsc-57.0.0-uber.jar file.

5. Save the WSC .jar file in a known location. You use it to generate stub files with the WSDLs from your
Salesforce organization.

Download Developer WSDL Files (WSDL-Based APIs)
Salesforce Web Services Definition Language (WSDL) files provide API details that you use in your developer
environment to make API calls.

To download WSDL files directly from your Salesforce organization:

1. Log in to your Salesforce developer organization in your browser.

2. From Setup, enter API in the Quick Find box, then select API.

3. Download the appropriate WSDL files for the API you want to use.

a. If you want to use SOAP API you’ll need either the Enterprise or Partner WSDL. See Choosing a
WSDL in the SOAP API Developer Guide to determine which WSDL to download.

b. If you want to use Metadata API you’ll need the Metadata WSDL. To login and authenticate with
Salesforce you’ll also need either the Enterprise or Partner WSDL.

3

Install the Web Services Connector (WSDL-Based APIs)Setting Up Your Java Developer Environment

https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/code_sample_java_client_intro.htm
https://developer.salesforce.com/docs/atlas.en-us.api_streaming.meta/api_streaming/code_sample_java_client_intro.htm
https://mvnrepository.com/artifact/com.force.api/force-wsc
https://github.com/forcedotcom/wsc
https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_quickstart_intro.htm#choose_wsdl
https://developer.salesforce.com/docs/atlas.en-us.api.meta/api/sforce_api_quickstart_intro.htm#choose_wsdl

c. If you want to use Tooling API you’ll need the Tooling WSDL. To login and authenticate with
Salesforce you’ll also need either the Enterprise or Partner WSDL.

Generating Java Stub Files (WSDL-Based APIs)
To use WSDL-based Salesforce APIs with Java, you need to generate .jar stub files that you can use in your
Java projects.

You’ll need the WSC .jar file to generate stub files. You’ll also need the appropriate WSDL files for the API
you plan to use.

1. Open a command prompt window and navigate to the location where your WSDL and WSC .jar files
are.

2. Generate the Java stub for the WSDL by using the following command in a command prompt window:
java –classpath path to WSC jar/WSC jar filename
com.sforce.ws.tools.wsdlc path to WSDL/WSDL filename path to
output stub jar and filename. You might need to also include additional .jar files that
WSC needs, such as Rhino or StringTemplate, in the classpath list, separated by semi-colons (on
Windows) or colons (on Mac/Linux). See Install the Web Services Connector (WSDL-Based APIs) for
more information on Rhino and StringTemplate.

An example Windows command for generating the stub .jar file “enterprise_stub.jar” using the API version
29.0 WSC and the Enterprise WSDL might look something like this:

java -classpath \testWorkspace\wsc\force-wsc-29.0.0.jar;
\testWorkspace\rhino1_7R4\js.jar;
\testWorkspace\stringTemplate\ST-4.0.7.jar;
\jdk\jdk1.7.0_17\lib\tools.jar
com.sforce.ws.tools.wsdlc
\testWorkspace\wsdl\enterprise.wsdl
\testWorkspace\stub\enterprise_stub.jar

Note that this example includes the Rhino and StringTemplate dependent .jar files in the classpath.

Verify the WSDL Environment (WSDL-Based APIs)
You can verify your developer environment with a simple Java test application in Eclipse.

You should have the JDK, Eclipse, and WSC installed, and have generated the Java stub .jar files for the
WSDL files that you need to use. You’ll need the stub .jar file for either the Enterprise or Partner WSDL to
follow the verification steps.

1. Run Eclipse. Click File > New > Java Project and name the project SF-WSC-Test.

2. Add the WSC and stub .jar files to your project. Click Project > Properties > Java Build Path >
Libraries, click Add External JARs, select the WSC, and stub .jar files, and click OK.

3. Add a new folder to the src folder by right-clicking src, then select New > Folder and use wsc
as the folder name.

4. Create a new class by right-clicking wsc and selecting New > Class. Name the class Main.

5. Replace the code Eclipse generates for Main.java as described in the following section.

Use the following simple login example code for your Main.java class. Replace YOUR DEVORG
USERNAME with your developer organization username, and replace YOUR DEVORG PASSWORD

4

Generating Java Stub Files (WSDL-Based APIs)Setting Up Your Java Developer Environment

AND SECURITY TOKEN with your developer organization password appended with your security
token. If you did not set a security token in your organization, just provide your password. A GitHub Gist
of this code is available here: https://gist.github.com/anonymous/78864d2c4ccfe4e983ef.

package wsc;

import com.sforce.soap.enterprise.Connector;
import com.sforce.soap.enterprise.EnterpriseConnection;
import com.sforce.ws.ConnectionException;
import com.sforce.ws.ConnectorConfig;

public class Main {
static final String USERNAME = "YOUR DEVORG USERNAME";
static final String PASSWORD = "YOUR DEVORG PASSWORD AND SECURITY

TOKEN";
static EnterpriseConnection connection;

public static void main(String[] args) {

ConnectorConfig config = new ConnectorConfig();
config.setUsername(USERNAME);
config.setPassword(PASSWORD);

try {

connection = Connector.newConnection(config);

// display some current settings
System.out.println("Auth EndPoint:

"+config.getAuthEndpoint());
System.out.println("Service EndPoint:

"+config.getServiceEndpoint());
System.out.println("Username: "+config.getUsername());
System.out.println("SessionId: "+config.getSessionId());

} catch (ConnectionException e1) {
e1.printStackTrace();

}
}

}

The following example output shows a typical successful run of this code.

Auth EndPoint: https://login.salesforce.com/services/Soap/c/27.0
Service EndPoint:
https://yourInstance.salesforce.com/services/Soap/c/27.0/00DU0000000L5f0
Username: testuser@testorg.com
SessionId: 00DU0000000Q5f0!ARoAQDjpkH.NReBp_vBLZ124aDbgYM_v7so9ciUu

If the verification Java project runs and displays output that matches your organization, your developer
environment is set up and you can start developing Java applications that integrate with Salesforce.

5

Verify the WSDL Environment (WSDL-Based APIs)Setting Up Your Java Developer Environment

https://gist.github.com/anonymous/78864d2c4ccfe4e983ef

Installing HttpClient and JSON Frameworks (REST-Based
APIs)
To access REST resources, you’ll need to install HttpClient and JSON frameworks. HttpClient lets you access
HTTP resources. The JSON framework lets you generate and parse JSON request and response data.

You’ll need to have the JDK installed on your local system to use the HttpClient and JSON frameworks.

1. Navigate to http://hc.apache.org/downloads.cgi in your browser and download the binary archive of
the latest “GA” version of HttpClient. Un-archive the downloaded file and move the directory to a
location you’ll remember.

2. Navigate to http://mvnrepository.com/artifact/org.json/json in your browser and download the latest
binary .jar file. Copy this .jar file to a location you’ll remember.

Setting Up Connected App Access (REST-Based APIs)
Because Salesforce REST APIs use OAuth authentication, create a connected app to integrate your
application with Salesforce.

A connected app integrates an application with Salesforce using APIs. Connected apps use standard SAML
and OAuth protocols to authenticate, provide single sign-on, and provide tokens for use with Salesforce
APIs. In addition to standard OAuth capabilities, connected apps allow Salesforce admins to set various
security policies and have explicit control over who can use the corresponding apps.

Specify basic information about your app. See Configure Basic Connected App Settings in Salesforce Help.

Next, provide OAuth settings. See See Enable OAuth Settings for API Integration in Salesforce Help.

For more information, see Create a Connected App in Salesforce Help.

Verify the REST Environment (REST-Based APIs)
You can verify your developer environment with a simple Java test application in Eclipse.

You should have the JDK, Eclipse, and the HttpClient and JSON frameworks installed.

1. Run Eclipse. Click File > New > Java Project and name the project “SF-REST-Test.”

2. Click Project > Properties > Java Build Path > Libraries and click Add External JARs. Add the
HttpClient .jar files: httpclient, httpcore, commons-codec, and commons-logging
(the .jar files will have version information in the filenames). Add the JSON .jar file, which might also
have a version number in the .jar filename.

3. Add a new folder to the src folder by right-clicking src, then select New > Folder and use
sfdc_rest as the folder name.

4. Create a new class by right-clicking sfdc_rest and selecting New > Class. Name the class Main.

5. Replace the code Eclipse generates for Main.java as described in the following section.

Use the following simple login example code for your Main.java class. Replace YOUR DEVORG
USERNAME with your developer organization username, and replace YOUR DEVORG PASSWORD
+ SECURITY TOKEN with your developer organization password appended with your security token.
If you did not set a security token in your organization, just provide your password. Replace YOUR OAUTH
CONSUMER KEY with the consumer key from your development organization’s connected app. Replace
YOUR OAUTH CONSUMER SECRET with the consumer secret from your development organization’s

6

Installing HttpClient and JSON Frameworks (REST-Based APIs)Setting Up Your Java Developer Environment

http://hc.apache.org/downloads.cgi
http://mvnrepository.com/artifact/org.json/json
https://help.salesforce.com/articleView?id=connected_app_create_basics.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_create_api_integration.htm&language=en_US
https://help.salesforce.com/articleView?id=connected_app_create.htm&language=en_US

connected app. A GitHub Gist of this code is available here:
https://gist.github.com/anonymous/fcb1bc36ef50c0efbeb5.

package sfdc_rest;

import java.io.IOException;

import org.apache.http.client.methods.HttpPost;
import org.apache.http.impl.client.DefaultHttpClient;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.util.EntityUtils;
import org.apache.http.client.ClientProtocolException;

import org.json.JSONObject;
import org.json.JSONTokener;
import org.json.JSONException;

public class Main {

static final String USERNAME = "YOUR DEVORG USERNAME";
static final String PASSWORD = "YOUR DEVORG PASSWORD + SECURITY

TOKEN";
static final String LOGINURL = "https://login.salesforce.com";

static final String GRANTSERVICE =
"/services/oauth2/token?grant_type=password";

static final String CLIENTID = "YOUR OAUTH CONSUMER KEY";
static final String CLIENTSECRET = "YOUR OAUTH CONSUMER SECRET";

public static void main(String[] args) {

DefaultHttpClient httpclient = new DefaultHttpClient();

// Assemble the login request URL
String loginURL = LOGINURL +

GRANTSERVICE +
"&client_id=" + CLIENTID +
"&client_secret=" + CLIENTSECRET +
"&username=" + USERNAME +
"&password=" + PASSWORD;

// Login requests must be POSTs
HttpPost httpPost = new HttpPost(loginURL);
HttpResponse response = null;

try {
// Execute the login POST request
response = httpclient.execute(httpPost);

} catch (ClientProtocolException cpException) {
// Handle protocol exception

} catch (IOException ioException) {
// Handle system IO exception

}

7

Verify the REST Environment (REST-Based APIs)Setting Up Your Java Developer Environment

https://gist.github.com/anonymous/fcb1bc36ef50c0efbeb5

// verify response is HTTP OK
final int statusCode =

response.getStatusLine().getStatusCode();
if (statusCode != HttpStatus.SC_OK) {

System.out.println("Error authenticating to Force.com:
"+statusCode);

// Error is in EntityUtils.toString(response.getEntity())

return;
}

String getResult = null;
try {

getResult = EntityUtils.toString(response.getEntity());
} catch (IOException ioException) {

// Handle system IO exception
}
JSONObject jsonObject = null;
String loginAccessToken = null;
String loginInstanceUrl = null;
try {

jsonObject = (JSONObject) new
JSONTokener(getResult).nextValue();

loginAccessToken = jsonObject.getString("access_token");
loginInstanceUrl = jsonObject.getString("instance_url");

} catch (JSONException jsonException) {
// Handle JSON exception

}
System.out.println(response.getStatusLine());
System.out.println("Successful login");
System.out.println(" instance URL: "+loginInstanceUrl);
System.out.println(" access token/session ID:

"+loginAccessToken);

// release connection
httpPost.releaseConnection();

}
}

The following example output shows a typical successful run of this code.

HTTP/1.1 200 OK
Successful login
instance URL: https://yourInstance.salesforce.com
access token/session ID:

00DU0000000L5SPxa1XFi0rwB16YCQ.Xyv2nKiCT8iIN9_nkKQJ3UUf

If the verification Java project runs and displays output that matches your organization, your developer
environment is now set up and you can start developing Java applications that integrate with Salesforce
REST APIs.

8

Verify the REST Environment (REST-Based APIs)Setting Up Your Java Developer Environment

